Chapter 2: Unconstrained Extrema

Math 368

© Copyright 2012, 2013 R Clark Robinson

May 22, 2013

Types of Sets

Definition

For $\mathbf{p} \in \mathbb{R}^n$ and r > 0, the **open ball about p of radius** r is the set $\mathbf{B}(\mathbf{p}, r) = \{ \mathbf{x} \in \mathbb{R}^n : ||\mathbf{x} - \mathbf{p}|| < r \}.$

The closed ball about **p** of radius *r* is the set $\overline{\mathbf{B}}(\mathbf{p}, r) = \{ \mathbf{x} \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{p}\| \le r \}.$

Definition

The **complement** of a set **S** in \mathbb{R}^n are the points not in **S**,

$$\mathbf{S}^{c} = \mathbb{R}^{n} \setminus \mathbf{S} = \{ \mathbf{x} \in \mathbb{R}^{n} : \mathbf{x} \notin \mathbf{S} \}.$$

Boundary

Definition

The **boundary** of **S** is the set of all points which have

points arbitrarily close in both S and S^c ,

 $\partial(\mathbf{S}) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{B}(\mathbf{x}, r) \cap \mathbf{S} \neq \emptyset \& \mathbf{B}(\mathbf{x}, r) \cap \mathbf{S}^c \neq \emptyset \text{ for all } r > 0 \}.$

Example

The boundary of an open or a closed ball is the same $\partial(\mathbf{B}(\mathbf{p}, r)) = \partial(\overline{\mathbf{B}}(\mathbf{p}, r)) = \{\mathbf{x} \in \mathbb{R}^n : ||\mathbf{x} - \mathbf{p}|| = r\}.$

Example

S bounded polyhedral set $x_1 + x_2 \le 100$, $5x_1 + 10x_2 \le 800$,

 $2x_1 + x_2 \leq 150$, $0 \leq x_1$, $0 \leq x_2$.

Boundary is the polygonal closed curve made up of five line segments.

Closed and Open Sets

Definition

A set $\mathbf{S} \subset \mathbb{R}^n$ is **open** p.t.

for each point $\mathbf{x}_0 \in \mathbf{S}$, all nearby points are also in \mathbf{S} , i.e., there exists an r > 0 s.t. $\mathbf{B}(\mathbf{x}_0, r) \subset \mathbf{S}$.

Same as: $\mathbf{S} \cap \partial(\mathbf{S}) = \emptyset$, none of boundary of \mathbf{S} is in \mathbf{S} .

Definition

A set $\mathbf{S} \subset \mathbb{R}^n$ is said to be **closed** p.t.

all its boundary is a contained in S, $\partial(S) \subset S$,

Same as: $\mathbf{S} = \{ \mathbf{p} : \mathbf{B}(\mathbf{p}, r) \cap \mathbf{S} \neq \emptyset \text{ for all } r > 0 \}.$

Since $\partial(\mathbf{S}) = \partial(\mathbf{S}^c)$, it follows that **S** is open iff \mathbf{S}^c is closed.

In $\mathbb R$, the intervals (a,b), (a,∞) , and $(-\infty,b)$ are open;

[a, b], $[a, \infty)$, and $(-\infty, b]$ are closed.

[a, b) and (a, b] are neither open nor closed.

 $(-\infty,\infty)$ is both open and closed in \mathbb{R} .

Example

 \mathbb{R}^n and \emptyset are both open and closed in \mathbb{R}^n .

An open ball $\mathbf{B}(\mathbf{p}, r)$ is open: $\partial(\mathbf{B}(\mathbf{p}, r)) \cap \mathbf{B}(\mathbf{p}, r) = \emptyset$, so open. Or: For $\mathbf{x}_0 \in \mathbf{B}(\mathbf{p}, r)$, let $r' = r - \|\mathbf{x}_0 - \mathbf{p}\| > 0$. If $\mathbf{x} \in \mathbf{B}(\mathbf{x}_0, r')$, $\|\mathbf{x} - \mathbf{p}\| \le \|\mathbf{x} - \mathbf{x}_0\| + \|\mathbf{x}_0 - \mathbf{p}\| < r' + \|\mathbf{x}_0 - \mathbf{p}\| = r$, $\mathbf{x} \in \mathbf{B}(\mathbf{p}, r)$, and $\mathbf{B}(\mathbf{x}_0, r') \subset \mathbf{B}(\mathbf{p}, r)$. This shows that $\mathbf{B}(\mathbf{p}, r)$ is open.

Therefore, $\mathbf{B}(\mathbf{p}, r)^c$ is closed.

Since $\partial(\overline{\mathbf{B}}(\mathbf{p}, r)) \subset \overline{\mathbf{B}}(\mathbf{p}, r)$, closed ball $\overline{\mathbf{B}}(\mathbf{p}, r)$ is closed.

