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Types of Sets

Definition

For p ∈ Rn and r > 0, the open ball about p of radius r is the set

B(p, r) = { x ∈ Rn : ‖x− p‖ < r }.

The closed ball about p of radius r is the set

B(p, r) = { x ∈ Rn : ‖x− p‖ ≤ r }.

Definition

The complement of a set S in Rn are the points not in S,

Sc = Rn r S = { x ∈ Rn : x /∈ S }.
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Boundary

Definition

The boundary of S is the set of all points which have

points arbitrarily close in both S and Sc ,

∂(S) = { x ∈ Rn : B(x, r) ∩ S 6= ∅ & B(x, r) ∩ Sc 6= ∅ for all r > 0 }.

Example

The boundary of an open or a closed ball is the same

∂(B(p, r)) = ∂(B(p, r)) = { x ∈ Rn : ‖x− p‖ = r }.

Example

S bounded polyhedral set x1 + x2 ≤ 100, 5x1 + 10x2 ≤ 800,

2x1 + x2 ≤ 150, 0 ≤ x1, 0 ≤ x2.

Boundary is the polygonal closed curve made up of five line segments.
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Closed and Open Sets

Definition

A set S ⊂ Rn is open p.t.

for each point x0 ∈ S, all nearby points are also in S,

i.e., there exists an r > 0 s.t. B(x0, r) ⊂ S.

Same as: S ∩ ∂(S) = ∅, none of boundary of S is in S.

Definition

A set S ⊂ Rn is said to be closed p.t.

all its boundary is a contained in S, ∂(S) ⊂ S,

Same as: S = {p : B(p, r) ∩ S 6= ∅ for all r > 0 }.

Since ∂(S) = ∂(Sc), it follows that S is open iff Sc is closed.
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Examples of Open and Closed Sets, continued

Example

In R, the intervals (a, b), (a,∞), and (−∞, b) are open;

[a, b], [a,∞), and (−∞, b] are closed.

[a, b) and (a, b] are neither open nor closed.

( ∞,∞) is both open and closed in R.

Example

Rn and ∅ are both open and closed in Rn.
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Examples of Open and Closed Sets

Example

An open ball B(p, r) is open:

∂(B(p, r)) ∩ B(p, r) = ∅, so open.

Or: For x0 ∈ B(p, r), let r ′ = r − ‖x0 − p‖ > 0.

If x ∈ B(x0, r
′),

‖x− p‖ ≤ ‖x− x0‖+ ‖x0 − p‖ < r ′ + ‖x0 − p‖ = r ,

x ∈ B(p, r), and B(x0, r
′) ⊂ B(p, r).

This shows that B(p, r) is open.

Therefore, B(p, r)c is closed.
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Examples of Open and Closed Sets, continued

Example

Since ∂(B(p, r)) ⊂ B(p, r), closed ball B(p, r) is closed.

Or: For x0 ∈ B(p, r)c , let r ′ = ‖p− x0‖ − r > 0.

If x ∈ B(x0, r
′),

‖x− p‖ ≥ ‖p− x0‖ − ‖x0 − x‖ > ‖p− x0‖ − r ′ = r ,

x ∈ B(p, r)c , B(x0, r
′) ⊂ B(p, r)c , and B(p, r)c is open.

Therefore, B(p, r) is closed.
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Interior and Closure

Definition

interior of S ⊂ Rn is set with boundary removed,

int(S) = S r ∂(S) = {p : p ∈ S & p /∈ ∂(S) }.

= {p ∈ S : ∃ r > 0 with B(p, r) ⊂ S }.

Largest open set contained in S.

Definition

The closure of S ⊂ Rn,

cl(S) = S = S ∪ ∂(S) = {p : B(p, r) ∩ S 6= ∅ for all r > 0 }.

Smallest closed set containing S.

S is closed iff S = cl(S).

∂(S) = cl(S) r int(S).
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Examples of Interior and Closure

Example

Intervals in R: int([0, 1]) = (0, 1),

cl((0, 1)) = [0, 1],

∂([0, 1]) = ∂((0, 1)) = {0, 1},

cl (Q ∩ (0, 1)) = [0, 1], Q rationals

int (Q ∩ (0, 1)) = ∅,

∂ (Q ∩ (0, 1)) = [0, 1].

