Chapter 4: Parametric Contin. and Dynamic Prog.

Math 368
© Copyright 2012, 2013 R Clark Robinson

May 22, 2013

1. Correspondence

Use set-valued correspondences in parametric maximization problems and multiple period dynamic programming problems

Definition

Let $\mathbf{S} \subset \mathbb{R}^{\ell}, \mathbf{X} \subset \mathbb{R}^{n}$.
A correspondence \mathscr{C} from \mathbf{S} to \mathbf{X} is a map to nonempty subsets of \mathbf{X} :
$\mathbf{s} \in \mathbf{S} \mapsto \mathscr{C}(\mathbf{s}) \subset \mathbf{X}$ with $\mathscr{C}(\mathbf{s}) \neq \emptyset$
$\mathscr{P}(\mathbf{X})$ be collection of all nonempty subsets of \mathbf{X}.
\mathscr{C} is function with values in $\mathscr{P}(\mathbf{X})$.
$\mathscr{C}: \mathbf{S} \rightarrow \mathscr{P}(\mathbf{X})$.

Graph of Correspondences

When give examples, draw graph of correspondence

$$
\mathscr{C}_{1}(s)=[0, s] \quad \text { for } 0 \leq s \leq 1
$$

Definition

Graph of a correspondence $\mathscr{C}: \mathbf{S} \rightarrow \mathscr{P}(\mathbf{X})$ is

$$
\operatorname{Gr}(\mathscr{C})=\{(\mathbf{s}, \mathbf{x}) \in \mathbf{S} \times \mathbf{X}: \mathbf{s} \in \mathbf{S}, \quad \mathbf{x} \in \mathscr{C}(\mathbf{s})\} \subset \mathbf{S} \times \mathbf{X} .
$$

Types of Correspondences

Definition

$\mathscr{C}: \mathbf{S} \rightarrow \mathscr{P}(\mathbf{X})$ is a closed-graph correspondence p.t. $\operatorname{Gr}(\mathscr{C})$ is a closed subset of $\mathbf{S} \times \mathbf{X}$.

A correspondence $\mathscr{C}: \mathbf{S} \rightarrow \mathscr{P}(\mathbf{X})$ is closed-valued p.t. $\mathscr{C}(\mathbf{s})$ is a closed subset of \mathbf{X} for each fixed $\mathbf{s} \in \mathbf{S}$. compact-valued if each $\mathscr{C}(\mathbf{s})$ is compact.

A correspondence \mathscr{C} is bounded p.t. $\exists K>0$ such that

$$
\mathscr{C}(\mathbf{s}) \subset \overline{\mathbf{B}}(\mathbf{0}, K) \text { for all } \mathbf{s} \in \mathbf{S}
$$

\mathscr{C} is locally bounded p.t. for each $\mathbf{s}_{0} \in \mathbf{S}, \exists K>0 \& r>0$ s.t.

$$
\mathscr{C}(\mathbf{s}) \subset \overline{\mathbf{B}}(\mathbf{0}, K) \text { for all } \mathbf{s} \in \mathbf{B}\left(\theta_{0}, r\right) \cap \mathbf{S}
$$

Example

$$
\mathbf{S}=[0,2], \mathbf{X}=\mathbb{R} . \quad \text { Graph in } \mathbf{S} \times \mathbf{X}=[0,2] \times \mathbb{R}
$$

$$
\mathscr{C}_{2}(s)= \begin{cases}{[1,2]} & \text { for } 0 \leq s<0.5, \quad 1.5<s \leq 2 \\ {[0,3]} & \text { for } 0.5 \leq s \leq 1.5\end{cases}
$$

$$
\mathscr{C}_{3}(s)= \begin{cases}{[1,2]} & \text { for } 0 \leq s \leq 0.5, \quad 1.5 \leq s \leq 2 \\ {[0,3]} & \text { for } 0.5<s<1.5 .\end{cases}
$$

$\mathscr{C}_{2} \& \mathscr{C}_{3}$ are compact-valued.
\mathscr{C}_{2} is closed-graph, but not \mathscr{C}_{3}.
$\mathscr{C}_{2} \& \mathscr{C}_{3}$ are bounded.