Or: For
$$\mathbf{x}_0 \in \overline{\mathbf{B}}(\mathbf{p}, r)^c$$
, let $r' = \|\mathbf{p} - \mathbf{x}_0\| - r > 0$.
If $\mathbf{x} \in \mathbf{B}(\mathbf{x}_0, r')$,
 $\|\mathbf{x} - \mathbf{p}\| \ge \|\mathbf{p} - \mathbf{x}_0\| - \|\mathbf{x}_0 - \mathbf{x}\| > \|\mathbf{p} - \mathbf{x}_0\| - r' = r$,
 $\mathbf{x} \in \mathbf{B}(\mathbf{p}, r)^c$, $\mathbf{B}(\mathbf{x}_0, r') \subset \overline{\mathbf{B}}(\mathbf{p}, r)^c$, and $\overline{\mathbf{B}}(\mathbf{p}, r)^c$ is open.
Therefore, $\overline{\mathbf{B}}(\mathbf{p}, r)$ is closed.

Interior and Closure

Definition

interior of $\mathbf{S} \subset \mathbb{R}^n$ is set with boundary removed,

$$\mathsf{int}(\mathsf{S}) = \mathsf{S} \smallsetminus \partial(\mathsf{S}) = \{\mathsf{p} : \mathsf{p} \in \mathsf{S} \& \mathsf{p} \notin \partial(\mathsf{S})\}.$$

$$= \{ \mathbf{p} \in \mathbf{S} : \exists r > 0 \text{ with } \mathbf{B}(\mathbf{p}, r) \subset \mathbf{S} \}.$$

Largest open set contained in S.

Definition

The **closure** of $\mathbf{S} \subset \mathbb{R}^n$,

$$\operatorname{\mathsf{Cl}}(\mathbf{S}) = \overline{\mathbf{S}} = \mathbf{S} \cup \partial(\mathbf{S}) = \{\, \mathbf{p} : \mathbf{B}(\mathbf{p}, r) \cap \mathbf{S} \neq \emptyset \, \text{ for all } \, r > 0 \, \}.$$

Smallest closed set containing S.

S is closed iff $\mathbf{S} = cl(\mathbf{S})$.

$$\partial(\mathbf{S}) = \mathsf{cl}(\mathbf{S}) \smallsetminus \mathsf{int}(\mathbf{S})$$

Examples of Interior and Closure

Example

```
Intervals in \mathbb{R}: int([0,1]) = (0,1),

cl((0,1)) = [0,1],

\partial([0,1]) = \partial((0,1)) = \{0,1\},

cl(\mathbb{Q} \cap (0,1)) = [0,1], \mathbb{Q} rationals

int (\mathbb{Q} \cap (0,1)) = \emptyset,

\partial(\mathbb{Q} \cap (0,1)) = [0,1].
```

Example

In \mathbb{R}^n ,

int
$$\overline{\mathbf{B}}(\mathbf{a}, r) = \mathbf{B}(\mathbf{a}, r)$$
 and $\operatorname{cl} \mathbf{B}(\mathbf{a}, r) = \overline{\mathbf{B}}(\mathbf{a}, r)$.

Chapter 2: Unconstrained Extrema

To be certain that a max exists, domain cannot "go off to infinity".

DefinitionA set $\mathbf{S} \subset \mathbb{R}^n$ is bounded p.t. there exists r > 0 s.t. $\mathbf{S} \subset \overline{\mathbf{B}}(\mathbf{0}, r)$,i.e., $\|\mathbf{x}\| \leq r$ for all $\mathbf{x} \in \mathbf{S}$.

Definition

A set $\mathbf{S} \subset \mathbb{R}^n$ is called **compact** p.t. it is closed and bounded.

In analysis, a compact set is defined in terms of convergent sequences Then a theorem says a closed bounded subsets of \mathbb{R}^n are compact.

Empty set is compact because the hypothesis is satisfied vacuously.

For $f : \mathbb{R} \to \mathbb{R}$, intuitive defn of continuous fn is that its graph can be drawn without lifting the pen.

$$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0, \end{cases}$$

$$0 - - - - 1$$

$$0 - - - - 0$$

has a jump at x = 0, so is discontinuous at x = 0.

Discontinuous functions

oscillates as x approaches 0 and is discontinuous at x = 0.

$$F(x,y) = \begin{cases} \frac{y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

approaches different values along different directions into origin:

$$\lim_{y \to 0} F(0, y) = \lim_{y \to 0} \frac{y^2}{y^2} = 1.$$
$$\lim_{x \to 0} F(x, mx) = \lim_{x \to 0} \frac{m^2 x^2}{x^2 + m^2 x^2} = \frac{m^2}{1 + m^2} \neq 1$$

Limits

Definition

Let $f : \mathbf{S} \subset \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{p} \in cl(\mathbf{S})$.

Limit of $f(\mathbf{x})$ at \mathbf{p} is \mathbf{L} , $\lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x}) = \mathbf{L}$, p.t.

for every $\epsilon > 0$ there exists a $\delta > 0$ s.t.

 $\|f(\mathbf{x}) - \mathbf{L}\| < \epsilon$ whenever $\|\mathbf{x} - \mathbf{p}\| < \delta$ and $\mathbf{x} \in \mathbf{S} \smallsetminus \{\mathbf{p}\}$.