Example

In Rn,

intB(a, r) = B(a, r) and clB(a, r) = B(a, r).
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Bounded and Compact Sets

To be certain that a max exists, domain cannot “go off to infinity”.

Definition

A set S ⊂ Rn is bounded p.t. there exists r > 0 s.t. S ⊂ B(0, r),

i.e., ‖x‖ ≤ r for all x ∈ S.

Definition

A set S ⊂ Rn is called compact p.t. it is closed and bounded.

In analysis, a compact set is defined in terms of convergent sequences

Then a theorem says a closed bounded subsets of Rn are compact.

Empty set is compact because the hypothesis is satisfied vacuously.

Chapter 2: Unconstrained Extrema 10



Discontinuous functions

For f : R → R, intuitive defn of continuous fn is that

its graph can be drawn without lifting the pen.

f (x) =

{
0 if x < 0

1 if x ≥ 0,

0

1

0

has a jump at x = 0, so is discontinuous at x = 0.
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Discontinuous functions

g(x) =

{
0 if x ≤ 0

sin
(

1
x

)
if x > 0,

g
(

1
nπ

)
= 0 & g

(
2

(2n+1)π

)
= ( 1)n.

oscillates as x approaches 0 and is discontinuous at x = 0.
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Example in R2

F (x , y) =


y2

x2 + y2
if (x , y) 6= (0, 0)

0 if (x , y) = (0, 0)

approaches different values along different directions into origin:

limy→0 F (0, y) = limy→0
y2

y2
= 1.

limx→0 F (x ,mx) = limx→0
m2x2

x2 + m2x2
=

m2

1 + m2
6= 1
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Limits

Definition

Let f : S ⊂ Rn → Rm and p ∈ cl(S).

Limit of f (x) at p is L, limx→p f (x) = L, p.t.

for every ε > 0 there exists a δ > 0 s.t.

‖f (x)− L‖ < ε whenever ‖x− p‖ < δ and x ∈ S r {p}.

Definition

Limit as x goes to infinity of f : R → R:

limx→∞ f (x) = L p.t.

for every ε > 0 there exists K s.t.

|f (x)− L| < ε whenever x ≥ K .
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Continuity

Definition

f : S ⊂ Rn → Rm is continuous at p ∈ S p.t.

limx→p f (x) = f (p),

i.e., for every ε > 0 there exists a δ > 0 such that

‖f (x)− f (p)‖ < ε whenever ‖x− p‖ < δ and x ∈ S.

This definition means that given a tolerance ε > 0 in the values,

there is a tolerance δ > 0 in the input such that

all points within δ of p have values within ε of f (p).

Definition

f is continuous on a set S p.t. it is continuous at each x ∈ S.
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Discussion of Continuity

Consider g(x) = sin
(

1
x

)
,

g(0) = 0 = g(xn) for xn = 1
n2π > 0,

g(x ′n) = 1 6= g(0) for x ′n =
1

n2π + π
2

> 0

For arb small δ > 0, ∃ both xn and x ′n within δ of 0.

Not all values close to g(0) = 0.

Theorem

F : S ⊂ Rn → Rm is continuous at p iff

all coordinate functions Fi are continuous at p.
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Inverse Images of Sets and Points

Definition

If f : D ⊂ Rn → Rm is a function, then

the inverse image of a subset U ⊂ Rm is

f -1(U) = { x ∈ D : f (x) ∈ U } ⊂ D .

In this context, f -1 is not the inverse function,

but f -1(U) merely denotes points that map into U.

Also consider inverse image of a point b ∈ Rm or level set, which is

f -1(b) = { x ∈ D : f (x) = b } ⊂ D .

= { x ∈ D : fi (x) = bi for i = 1, . . . ,m }.
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Continuity in terms of Open and Closed Sets

Theorem

Let f : DDD ⊂ Rn → Rm. Then the following are equivalent.

(i) f is continuous on DDD .

(ii) For each open set V ⊂ Rm, there is an open set U ⊂ Rn such that
f −1(V) = U ∩DDD ,

i.e., the inverse image of an open set f −1(V) is open relative to DDD .