Unbounded Correspondence

Example

$$
\mathscr{C}_{4}(s)=\left\{\begin{array}{lc}
\left\{\begin{array}{l}
1 \\
s
\end{array}\right\} & s \neq 0 \\
\{0\} & s=0
\end{array}\right.
$$

\mathscr{C}_{4} is a closed-graph correspondence, compact valued \mathscr{C}_{4} is not bounded, nor locally bounded at $s=0$.

Parametric Maximization

Maximizing $f(\mathbf{s}, \mathbf{x})$ subject to $\mathbf{x} \in \mathscr{F}(\mathbf{s}) \subset \mathbb{R}^{n}$
$\mathbf{s} \in \mathbf{S}$: parameter space both f and domain \mathscr{F} can depend on s.

For $\mathbf{s} \in \mathbf{S}$,

$$
\begin{aligned}
& f^{*}(\mathbf{s})=\max \{f(\mathbf{s}, \mathbf{x}): \mathbf{x} \in \mathscr{F}(\mathbf{s})\} \in \mathbb{R} \\
& \mathscr{F}^{*}(\mathbf{s})=\left\{\mathbf{x} \in \mathscr{F}(\mathbf{s}): f(\mathbf{s}, \mathbf{x})=f^{*}(\mathbf{s})\right\} \quad \subset \mathscr{F}(\mathbf{s}) \subset \mathbb{R}^{n} .
\end{aligned}
$$

For each $\mathbf{s}, \mathscr{F}(\mathbf{s})$ and $\mathscr{F}^{*}(\mathbf{s})$ are sets,
so \mathscr{F} and \mathscr{F}^{*} are examples of correspondences.
$f^{*}(\mathbf{s})$ is a number, so f^{*} is a function
Question: How do $f^{*}(\mathbf{s})$ and $\mathscr{F}^{*}(\mathbf{s})$ vary with s?

Example 1

Example

Let $f_{1}(s, x)=\left(s-\frac{1}{3}\right) x$ for $s \in[0,1]=\mathbf{S}$ and $x \in[0,1]=\mathscr{F}_{1}$

$$
\begin{aligned}
& \frac{\partial f_{1}}{\partial x}(s, x)=\left(s-\frac{1}{3}\right) \begin{cases}<0 & \text { for } s<\frac{1}{3} \\
\equiv 0 & \text { for } s=\frac{1}{3} \\
>0 & \text { for } s>\frac{1}{3}\end{cases} \\
& \mathscr{F}_{1}^{*}(s)= \begin{cases}\{0\} & \text { for } s<\frac{1}{3} \\
{[0,1]} & \text { for } s=\frac{1}{3} \\
\{1\} & \text { for } s>\frac{1}{3} .\end{cases}
\end{aligned}
$$

$f_{1}^{*}(s)$ is continuous, $\quad \mathscr{F}_{1}^{*}(s)$ changes dramatically at $s=\frac{1}{3}$,
In game theory, $\mathscr{F}_{1}^{*}(s)$ called best response correspondence

Set and Values for Example 1, continued

$$
\mathscr{F}_{1}^{*}(s)=\left\{\begin{array}{ll}
\{0\} & \text { for } s<\frac{1}{3} \\
{[0,1]} & \text { for } s=\frac{1}{3} \\
\{1\} & \text { for } s>\frac{1}{3} .
\end{array} \quad \text { and } \quad f_{1}^{*}(s)= \begin{cases}0 & \text { for } s \leq \frac{1}{3} \\
\left(s-\frac{1}{3}\right) & \text { for } s>\frac{1}{3} .\end{cases}\right.
$$

$\mathscr{F}_{1}^{*}(s)$ is compact valued, bounded, closed graph. f_{1}^{*} is continuous

Example 2

Let $f_{2}(s, x)=-\frac{1}{4} x^{4}+\frac{1}{3} s x^{3}+\frac{1}{2} x^{2}$ for $x \in \mathbb{R}=\mathscr{F}_{2}$.

$$
f_{2 x}(s, x)=-x^{3}+s x^{2}+x
$$

Critical points: $0, x_{s}^{ \pm}=\frac{1}{2}\left[s \pm \sqrt{s^{2}+4}\right]$.
For $s=0: \quad x_{0}^{ \pm}= \pm 1, \quad f_{2}(0, \pm 1)=\frac{1}{4}>0=f(0,0)$.