Definition

Limit as \times goes to infinity of $f : \mathbb{R} \to \mathbb{R}$:

 $\lim_{x\to\infty} f(x) = L$ p.t.

for every $\epsilon > 0$ there exists K s.t.

$$|f(x) - L| < \epsilon$$
 whenever $x \ge K$.

Continuity

Definition

 $f: \mathbf{S} \subset \mathbb{R}^n \to \mathbb{R}^m \text{ is continuous at } \mathbf{p} \in \mathbf{S} \text{ p.t.}$ $\lim_{\mathbf{x} \to \mathbf{p}} f(\mathbf{x}) = f(\mathbf{p}),$ i.e., for every $\epsilon > 0$ there exists a $\delta > 0$ such that $\|f(\mathbf{x}) - f(\mathbf{p})\| < \epsilon \text{ whenever } \|\mathbf{x} - \mathbf{p}\| < \delta \text{ and } \mathbf{x} \in \mathbf{S}.$

This definition means that given a tolerance $\epsilon > 0$ in the values, there is a tolerance $\delta > 0$ in the input such that all points within δ of **p** have values within ϵ of $f(\mathbf{p})$.

Definition

f is continuous on a set **S** p.t. it is continuous at each $\mathbf{x} \in \mathbf{S}$.

Discussion of Continuity

Consider
$$g(x) = \sin\left(\frac{1}{x}\right)$$
,
 $g(0) = 0 = g(x_n)$ for $x_n = \frac{1}{n2\pi} > 0$,
 $g(x'_n) = 1 \neq g(0)$ for $x'_n = \frac{1}{n2\pi + \frac{\pi}{2}} > 0$
For arb small $\delta > 0$, \exists both x_n and x'_n within δ of 0.
Not all values close to $g(0) = 0$.

. .

Theorem

 $\mathbf{F}: \mathbf{S} \subset \mathbb{R}^n \to \mathbb{R}^m$ is continuous at \mathbf{p} iff

all coordinate functions F_i are continuous at **p**.

Definition

If $f: \mathscr{D} \subset \mathbb{R}^n \to \mathbb{R}^m$ is a function, then

the inverse image of a subset $U \subset \mathbb{R}^m$ is

$$f^{-1}(\mathbf{U}) = \{ \mathbf{x} \in \mathscr{D} : f(\mathbf{x}) \in \mathbf{U} \} \subset \mathscr{D}.$$

In this context, f^{-1} is not the inverse function,

but $f^{-1}(\mathbf{U})$ merely denotes points that map into \mathbf{U} .

Also consider **inverse image of a point b** $\in \mathbb{R}^m$ or **level set**, which is

$$f^{-1}(\mathbf{b}) = \{ \mathbf{x} \in \mathscr{D} : f(\mathbf{x}) = \mathbf{b} \} \subset \mathscr{D}.$$
$$= \{ \mathbf{x} \in \mathscr{D} : f_i(\mathbf{x}) = b_i \text{ for } i = 1, \dots, m \}.$$

Theorem

Let $f : \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}^m$. Then the following are equivalent.

- (i) f is continuous on \mathcal{D} .
- (ii) For each open set $\mathbf{V} \subset \mathbb{R}^m$, there is an open set $\mathbf{U} \subset \mathbb{R}^n$ such that $f^{-1}(\mathbf{V}) = \mathbf{U} \cap \mathscr{D}$,

i.e., the inverse image of an open set $f^{-1}(V)$ is open relative to \mathscr{D} .

(iii) For each closed set $\mathbf{C} \subset \mathbb{R}^m$, there is an closed set $\mathbf{B} \subset \mathbb{R}^n$ such that $f^{-1}(\mathbf{C}) = \mathbf{B} \cap \mathscr{D}$,

i.e., the inverse image of a closed set $f^{-1}(\mathbf{C})$ is closed relative to \mathcal{D} .

The Simplex is Compact

Let $p_i > 0$ for $1 \le i \le n$ be fixed prices and w > 0 be the wealth. Simplex

 $\mathbf{S} = \{ \mathbf{x} \in \mathbb{R}^n_+ : p_1 x_1 + \dots + p_n x_n \le w \}$ is compact.

Each coordinate $0 \le x_j \le \frac{w}{p_j}$, so $\|\mathbf{x}\| \le \sqrt{n} \max_i \{ |x_i| \} \le \sqrt{n} \max_i \{ \frac{w}{p_i} \}$, and the set is bounded.

Intuitively, the set is closed because the inequalities are non-strict, "less than or equal to" or "greater than or equal to".

More formally, $f(\mathbf{x}) = p_1 x_1 + \dots + p_n x_n$ is linear so continuous. [0, w] is closed, so the set $f^{-1}([0, w]) = \{ \mathbf{x} \in \mathbb{R}^n : 0 \le f(\mathbf{x}) \le w \}$ is closed. For $1 \le i \le n$, $g_i(\mathbf{x}) = x_i$ is continuous and $[0, \infty)$ is closed, so $g_i^{-1}([0, \infty)) = \{ \mathbf{x} \in \mathbb{R}^n : 0 \le x_i \}$ is closed. Combining, $\mathbf{S} = f^{-1}([0, w]) \cap \bigcap_{i=1}^n g_i^{-1}([0, \infty))$ is closed and compact. Similarly, all the feasible sets in linear programming are closed. If bounded, then compact.