(iii) For each closed set C ⊂ Rm, there is an closed set B ⊂ Rn such that
f −1(C) = B ∩DDD ,

i.e., the inverse image of a closed set f −1(C) is closed relative to DDD .
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The Simplex is Compact

Let pi > 0 for 1 ≤ i ≤ n be fixed prices and w > 0 be the wealth.

Simplex

S = { x ∈ Rn
+ : p1x1 + · · ·+ pnxn ≤ w } is compact.

Each coordinate 0 ≤ xj ≤ w
pj

, so ‖x‖ ≤
√

n maxi{ |xi | } ≤
√

n maxi{w
pi
},

and the set is bounded.

Intuitively, the set is closed because the inequalities are non-strict,

“less than or equal to” or “greater than or equal to”.

More formally, f (x) = p1x1 + · · ·+ pnxn is linear so continuous.

[0,w ] is closed, so the set

f -1([0,w ]) = { x ∈ Rn : 0 ≤ f (x) ≤ w } is closed.

For 1 ≤ i ≤ n, gi (x) = xi is continuous and [0,∞) is closed, so

g -1
i ([0,∞)) = { x ∈ Rn : 0 ≤ xi } is closed.

Combining, S = f -1([0,w ]) ∩
⋂n

i=1 g -1
i ([0,∞)) is closed and compact.
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Extreme Value Theorem

Similarly, all the feasible sets in linear programming are closed.

If bounded, then compact.

Theorem (Extreme Value Theorem)

Assume that FFF ⊂ Rn is a nonempty compact set (closed and bounded),

and f : FFF → R is a continuous real valued function.

Then f attains a maximum and a minimum on FFF ,

i.e., there exist points xm, xM ∈FFF such that

f (xm) ≤ f (x) ≤ f (xM) for all x ∈FFF , so

f (xm) = minx∈FFF f (x), and

f (xM) = maxx∈FFF f (x).
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Examples related to Extreme Value Theorem

Why must FFF be compact?

1. f (x) = x3 is unbounded on R
and has neither a maximum nor a minimum.

f (x) is continuous, but R is not bounded.

2. Same f (x) = x3 on ( 1, 1) is bounded, 1 < f (x) < 1,

but has no maximum nor minimum on ( 1, 1).

( 1, 1) is bounded but not closed.
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Examples related to Extreme Value Theorem, 2

3. g(x) = tan(x) is unbounded on ( π
2 , π

2 ),

does not have a minimum or maximum value,.

tan(x) is not bounded above or below on ( π
2 , π

2 ).

( π
2 , π

2 ) is bounded but not closed.

4. h(x) = arctan(x) is bounded on R, π
2 < arctan(x) < π

2 .

limiting values are finite but are not attained,

limx→±∞ arctan(x) = ±π
2 .

so h(x) does not have a maximum or minimum.

R is closed but not bounded and

the image is bounded but not closed.
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Why must the function be continuous?

f (x) =

{
1
x if x 6= 0

0 if x = 0

is not continuous at x = 0 and

has no maximum nor minimum on [ 1, 1].

even though [ 1, 1] is compact.
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Differentiation of Functions of Several Variables

Definition

f : DDD ⊂ Rn → Rm is continuously differentiable on int(DDD), C1, p.t.

all 1st order partial derivatives ∂fi
∂xj

(p) exist and are continuous on int(DDD).

Derivative of f at p ∈ int(DDD) is the matrix

Df (p) =

(
∂fi
∂xj

(p)

)
.

Definition

For f : DDD ⊂ Rn → R, gradient of f (x) at p is

∇f (p) = Df (p)>>>.

Transpose makes derivative (row vector) into a column vector.
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Derivative of a Function on Real Variable

For f : R → R

limx→p
f (x)− f (p)

x − p
= f ′(p) or

limx→p
f (x)− f (p)− f ′(p)(x − p)

|x − p|
= 0.

f (p) + f ′(p)(x − p) is best affine approximation.

An affine function is a constant plus a linear function.

For x > p,

ε <
f (x)− f (p)− f ′(p)(x − p)

x − p
< ε

f (p) + [f ′(p)− ε] (x − p) < f (x) < f (p) + [f ′(p) + ε] (x − p)
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Limit for Differentiation

Theorem

If f : DDD ⊂ Rn → Rm is C 1 on int(DDD) and p ∈ int(DDD), then

limx→p
f (x)− f (p)− Df (p)(x− p)

‖x− p‖
= 0, or

f (x) = f (p) + Df (p) (x− p) + R̃1(p, x) ‖x− p‖ where

limx→p R̃1(p, x) = 0.