$$
\begin{aligned}
& \quad f_{2 x x}(s, x)=-3 x^{2}+2 s x+1 . \\
& f_{2 x x}(s, 0)=1>0: \text { local minimum at } x=0 . \\
& f_{2 x x}\left(s, x_{s}^{ \pm}\right)=-\left(x_{s}^{ \pm}\right)^{2}+2\left[-\left(x_{s}^{ \pm}\right)^{2}+s x_{s}^{ \pm}+1\right]-1=-\left(x_{s}^{ \pm}\right)^{2}-1<0, \\
& \quad \text { local maximum at } x_{s}^{+}, x_{s}^{-} .
\end{aligned}
$$

Example 2, continued

Do not calculate $f\left(s, x_{s}^{ \pm}\right)$but

$$
\frac{d}{d s} f_{2}\left(s, x_{s}^{ \pm}\right)=f_{2 x}\left(s, x_{s}^{ \pm}\right) \frac{d x_{s}^{ \pm}}{d s}+\frac{1}{3}\left(x_{s}^{ \pm}\right)^{3}=\frac{1}{3}\left(x_{s}^{ \pm}\right)^{3}
$$

For $s>0, \quad f_{2}\left(s, x_{s}^{-}\right)<f(0, \pm 1)<f_{2}\left(s, x_{s}^{+}\right)$.
For $s<0, \quad f_{2}\left(s, x_{s}^{-}\right)>f(0, \pm 1)>f_{2}\left(s, x_{s}^{+}\right)$.
Thus,

$$
\mathscr{F}_{2}^{*}(s)= \begin{cases}\left\{x_{s}^{-}\right\} & \text {for } s<0 \\ \{-1,1\} & \text { for } s=0 \\ \left\{x_{s}^{+}\right\} & \text {for } s>0\end{cases}
$$

Set and Values for Example 2

Calculated numerically
$\mathscr{F}_{2}^{*}(s)$ jumps at $s=0$, not continuous
is compact valued, closed graph, locally bounded.
$f_{2}^{*}(s)$ is continuous by Parametric Maximization Theorem.

Upper-Hemicontinuous

Continuity of correspondences defined using small region around set.

Definition

For a set $\mathbf{A} \subset \mathbb{R}^{n}, \epsilon$-neighborhood of \mathbf{A} is

$$
\mathbf{B}(\mathbf{A}, \epsilon)=\left\{\mathbf{x} \in \mathbb{R}^{n}: \text { there is a } \mathbf{y} \in \mathbf{A} \text { with }\|\mathbf{x}-\mathbf{y}\|<\epsilon\right\} .
$$

Definition

A compact-valued correspondence $\mathscr{C}: \mathbf{S} \subset \mathbb{R}^{\ell} \rightarrow \mathscr{P}(\mathbf{X})$ is upper-hemicontinuous (uhc) at $\mathbf{s}_{0} \in \mathbf{S}$ p.t. for any $\epsilon>0$ exists $\delta>0$ such that if $\mathbf{s} \in \mathbf{B}\left(\mathbf{s}_{0}, \delta\right) \cap \mathbf{S}$ then $\mathscr{C}(\mathbf{s}) \subset \mathbf{B}\left(\mathscr{C}\left(\mathbf{s}_{0}\right), \epsilon\right)$.
Image set cannot get a lot bigger for small changes from \mathbf{s}_{0} to nearby \mathbf{s} \mathscr{C} is upper-hemicontinuous on \mathbf{S} p.t. it is uhc at each $\mathbf{s}_{0} \in \mathbf{S}$.

Continuous Correspondence

Definition

A compact-valued correspondence $\mathscr{C}: \mathbf{S} \rightarrow \mathscr{P}(\mathbf{X})$ is continuous at $\mathbf{s}_{0} \in \mathbf{S}$ p.t.

$$
\begin{aligned}
& \text { for any } \epsilon>0, \exists \delta>0 \text { s.t. if } \mathbf{s} \in \mathbf{B}\left(\mathbf{s}_{0}, \delta\right) \cap \mathbf{S} \text { then } \\
& \mathscr{C}\left(\mathbf{s}_{0}\right) \subset \mathbf{B}(\mathscr{C}(\mathbf{s}), \epsilon) \& \\
& \mathscr{C}(\mathbf{s}) \subset \mathbf{B}\left(\mathscr{C}\left(\mathbf{s}_{0}\right), \epsilon\right) \text {. }
\end{aligned}
$$

Image sets $\mathscr{C}\left(\mathbf{s}_{0}\right) \& \mathscr{C}(\mathbf{s})$ within small neighborhoods of each other not a lot smaller nor bigger for small changes from \mathbf{s}_{0} to nearby \mathbf{s}
\mathscr{C} is continuous on \mathbf{S} p.t. it is continuous at each $\mathbf{s}_{0} \in \mathbf{S}$.