Theorem (Extreme Value Theorem)

Assume that $\mathscr{F} \subset \mathbb{R}^n$ is a nonempty compact set (closed and bounded), and $f : \mathscr{F} \to \mathbb{R}$ is a continuous real valued function.

Then f attains a maximum and a minimum on \mathscr{F} ,

i.e., there exist points $\boldsymbol{x}_m, \boldsymbol{x}_M \in \boldsymbol{\mathscr{F}}$ such that

$$\begin{split} f(\mathbf{x}_m) &\leq f(\mathbf{x}) \leq f(\mathbf{x}_M) & \text{ for all } \mathbf{x} \in \mathscr{F}, \quad \text{ so} \\ f(\mathbf{x}_m) &= \min_{\mathbf{x} \in \mathscr{F}} f(\mathbf{x}), \quad \text{ and} \\ f(\mathbf{x}_M) &= \max_{\mathbf{x} \in \mathscr{F}} f(\mathbf{x}). \end{split}$$

Why must *F* be compact?

- **1.** $f(x) = x^3$ is unbounded on \mathbb{R} and has neither a maximum nor a minimum. f(x) is continuous, but \mathbb{R} is not bounded.
- 2. Same f(x) = x³ on (-1,1) is bounded, -1 < f(x) < 1, but has no maximum nor minimum on (-1,1).
 (-1,1) is bounded but not closed.

Examples related to Extreme Value Theorem, 2

g(x) = tan(x) is unbounded on (-π/2, π/2), does not have a minimum or maximum value,. tan(x) is not bounded above or below on (-π/2, π/2). (-π/2, π/2) is bounded but not closed.

4. h(x) = arctan(x) is bounded on ℝ, -^π/₂ < arctan(x) < ^π/₂.
limiting values are finite but are not attained, lim_{x→±∞} arctan(x) = ±^π/₂.
so h(x) does not have a maximum or minimum.
ℝ is closed but not bounded and the image is bounded but not closed.

$$f(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

is not continuous at x = 0 and

has no maximum nor minimum on [-1, 1]. even though [-1, 1] is compact.

Definition

 $f: \mathscr{D} \subset \mathbb{R}^n \to \mathbb{R}^m$ is continuously differentiable on $int(\mathscr{D})$, \mathbb{C}^1 , p.t. all 1st order partial derivatives $\frac{\partial f_i}{\partial x_j}(\mathbf{p})$ exist and are continuous on $int(\mathscr{D})$. **Derivative** of f at $\mathbf{p} \in int(\mathscr{D})$ is the matrix

$$Df(\mathbf{p}) = \left(\frac{\partial f_i}{\partial x_j}(\mathbf{p})\right).$$

Definition

For $f : \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}$, gradient of $f(\mathbf{x})$ at \mathbf{p} is $\nabla f(\mathbf{p}) = Df(\mathbf{p})^{\mathsf{T}}$.

Transpose makes derivative (row vector) into a column vector.

Derivative of a Function on Real Variable

For
$$f : \mathbb{R} \to \mathbb{R}$$

 $\lim_{x \to p} \frac{f(x) - f(p)}{x - p} = f'(p)$ or
 $\lim_{x \to p} \frac{f(x) - f(p) - f'(p)(x - p)}{|x - p|} = 0$

f(p) + f'(p)(x - p) is best affine approximation.

An affine function is a constant plus a linear function.

For
$$x > p$$
,
 $-\epsilon < \frac{f(x) - f(p) - f'(p)(x - p)}{x - p} < \epsilon$
 $f(p) + [f'(p) - \epsilon](x - p) < f(x) < f(p) + [f'(p) + \epsilon](x - p)$

Limit for Differentiation

Theorem

If
$$f: \mathscr{D} \subset \mathbb{R}^n \to \mathbb{R}^m$$
 is C^1 on $int(\mathscr{D})$ and $\mathbf{p} \in int(\mathscr{D})$, then

$$\lim_{\mathbf{x}\to\mathbf{p}} \frac{f(\mathbf{x}) - f(\mathbf{p}) - Df(\mathbf{p})(\mathbf{x} - \mathbf{p})}{\|\mathbf{x} - \mathbf{p}\|} = \mathbf{0}, \quad or$$

$$f(\mathbf{x}) = f(\mathbf{p}) + Df(\mathbf{p})(\mathbf{x} - \mathbf{p}) + \widetilde{R}_1(\mathbf{p}, \mathbf{x}) \|\mathbf{x} - \mathbf{p}\| \quad where$$

$$\lim_{\mathbf{x}\to\mathbf{p}} \widetilde{R}_1(\mathbf{p}, \mathbf{x}) = \mathbf{0}.$$

Limit equal $\mathbf{0}$ in the last theorem means that

$$f(\mathbf{p}) + Df(\mathbf{p})(\mathbf{x} - \mathbf{p})$$

is **best affine approximation** of $f(\mathbf{x})$ near **p**.