Limit equal 0 in the last theorem means that

f (p) + Df (p)(x− p)

is best affine approximation of f (x) near p.

Limit in theorem is usually taken as definition of derivative.

Does not calculate matrix Df (p) but is matrix that satisfies this limit
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Chain Rule

Theorem (Chain Rule)

If f : Rn → Rm and g : Rm → Rk are C 1, p ∈ Rn and q = f (p) ∈ Rm,

then g ◦ f : Rn → Rk is C 1 and

D(g ◦ f )(p) = Dg(q) Df (p).

(order of matrix multiplication matters)

This chain rule agrees with the usual chain rule for partial derivatives:

w = g(x) ∈ R and x = r(t) ∈ Rn

dw

dt
= Dw(x(t))

d r

d t
(t) =

(
∂w

∂x1
, . . . ,

∂w

∂xn

) (
dx1

dt
, . . . ,

dxn

dt

)>>>
=

∂w

∂x1

dx1

dt
+ · · ·+ ∂w

∂xn

dxn

dt
=

∑
i

∂w

∂xi

dxi

dt
= ∇g · r′(t)
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Second Derivative or Hessian Matrix

Definition

Let DDD ⊂ Rn be an open set and f : DDD → R.

f is said to be twice continuously differentiable or C 2 p.t.

all second order partial derivatives
∂2f

∂xi∂xj
(p) exists

and are continuous for all p ∈ DDD .

Matrix of second partial derivatives

(
∂2f

∂xi∂xj
(p)

)
is called

second derivative and is denoted by D2f (p).

Some call it Hessian matrix of f at p, and denote it by H(p).
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Equality of Cross Partials

Theorem

If DDD ⊂ Rn is open and f : DDD → R is C 2, then

∂2f

∂xi∂xj
(p) =

∂2f

∂xj∂xi
(p), for all 1 ≤ i , j ≤ n and all p ∈ DDD .

i.e., D2f (p) is a symmetric matrix.

D2f (p) defines a quadratic form for x ∈ Rn,

(x− p)>>>D2f (p) (x− p) =
∑

i ,j

∂2f

∂xi∂xj
(p)(xj − pj)(xi − pi )

which is used in Taylor’s Theorem for several variables.
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Taylor’s Theorem for Several Variables

Theorem

Assume that F : DDD ⊂ Rn → R is C 2 on int(DDD) and p ∈ int(DDD).

Then

F (x) = F (p) + DF (p) (x− p) + 1
2 (x− p)>>>D2F (p) (x− p) + R2(p, x)

where

limx→p
R2(p, x)

‖x− p‖2
= 0.

If R2(p, x) = R̃2(p, x)‖x− p‖2 then,

limx→p R̃2(p, x) = 0.

Remainder R2(p, x) goes to zero faster than quadratic term.
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Proof of Taylor’s Theorem

Let xt = p + t(x− p) and g(t) = F (xt), so

g(0) = F (p), and g(1) = F (x).

For x near enough to p, xt ∈ D for 0 ≤ t ≤ 1.

The derivatives of g in terms of partial derivatives of F are

g ′(t) =
∑n

i=1

∂F

∂xi
(xt)(xi − pi ),

g ′(0) = DF (p)(x− p),

g ′′(t) =
∑

i=1,...,n
j=1,...,n

∂2F

∂xj∂xi
(xt)(xi − pi )(xj − pj),

g ′′(0) = (x− p)>>>D2F (p)(x− p).

Thm follows from Taylor’s Thm for a fn of one variable. QED
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Quadratic Forms

The second derivative determines a quadratic form.

Definition

If A = (aij) is an n × n symmetric matrix, then

x>>>Ax =
∑n

i ,j=1 aijxixj for x ∈ Rn

is called a quadratic form.