Examples of Correspondences

\mathscr{C}_{1} is continuous correspondence
$\mathscr{C}_{2}, \mathscr{F}_{1}^{*}$, and \mathscr{F}_{2}^{*} are upper-hemicontinuous not continuous.
\mathscr{C}_{3} is not uhc at 0.5 or 1.5 : [1, 2] jumps to $[0,3]$ with changes of $s=0.5$ to $0.5+\delta$ or $s=1.5$ to $1.5-\delta$
\mathscr{C}_{4} is neither upper-hemicontinuous nor continuous at $s=0$:
As s changes from 0 to $\delta, \mathscr{C}_{4}(0)=\{0\}$ changes to $\mathscr{C}_{4}(\delta)=\left\{\frac{1}{\delta}\right\}$,

$$
\begin{aligned}
& \left\{\frac{1}{\delta}\right\} \nsubseteq \mathbf{B}(\{0\}, \epsilon)=(-\epsilon, \epsilon) \& \\
& \{0\} \nsubseteq \mathbf{B}\left(\left\{\frac{1}{\delta}\right\}, \epsilon\right)=\left(-\epsilon+\frac{1}{\delta}, \epsilon+\frac{1}{\delta}\right) .
\end{aligned}
$$

Condition to be Upper-Hemicontinuous

Proposition (1)

Let $\mathscr{C}: \mathbf{S} \rightarrow \mathscr{P}(\mathbf{X})$ be a compact-valued, locally bded correspondence.
\mathscr{C} is upper-hemicontinuous iff \mathscr{C} is a closed-graph correspondence.

See online class book for proof.

Remark

$\mathscr{C}_{4}(s)=\left\{\frac{1}{s}\right\}$ above shows why correspondence must be locally bounded in this proposition.

Parametric Maximization Theorem

Theorem (2 Parametric Maximization Theorem)

Assume $f: \mathbf{S} \times \mathbf{X} \rightarrow \mathbb{R}$ is a continuous function and
$\mathscr{F}: \mathbf{S} \rightarrow \mathscr{P}(\mathbf{X})$ is a compact-valued continuous correspondence.
Then, $f^{*}(\mathbf{s})=\max \{f(\mathbf{s}, \mathbf{x}): \mathbf{x} \in \mathscr{F}(\mathbf{s})\}$ is continuous, and
$\mathscr{F}^{*}(\mathbf{s})=\left\{\mathbf{x} \in \mathscr{F}(\mathbf{s}): f(\mathbf{s}, \mathbf{x})=f^{*}(\mathbf{s})\right\}$
is a compact-valued upper-hemicontinuous correspondence.
If $\mathscr{F}^{*}(\mathbf{s})$ is single point for each \mathbf{s}, then continuous correspondence or function.

If $f(\mathbf{s}, \mathbf{x})$ is strictly concave fn of \mathbf{x} for each \mathbf{s},
then each $\mathscr{F}^{*}(\mathbf{s})$ is a single point and so \mathscr{F}^{*} is continuous.
Domains for Dynamic Programs often have $\mathscr{F}(s)=[0, s]$,
which satisfies theorem.