Limit in theorem is usually taken as definition of derivative.

Does not calculate matrix $Df(\mathbf{p})$ but is matrix that satisfies this limit

Chain Rule

Theorem (Chain Rule)

If $f : \mathbb{R}^n \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^k$ are C^1 , $\mathbf{p} \in \mathbb{R}^n$ and $\mathbf{q} = f(\mathbf{p}) \in \mathbb{R}^m$, then $g \circ f : \mathbb{R}^n \to \mathbb{R}^k$ is C^1 and $D(g \circ f)(\mathbf{p}) = Dg(\mathbf{q}) Df(\mathbf{p}).$ (order of matrix multiplication matters)

This chain rule agrees with the usual chain rule for partial derivatives:

$$w = g(\mathbf{x}) \in \mathbb{R} \text{ and } \mathbf{x} = \mathbf{r}(t) \in \mathbb{R}^{n}$$

$$\frac{dw}{dt} = Dw(\mathbf{x}(t)) \frac{d\mathbf{r}}{dt}(t) = \left(\frac{\partial w}{\partial x_{1}}, \dots, \frac{\partial w}{\partial x_{n}}\right) \left(\frac{dx_{1}}{dt}, \dots, \frac{dx_{n}}{dt}\right)^{\mathsf{T}}$$

$$= \frac{\partial w}{\partial x_{1}} \frac{dx_{1}}{dt} + \dots + \frac{\partial w}{\partial x_{n}} \frac{dx_{n}}{dt} = \sum_{i} \frac{\partial w}{\partial x_{i}} \frac{dx_{i}}{dt} = \nabla g \cdot \mathbf{r}'(t)$$

Definition

Let $\mathcal{D} \subset \mathbb{R}^n$ be an open set and $f : \mathcal{D} \to \mathbb{R}$.

f is said to be **twice continuously differentiable** or C^2 p.t.

all second order partial derivatives $\frac{\partial^2 f}{\partial x_i \partial x_i}(\mathbf{p})$ exists

and are continuous for all $\mathbf{p} \in \mathscr{D}$.

Matrix of second partial derivatives
$$\left(\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{p})\right)$$
 is called

second derivative and is denoted by $D^2 f(\mathbf{p})$.

Some call it **Hessian matrix of** f at \mathbf{p} , and denote it by $\mathbf{H}(\mathbf{p})$.

Equality of Cross Partials

Theorem

If $\mathscr{D} \subset \mathbb{R}^n$ is open and $f : \mathscr{D} \to \mathbb{R}$ is C^2 , then

$$rac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{p}) = rac{\partial^2 f}{\partial x_j \partial x_i}(\mathbf{p}), \qquad ext{for all } 1 \leq i,j \leq n ext{ and all } \mathbf{p} \in \mathscr{D}.$$

i.e., $D^2 f(\mathbf{p})$ is a symmetric matrix.

 $D^2 f(\mathbf{p})$ defines a quadratic form for $\mathbf{x} \in \mathbb{R}^n$,

$$(\mathbf{x} - \mathbf{p})^{\mathsf{T}} D^2 f(\mathbf{p}) (\mathbf{x} - \mathbf{p}) = \sum_{i,j} \frac{\partial^2 f}{\partial x_i \partial x_j} (\mathbf{p}) (x_j - p_j) (x_i - p_i)$$

which is used in Taylor's Theorem for several variables.

Taylor's Theorem for Several Variables

Theorem

Assume that $F: \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}$ is C^2 on $int(\mathcal{D})$ and $\mathbf{p} \in int(\mathcal{D})$.

Then

$$F(\mathbf{x}) = F(\mathbf{p}) + DF(\mathbf{p}) \left(\mathbf{x} - \mathbf{p}\right) + \frac{1}{2} \left(\mathbf{x} - \mathbf{p}\right)^{\mathsf{T}} D^2 F(\mathbf{p}) \left(\mathbf{x} - \mathbf{p}\right) + R_2(\mathbf{p}, \mathbf{x})$$

where

$$\begin{split} \lim_{\mathbf{x}\to\mathbf{p}} \frac{R_2(\mathbf{p},\mathbf{x})}{\|\mathbf{x}-\mathbf{p}\|^2} &= 0. \end{split}$$

If $R_2(\mathbf{p},\mathbf{x}) = \widetilde{R}_2(\mathbf{p},\mathbf{x}) \|\mathbf{x}-\mathbf{p}\|^2$ then,
 $\lim_{\mathbf{x}\to\mathbf{p}} \widetilde{R}_2(\mathbf{p},\mathbf{x}) &= 0. \end{split}$

Remainder $R_2(\mathbf{p}, \mathbf{x})$ goes to zero faster than quadratic term.