Definition

The quadratic form is called

positive definite p.t. x>>>Ax > 0 for all x 6= 0,

positive semidefinite p.t. x>>>Ax ≥ 0 for all x,

negative definite p.t. x>>>Ax < 0 for all x 6= 0,

negative semidefinite p.t. x>>>Ax ≤ 0 for all x.

indefinite p.t. x>>>Ax is > 0 for some x and < 0 for other x.
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Principal Submatrices

For symmetric matrix n × n A, a criteria for positive definite in terms of

determinants of k × k principal submatrices

Ak = (aij)1≤i ,j≤k for 1 ≤ k ≤ n.

∆k = det(Ak), ∆1 = a11, ∆2 = a11a22 − a12a21, . . .
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Theorem (Test for Definiteness)

Let A be an n × n symmetric matrix.

a. Following are equivalent:

(i) A is positive definite.

(ii) All eigenvalues of A are positive.

(iii) Determinant of every principal submatrices is positive,

∆k = det(Ak) > 0 for 1 ≤ k ≤ n.

(iv) A can be row reduced to triangular matrix with all n positive pivots

without row exchanges or scalar multiplications of rows.

b. Following are equivalent:

(i) A is negative definite.

(ii) All eigenvalues of A are negative.

(iii) Determinants of principal submatrices alternate sign,
( 1)k∆k = ( 1)k det(Ak) > 0 for 1 ≤ k ≤ n. ∆1 < 0, ∆2 > 0, . . .

(iv) A can be row reduced to triangular matrix with all n negative pivots

without row exchanges or scalar multiplications of rows.
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Theorem (Test for Indefiniteness)

Let A be an n × n symmetric matrix.

c. (i) and (ii) are equivalent;

(iii) or (iv) or (v) implies (i) and (ii):

(i) A is indefinite.

(ii) A has at least one positive and one negative eigenvalue.

(iii) det(A) = det(An) 6= 0 and pattern of signs of ∆k = det(Ak)

are different than those of both part (a) and (b)

(allowing one of other ∆k = det(Ak) = 0 ).

(iv) A can be row reduced without row exchanges or scalar multiplications

of rows and there is some pivot pj > 0 and another pk < 0.

(v) A cannot be row reduced to an upper triangular matrix

without row exchanges.
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Test for Definiteness, continued

A proof of all this theorem except about row reduction is given in

Linear Algebra and Its Applications by Gilbert Strang.

Also see the presentation in online class book

Determinants of principal submatrices or row reduction test

are best methods of determining whether

a symmetric matrix is positive or negative definite.
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2.2 Local/Global Extrema

Definition

Let f : FFF ⊂ Rn → R.

f has a maximum at xM ∈FFF p.t. f (x) ≤ f (xM) for all x ∈FFF .

f has a local maximum at xM ∈FFF p.t.

there exists an r > 0 such that

f (x) ≤ f (xM) for all x ∈FFF ∩ B(xM , r).

f has a strict local maximum at xM p.t.

there exists an r > 0 such that

f (x) < f (xM) for all x ∈FFF ∩ B(xM , r) r {xM}.

An unconstrained local maximum is a point xM ∈ int(FFF )

that is a local maximum of f
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Extrema and Critical Points

Similarly, minimum, local minimum, strict local minimum,

unconstrained local minimum.

Definition

f has a (local) extremum at p p.t.

it has either a (local) maximum or a (local) minimum at p.

Definition

For a continuous function f : FFF → R, a critical point of f is a point xc

s.t. either (i) Df (xc) = 0 or (ii) f is not differentiable at x.

Most of our functions are differentiable on the whole domain,

so concentrate on points at which Df (x) = 0.
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Extrema are Critical Points

Theorem

If f : FFF ⊂ Rn → R is C 1 on int(FFF ) and

f has a unconstrained local extremum at x∗ ∈ int(FFF ),

then x∗ is a critical point, Df (x∗) = 0.
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Extrema are Critical Points, contin.

Proof.

Assume that the point x∗ is not a critical point and

prove that the f does not have a extremum at x∗.

v = Df (x∗)>>> 6= 0, the gradient, is a nonzero (column) vector.

Line in the direction of the gradient is xt = x∗ + t v.