Example 4

Let $\mathbf{S}=\mathbf{X}=\mathbb{R}_{+}$and $h: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be defined by

$$
h(s, x)=x^{\frac{1}{2}}+(s-x)^{\frac{1}{2}} \quad \text { for } x \in[0, s]=\mathscr{F}(s) .
$$

h is continuous and $\mathscr{F}(s)$ continuous correspondence.
Parametric Maximization Theorem applies.
Critical point satisfies

$$
\begin{aligned}
& 0=\frac{\partial h}{\partial x}=\frac{1}{2} x^{-\frac{1}{2}}-\frac{1}{2}(s-x)^{-\frac{1}{2}} \\
& x^{-\frac{1}{2}}=(s-x)^{-\frac{1}{2}} \\
& s-x=x \\
& s=2 x \\
& \bar{x}=\frac{1}{2} s \in[0, s]
\end{aligned}
$$

Example 4, continued

$$
\begin{aligned}
& \frac{\partial^{2} h}{\partial x^{2}}=-\frac{1}{4} x^{-\frac{3}{2}}-\frac{1}{4}(s-x)^{-\frac{3}{2}}<0 \text { for all } x>0, \text { so } \\
& h(s, x) \text { is a concave function of } x \text { on }[0, s] \\
& \bar{x}=\frac{1}{2} s \text { is the unique maximizer on }[0, s] . \\
& \mathscr{F}^{*}(s)=\left\{\frac{1}{2} s\right\} \text { is a continuous correspondence } \\
& h^{*}(s)=\left(\frac{1}{2} s\right)^{\frac{1}{2}}+\left(\frac{1}{2} s\right)^{\frac{1}{2}}=2^{\frac{1}{2}} s^{\frac{1}{2}} \text { is continuous as it must be }
\end{aligned}
$$

Consumer Theory

Theorem (3)

Commodity bundles are points in \mathbb{R}_{+}^{n}.
Parameters are prices $p_{i}>0$ for $1 \leq i \leq n$ and income $I>0$.

$$
\text { Parameter space } \mathbf{S}=\left\{(\mathbf{p}, l) \in \mathbb{R}_{++}^{n+1}\right\} .
$$

Budget correspondence $\mathscr{B}: \mathbf{S} \rightarrow \mathscr{P}\left(\mathbb{R}_{+}^{n}\right)$ is

$$
\mathscr{B}(\mathbf{p}, I)=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n}: \mathbf{p} \cdot \mathbf{x} \leq I\right\} .
$$

\mathscr{B} is a continuous, compact-valued correspondence.

Proof.

Obviously, \mathscr{B} is compact-valued.
Intuitively, it is continuous.
An explicit proof is given in online class book.

Consumer Theory, continued

Corollary (4)

$u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ be a continuous utility function.
Then indirect utility function $v: S \rightarrow \mathbb{R}$,

$$
v(\mathbf{p}, I)=\max \{u(\mathbf{x}): \mathbf{x} \in \mathscr{B}(\mathbf{p}, I)\},
$$

is continuous.
Also, demand correspondence $\mathbf{d}: \mathbf{S} \rightarrow \mathscr{P}\left(\mathbb{R}_{+}^{n}\right)$,

$$
\mathbf{d}(\mathbf{p}, I)=\mathscr{B}^{*}=\{\mathbf{x} \in \mathscr{B}(\mathbf{p}, I): u(\mathbf{x})=v(\mathbf{p}, I)\}
$$

is a compact-valued uhc correspondence.

2. Finite Horizon Dyn Prog: Consumption-Savings

T is number of time periods fixed at start of problem.
t period is integer for $0 \leq t \leq T$.
$w_{t} \in \mathbb{R}_{+}$is wealth at period t, called state. w_{0} initial state c_{t} consumption at period t, chosen with $0 \leq c_{t} \leq w_{t}$, action
$\mathscr{F}\left(w_{t}\right)=\left[0, w_{t}\right]$ is feasible action correspondence, $c_{t} \in\left[0, w_{t}\right]$. $w_{t+1}=f\left(w_{t}, c_{t}\right)=k\left(w_{t}-c_{t}\right)$ is transition function, where $k \geq 1$ for fixed production rate.
$u\left(c_{t}\right)=\sqrt{c_{t}}$ is utility of c_{t} valued at period t. For $0<\delta \leq 1$, $r_{t}\left(c_{t}\right)=\delta^{t} u\left(c_{t}\right)=\delta^{t} \sqrt{c_{t}}$ reward function valued at $t=0$.

Problem: Given $k, \delta, u(c)$, and w_{0}, maximize $\sum_{t=0}^{T} \delta^{t} u\left(c_{t}\right)$. subject to $0 \leq c_{t} \leq w_{t}$ and $w_{t+1}=k\left(w_{t}-c_{t}\right)$.