Proof of Taylor's Theorem

Let
$$\mathbf{x}_t = \mathbf{p} + t(\mathbf{x} - \mathbf{p})$$
 and $g(t) = F(\mathbf{x}_t)$, so $g(0) = F(\mathbf{p})$, and $g(1) = F(\mathbf{x})$.

For **x** near enough to **p**, $\mathbf{x}_t \in \mathscr{D}$ for $0 \le t \le 1$. The derivatives of g in terms of partial derivatives of F are

$$g'(t) = \sum_{i=1}^{n} \frac{\partial F}{\partial x_i} (\mathbf{x}_t) (x_i - p_i),$$

$$g'(0) = DF(\mathbf{p}) (\mathbf{x} - \mathbf{p}),$$

$$g''(t) = \sum_{\substack{i=1,...,n \\ j=1,...,n}} \frac{\partial^2 F}{\partial x_j \partial x_i} (\mathbf{x}_t) (x_i - p_i) (x_j - p_j),$$

$$g''(0) = (\mathbf{x} - \mathbf{p})^{\mathsf{T}} D^2 F(\mathbf{p}) (\mathbf{x} - \mathbf{p}).$$

Thm follows from Taylor's Thm for a fn of one variable.

QED

Quadratic Forms

The second derivative determines a quadratic form.

Definition

If $\mathbf{A} = (a_{ij})$ is an $n \times n$ symmetric matrix, then $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \sum_{i,j=1}^{n} a_{ij} x_i x_j$ for $\mathbf{x} \in \mathbb{R}^n$

is called a quadratic form.

Definition

The quadratic form is called

positive definite p.t. $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$, **positive semidefinite** p.t. $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} \ge 0$ for all \mathbf{x} , **negative definite** p.t. $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} < 0$ for all $\mathbf{x} \neq \mathbf{0}$, **negative semidefinite** p.t. $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} \le 0$ for all \mathbf{x} . **indefinite** p.t. $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}$ is > 0 for some \mathbf{x} and < 0 for other \mathbf{x} .

Principal Submatrices

For symmetric matrix $n \times n$ **A**, a criteria for positive definite in terms of determinants of $k \times k$ principal submatrices

$$\mathbf{A}_{k} = (a_{ij})_{1 \le i, j \le k} \quad \text{for } 1 \le k \le n.$$

$$\mathbf{A}_{1} \quad \mathbf{A}_{2} \quad \mathbf{A}_{3} \quad \mathbf{A}_{4}$$

$$\begin{pmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} & \mathbf{a}_{14} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} & \mathbf{a}_{24} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} & \mathbf{a}_{34} \\ \mathbf{a}_{41} & \mathbf{a}_{42} & \mathbf{a}_{43} & \mathbf{a}_{44} \end{pmatrix}$$

$$\Delta_k = \det(\mathbf{A}_k), \quad \Delta_1 = a_{11}, \ \Delta_2 = a_{11}a_{22} - a_{12}a_{21}, \ldots$$

Theorem (Test for Definiteness)

- Let **A** be an $n \times n$ symmetric matrix.
 - a. Following are equivalent:
 - (i) A is positive definite.
 - (ii) All eigenvalues of **A** are positive.
 - (iii) Determinant of every principal submatrices is positive,

 $\Delta_k = \det(\mathbf{A}_k) > 0$ for $1 \le k \le n$.

- (iv) A can be row reduced to triangular matrix with all n positive pivots without row exchanges or scalar multiplications of rows.
- b. Following are equivalent:
 - (i) A is negative definite.
 - (ii) All eigenvalues of **A** are negative.
 - (iii) Determinants of principal submatrices alternate sign, $(-1)^k \Delta_k = (-1)^k \det(\mathbf{A}_k) > 0$ for $1 \le k \le n$. $\Delta_1 < 0$, $\Delta_2 > 0$, ...
 - (iv) A can be row reduced to triangular matrix with all n negative pivots without row exchanges or scalar multiplications of rows.

Theorem (Test for Indefiniteness)

Let **A** be an $n \times n$ symmetric matrix.

- c. (i) and (ii) are equivalent;
 (iii) or (iv) or (v) implies (i) and (ii):
 - (i) A is indefinite.
 - (ii) A has at least one positive and one negative eigenvalue.
 - (iii) det(A) = det(A_n) ≠ 0 and pattern of signs of Δ_k = det(A_k) are different than those of both part (a) and (b) (allowing one of other Δ_k = det(A_k) = 0).
 - (iv) A can be row reduced without row exchanges or scalar multiplications of rows and there is some pivot $p_i > 0$ and another $p_k < 0$.
 - (v) A cannot be row reduced to an upper triangular matrix without row exchanges.

A proof of all this theorem except about row reduction is given in *Linear Algebra and Its Applications* by Gilbert Strang. Also see the presentation in online class book

Determinants of principal submatrices or row reduction test are best methods of determining whether a symmetric matrix is positive or negative definite.