Applying the remainder form of the first order approximation.

f (xt) = f (x∗) + Df (x∗) (t v) + R̃1(x∗, xt) ‖t v‖
= f (x∗) + v>>>(t v) + R̃1(x∗, xt) ‖t v‖

= f (x∗) + t
[
‖v‖2 + R̃1(x∗, xt)‖v‖sign(t)

]
{

< f (x∗) if t < 0 and t small enough so that |R̃1| < 1
2‖v‖

> f (x∗) if t > 0 and t small enough so that |R̃1| < 1
2‖v‖

This proves that x∗ is neither a maximum nor a minimum.
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2.3 Second Derivative Conditions

Theorem

Suppose that f : FFF ⊂ Rn → R is C 2 on int(FFF ) and x∗∈ int(FFF ).

(a) If f has a local min (resp. local max) at x∗, then

D2f (x∗) is positive (resp. negative) semidefinite.

(b) If Df (x∗) = 0 and D2f (x∗) is positive (resp. negative) definite, then

f has a strict local min (resp. strict local max) at x∗.
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Proof

(b) Assume D2f (x∗) is positive definite. {u : ‖u‖ = 1 } is compact, so

m = min‖u‖=1 u>>>D2f (x∗)u > 0,

For x near x∗, let v = x− x∗ & u = 1
‖v‖v,

(x− x∗)>>>D2f (x∗) (x− x∗) = (‖v‖u)>>>D2f (x∗) (‖v‖u)

= ‖v‖2u>>>D2f (x∗)u ≥ m ‖x− x∗‖2.

Since Df (x∗) = 0, 2nd order Taylor’s expansion is

f (x) = f (x∗) + 1
2 (x− x∗)>>>D2f (x∗) (x− x∗) + R̃2(x∗, x) ‖x− x∗‖2.

There exists a δ > 0 such that

|R̃2(x∗, x)| < 1
4m for ‖x− x∗‖ < δ.

For δ > ‖x− x∗‖ > 0,

f (x) > f (x∗) + 1
2m ‖x− x∗‖2 − 1

4m ‖x− x∗‖2

= f (x∗) + 1
4m ‖x− x∗‖2 > f (x∗). QED
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Example

Find the critical points and classify them as

local max, local min, or neither for

F (x , y , z) = 3x2y + y3 − 3x2 − 3y2 + z3 − 3z .

A critical point satisfies

0 = ∂F
∂x = 6xy − 6x = 6x(y − 1)

0 = ∂F
∂y = 3x2 + 3y2 − 6y

0 = ∂F
∂z = 3z2 − 3.

From 3rd eq, z = ±1. From 1st eq, x = 0 or y = 1.

If x = 0, then 2nd eq 0 = 3y(y − 2), y = 0 or y = 2.

Pts: (0, 0,±1) (0, 2,±1).

If y = 1, then 2nd eq 0 = 3x2 − 3 x = ±1.

Pt: (±1, 1,±1).

All the critical points: (0, 0,±1), (0, 2,±1), (±1, 1,±1).
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Example, continued

The second derivative is D2F (x , y , z) =

6y − 6 6x 0
6x 6y − 6 0
0 0 6z

.

At the critical points

D2F (0, 0,±1) =

 6 0 0
0 6 0
0 0 ±6



D2F (0, 2,±1) =

6 0 0
0 6 0
0 0 ±6



D2F (±1, 1,±1) =

 0 ±6 0
±6 0 0
0 0 ±6

.
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Example, continued

D2F (x , y , z) =

6y − 6 6x 0
6x 6y − 6 0
0 0 6z

.

Let ∆k = det(Ak).

∆1 = Fxx = 6y − 6,

∆2 = FxxFyy − F 2
xy = (6y − 6)2 − 36x2, and

∆3 = Fzz ∆2 = 6z ∆2.
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Example, continued

Fxx = 6y − 6, Fyy = 6y − 6, Fxy = 6x , Fzz = 6z .

∆1 = Fxx , ∆2 = FxxFyy − F 2
xy , ∆3 = Fzz∆2

(x , y , z) ∆1 = Fxx Fyy Fxy ∆2 Fzz ∆3 Type

(0, 0, 1) 6 6 0 36 6 216 saddle

(0, 0, 1) 6 6 0 36 6 216 local max

(0, 2, 1) 6 6 0 36 6 216 local min

(0, 2, 1) 6 6 0 36 6 216 saddle

(±1, 1,±1) 0 0 ±6 36 ±6 ∓216 saddle

(0, 0, 1) is a local max,

(0, 2, 1) is a local min,

other points are neither local max nor local min, saddle points.
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