Finite Horizon Dyn Prog

Can solve as KKT problem as function of w_{0} :
maximize $\sum_{t=0}^{T} \delta^{t} u\left(c_{t}\right)$
subject to $0 \leq c_{t} \leq w_{t}$ and $w_{t+1}=k\left(w_{t}-c_{t}\right)$,
Easier to break up and solve simpler problem at each time period, starting at $t=T$
called backward induction
Treat as a Dynamic Programming Problem

Strategy and Value Function

Markovian strategy profile is rule σ_{t} at each period t for a choice of c_{t} as function of only $w_{t}, c_{t}=\sigma_{t}\left(w_{t}\right)$, and not of $w_{t^{\prime}}$ for $t^{\prime} \neq t$.

Use backward induction to find maximal Markovian strategy profile
(\mathbf{T}) For $t=T$: maximize $r_{T}(c)=\delta^{T} c^{\frac{1}{2}}$ for $0 \leq c=c_{T} \leq w_{T}$. r_{T} is strictly increasing, so optimal choice is $\bar{c}=w_{T}$.

Denote this choice by $\bar{c}_{T}=\sigma_{T}^{*}\left(w_{T}\right)=w_{T}$.
Optimal strategy at period T.
Value function at T-period is maximum payoff for period T

$$
\begin{aligned}
& \text { given } w_{T} \\
& \qquad V_{T}\left(w_{T}\right)=r_{T}\left(\sigma_{T}^{*}\left(w_{T}\right)\right)=\delta^{T} w_{T}^{\frac{1}{2}}
\end{aligned}
$$

Consumption-Savings Problem, continued

($\mathbf{T}-1)$ Let $w=w_{T-1}$ at period $t=T-1$.
$r_{T-1}(c)=\delta^{T-1} c^{\frac{1}{2}}$ is one period payoff for action c

$$
\begin{aligned}
& w_{T}=f_{T-1}\left(w_{T-1}, c\right)=k\left(w_{T-1}-c\right) \quad \text { carry forward to period } T \\
& V_{T}(k(w-c))=\delta^{T} k^{\frac{1}{2}}\left(w_{T-1}-c\right)^{\frac{1}{2}} \quad \text { is maximal payoff at period } T
\end{aligned}
$$

For $0 \leq c \leq w_{T-1}$, seek to maximize

$$
\begin{aligned}
& h\left(w_{T-1}, c\right)=r_{T-1}(c)+V_{T}(k(w-c)) \\
& \quad=\delta^{T-1} c^{\frac{1}{2}}+\delta^{T} k^{\frac{1}{2}}\left(w_{T-1}-c\right)^{\frac{1}{2}} \\
& 0=\frac{\partial h}{\partial c}=\delta^{T-1} \frac{1}{2} c^{-\frac{1}{2}}+\delta^{T} k^{\frac{1}{2} \frac{1}{2}\left(w_{T-1}-c\right)^{-\frac{1}{2}}(-1),} \\
& c^{-\frac{1}{2}}=\delta k^{\frac{1}{2}}\left(w_{T-1}-c\right)^{-\frac{1}{2}}, \quad w_{T-1}-c=\delta^{2} k c, \\
& w_{T-1}=\left(1+\delta^{2} k\right) c, \quad \bar{c}=\frac{w_{T-1}}{1+\delta^{2} k} .
\end{aligned}
$$

Since $\frac{\partial^{2} h}{\partial c^{2}}<0$, this critical point is a maximum.

Consumption-Savings Problem, continued

Optimal strategy is $\bar{c}=\sigma_{T-1}^{*}\left(w_{T-1}\right)=\frac{w_{T-1}}{1+\delta^{2} k} \leq w_{T-1}$.
Value fn at period $T-1$ is maximal payoff for periods $t \geq T-1$,

$$
\begin{aligned}
V_{T-1}\left(w_{T-1}\right) & =h^{*}\left(w_{T-1}\right)=\delta^{T-1} \bar{c}^{\frac{1}{2}}+\delta^{T}[k(w-\bar{c})]^{\frac{1}{2}} \\
& =\delta^{T-1} \bar{c}^{\frac{1}{2}}+\delta^{T}\left[\delta^{2} k^{2} \bar{c}\right]^{\frac{1}{2}} \\
& =\delta^{T-1}\left(1+\delta^{2} k\right) \bar{c}^{\frac{1}{2}} \\
& =\delta^{T-1}\left(1+\delta^{2} k\right)\left[\frac{w_{T-1}}{1+\delta^{2} k}\right]^{\frac{1}{2}} \\
& =\delta^{T-1}\left(1+\delta^{2} k\right)^{\frac{1}{2}} w_{T-1}^{\frac{1}{2}}
\end{aligned}
$$