2.2 Local/Global Extrema

Definition

- Let $f : \mathscr{F} \subset \mathbb{R}^n \to \mathbb{R}$.
- f has a maximum at $\mathbf{x}_M \in \mathscr{F}$ p.t. $f(\mathbf{x}) \leq f(\mathbf{x}_M)$ for all $\mathbf{x} \in \mathscr{F}$.

f has a **local maximum** at $\mathbf{x}_M \in \mathscr{F}$ p.t. there exists an r > 0 such that

 $f(\mathbf{x}) \leq f(\mathbf{x}_M)$ for all $\mathbf{x} \in \mathscr{F} \cap \mathbf{B}(\mathbf{x}_M, r)$.

f has a **strict local maximum** at \mathbf{x}_M p.t. there exists an r > 0 such that $f(\mathbf{x}) < f(\mathbf{x}_n)$ for all $\mathbf{x} \in \mathscr{C} \cap \mathbf{P}(\mathbf{x}_n - \mathbf{x})$, (\mathbf{x}_n)

 $f(\mathbf{x}) < f(\mathbf{x}_M)$ for all $\mathbf{x} \in \mathscr{F} \cap \mathbf{B}(\mathbf{x}_M, r) \smallsetminus \{\mathbf{x}_M\}.$

An **unconstrained local maximum** is a point $\mathbf{x}_M \in int(\mathscr{F})$ that is a local maximum of f

Similarly, minimum, local minimum, strict local minimum, unconstrained local minimum.

Definition

f has a (local) extremum at p p.t.

it has either a (local) maximum or a (local) minimum at **p**.

Definition

For a continuous function $f : \mathscr{F} \to \mathbb{R}$, a critical point of f is a point \mathbf{x}_c

s.t. either (i) $Df(\mathbf{x}_c) = \mathbf{0}$ or (ii) f is not differentiable at \mathbf{x} .

Most of our functions are differentiable on the whole domain,

so concentrate on points at which $Df(\mathbf{x}) = \mathbf{0}$.

Theorem

If $f: \mathscr{F} \subset \mathbb{R}^n \to \mathbb{R}$ is C^1 on $int(\mathscr{F})$ and

f has a unconstrained local extremum at $\mathbf{x}^* \in int(\mathscr{F})$,

then \mathbf{x}^* is a critical point, $Df(\mathbf{x}^*) = \mathbf{0}$.

Proof.

Assume that the point \mathbf{x}^* is not a critical point and prove that the f does not have a extremum at \mathbf{x}^* . $\mathbf{v} = Df(\mathbf{x}^*)^{\mathsf{T}} \neq \mathbf{0}$, the gradient, is a nonzero (column) vector. Line in the direction of the gradient is $\mathbf{x}_t = \mathbf{x}^* + t \mathbf{v}$. Applying the remainder form of the first order approximation. $f(\mathbf{x}_t) = f(\mathbf{x}^*) + Df(\mathbf{x}^*) (t \mathbf{v}) + \widetilde{R}_1(\mathbf{x}^*, \mathbf{x}_t) \| t \mathbf{v} \|$ $= f(\mathbf{x}^*) + \mathbf{v}^{\mathsf{T}}(t \mathbf{v}) + \widetilde{R}_1(\mathbf{x}^*, \mathbf{x}_t) \| t \mathbf{v} \|$ $= f(\mathbf{x}^*) + t \left[\|\mathbf{v}\|^2 + \widetilde{R}_1(\mathbf{x}^*, \mathbf{x}_t) \|\mathbf{v}\| \operatorname{sign}(t) \right]$ $\begin{cases} < f(\mathbf{x}^*) & \text{if } t < 0 \text{ and } t \text{ small enough so that } |\widetilde{R}_1| < \frac{1}{2} \|\mathbf{v}\| \\ > f(\mathbf{x}^*) & \text{if } t > 0 \text{ and } t \text{ small enough so that } |\widetilde{R}_1| < \frac{1}{2} \|\mathbf{v}\| \end{cases}$ This proves that \mathbf{x}^* is neither a maximum nor a minimum.

Theorem

Suppose that $f: \mathscr{F} \subset \mathbb{R}^n \to \mathbb{R}$ is C^2 on $int(\mathscr{F})$ and $\mathbf{x}^* \in int(\mathscr{F})$.

- (a) If f has a local min (resp. local max) at x^* , then $D^2 f(x^*)$ is positive (resp. negative) semidefinite.
- (b) If $Df(\mathbf{x}^*) = \mathbf{0}$ and $D^2f(\mathbf{x}^*)$ is positive (resp. negative) definite, then f has a strict local min (resp. strict local max) at \mathbf{x}^* .

Proof

(b) Assume $D^2 f(\mathbf{x}^*)$ is positive definite. { $\mathbf{u} : \|\mathbf{u}\| = 1$ } is compact, so $m = \min_{\|\mathbf{u}\|=1} \mathbf{u}^T D^2 f(\mathbf{x}^*) \mathbf{u} > 0$,

For **x** near **x**^{*}, let **v** = **x** - **x**^{*} & **u** =
$$\frac{1}{\|\mathbf{v}\|}$$
v,
 $(\mathbf{x} - \mathbf{x}^*)^T D^2 f(\mathbf{x}^*) (\mathbf{x} - \mathbf{x}^*) = (\|\mathbf{v}\| \mathbf{u})^T D^2 f(\mathbf{x}^*) (\|\mathbf{v}\| \mathbf{u})$
 $= \|\mathbf{v}\|^2 \mathbf{u}^T D^2 f(\mathbf{x}^*) \mathbf{u} \ge m \|\mathbf{x} - \mathbf{x}^*\|^2.$

Since $Df(\mathbf{x}^*) = \mathbf{0}$, 2nd order Taylor's expansion is $f(\mathbf{x}) = f(\mathbf{x}^*) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^{\mathsf{T}} D^2 f(\mathbf{x}^*) (\mathbf{x} - \mathbf{x}^*) + \widetilde{R}_2(\mathbf{x}^*, \mathbf{x}) \|\mathbf{x} - \mathbf{x}^*\|^2.$

There exists a $\delta > 0$ such that

$$|\widetilde{R}_2(\mathbf{x}^*,\mathbf{x})| < \frac{1}{4}m$$
 for $\|\mathbf{x}-\mathbf{x}^*\| < \delta$.

For
$$\delta > \|\mathbf{x} - \mathbf{x}^*\| > 0$$
,
 $f(\mathbf{x}) > f(\mathbf{x}^*) + \frac{1}{2}m \|\mathbf{x} - \mathbf{x}^*\|^2 - \frac{1}{4}m \|\mathbf{x} - \mathbf{x}^*\|^2$
 $= f(\mathbf{x}^*) + \frac{1}{4}m \|\mathbf{x} - \mathbf{x}^*\|^2 > f(\mathbf{x}^*)$.

Chapter 2: Unconstrained Extrema

QED

Find the critical points and classify them as local max, local min, or neither for $F(x, y, z) = 3x^2y + y^3 - 3x^2 - 3y^2 + z^3 - 3z.$

A critical point satisfies

$$0 = \frac{\partial F}{\partial x} = 6xy - 6x = 6x(y - 1)$$

$$0 = \frac{\partial F}{\partial y} = 3x^2 + 3y^2 - 6y$$

$$0 = \frac{\partial F}{\partial z} = 3z^2 - 3.$$

From 3rd eq, $z = \pm 1$. From 1st eq, x = 0 or y = 1. If x = 0, then 2nd eq 0 = 3y(y - 2), y = 0 or y = 2. Pts: $(0, 0, \pm 1)$ $(0, 2, \pm 1)$. If y = 1, then 2nd eq $0 = 3x^2 - 3$ $x = \pm 1$. Pt: $(\pm 1, 1, \pm 1)$.

All the critical points: (0,0, \pm 1), (0,2, \pm 1), (\pm 1,1, \pm 1).

Example, continued

The second derivative is

$$D^{2}F(x, y, z) = \begin{bmatrix} 6y - 6 & 6x & 0 \\ 6x & 6y - 6 & 0 \\ 0 & 0 & 6z \end{bmatrix}.$$

.

At the critical points

$$D^{2}F(0,0,\pm 1) = \begin{bmatrix} -6 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & \pm 6 \end{bmatrix}$$
$$D^{2}F(0,2,\pm 1) = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & \pm 6 \end{bmatrix}$$
$$D^{2}F(\pm 1,1,\pm 1) = \begin{bmatrix} 0 & \pm 6 & 0 \\ \pm 6 & 0 & 0 \\ 0 & 0 & \pm 6 \end{bmatrix}$$

Example, continued

$$D^2F(x,y,z) = egin{bmatrix} 6y-6 & 6x & 0\ 6x & 6y-6 & 0\ 0 & 0 & 6z \end{bmatrix}.$$

Let $\Delta_k = \det(\mathbf{A}_k)$.

$$\begin{split} &\Delta_1 = F_{xx} = 6y - 6, \\ &\Delta_2 = F_{xx}F_{yy} - F_{xy}^2 = (6y - 6)^2 - 36x^2, \qquad \text{and} \\ &\Delta_3 = F_{zz}\,\Delta_2 = 6z\,\Delta_2. \end{split}$$

Example, continued

$$F_{xx} = 6y - 6$$
, $F_{yy} = 6y - 6$, $F_{xy} = 6x$, $F_{zz} = 6z$.

$$\Delta_1 = F_{xx}, \quad \Delta_2 = F_{xx}F_{yy} - F_{xy}^2, \quad \Delta_3 = F_{zz}\Delta_2$$

(x, y, z)	$\Delta_1 = F_{xx}$	F_{yy}	F _{xy}	Δ_2	F_{zz}	Δ_3	Туре
(0,0,1)	-6	-6	0	36	6	216	saddle
(0,0,-1)	-6	-6	0	36	-6	-216	local max
(0,2,1)	6	6	0	36	6	216	local min
(0, 2, -1)	6	6	0	36	-6	-216	saddle
$(\pm 1, 1, \pm 1)$	0	0	±6	-36	±6	∓216	saddle

(0,0,-1) is a local max,

(0,2,1) is a local min,

other points are neither local max nor local min, saddle points.