Consumption-Savings Problem, continued

By backward induction $V_{j}\left(w_{j}\right)=\delta^{j}\left(1+\delta^{2} k+\cdots+\delta^{2 T-2 j} k^{T-j}\right)^{\frac{1}{2}} w_{j}^{\frac{1}{2}}$.
Valid for $j=T$ and $T-1 . \quad$ Assume true $t+1$.
(t) Given $w=w_{t}$: For $0 \leq c \leq w$, maximize

$$
\begin{aligned}
& h(w, c)=r_{t}(c)+V_{t+1}(k(w-c)) \\
& \quad=\delta^{t} c^{\frac{1}{2}}+\delta^{t+1}\left(1+\cdots+\delta^{2 T-2 t-2} k^{T-t-1}\right)^{\frac{1}{2}} k^{\frac{1}{2}}(w-c)^{\frac{1}{2}} \\
& 0=\frac{\partial h}{\partial c}=\delta^{t} \frac{1}{2} c^{-\frac{1}{2}}+\delta^{t+1}\left(1+\cdots+\delta^{2 T-2 t-2} k^{T-t-1}\right)^{\frac{1}{2}} k^{\frac{1}{2}} \frac{1}{2}(w-c)^{-\frac{1}{2}}(-1) \\
& (w-c)^{\frac{1}{2}}=\delta\left(1+\cdots+\delta^{2 T-2 t-2} k^{T-t-1}\right)^{\frac{1}{2}} k^{\frac{1}{2}} c^{\frac{1}{2}} \\
& w-c=\delta^{2} k\left(1+\cdots+\delta^{2 T-2 t-2} k^{T-t-1}\right) c \\
& \quad=\left(\delta^{2} k+\cdots+\delta^{2 T-2 t} k^{T-t}\right) c \\
& w=\left(1+\delta^{2} k+\cdots+\delta^{2 T-2 t} k^{T-t}\right) c \\
& \bar{c}=\frac{w}{1+\cdots+\delta^{2 T-2 t} k^{T-t}} \leq w .
\end{aligned}
$$

Consumption-Savings Problem, continued

Since $\frac{\partial^{2} h}{\partial c^{2}}<0$, this critical point is a maximum.
Optimal strategy: $\bar{c}=\sigma_{t}^{*}\left(w_{t}\right)=\frac{w_{t}}{1+\cdots+\delta^{2 T-2 t} k^{T-t}} \leq w_{t}$.

$$
\begin{aligned}
& {\left[k\left(w_{t}-\bar{c}\right)\right]^{\frac{1}{2}}=\delta k\left[1+\cdots+\delta^{2 T-2 t-2} k^{T-t-1}\right]^{\frac{1}{2}} \bar{c}^{\frac{1}{2}}} \\
& \begin{aligned}
h_{t}^{*}\left(w_{t}\right) & =\delta^{t} \bar{c}^{\frac{1}{2}}+V_{t+1}\left(k\left(w_{t}-\bar{c}\right)\right) \\
& =\delta^{t} \bar{c}^{\frac{1}{2}}+\delta^{t+1}\left(1+\cdots+\delta^{2 T-2 t-2} k^{T-t-1}\right)^{\frac{1}{2}}\left[k\left(w_{t}-\bar{c}\right)\right]^{\frac{1}{2}} \\
& =\delta^{t} \bar{c}^{\frac{1}{2}}+\delta^{t+2} k\left(1+\cdots+\delta^{2 T-2 t-2} k^{T-t-1}\right) \bar{c}^{\frac{1}{2}} \\
& =\delta^{t}\left(1+\delta^{2} k+\cdots+\delta^{2 T-2 t} k^{T-t}\right) \bar{c}^{\frac{1}{2}} \\
& =\frac{\delta^{t}\left(1+\cdots+\delta^{2 T-2 t} k^{T-t}\right) w_{t}^{\frac{1}{2}}}{\left(1+\cdots+\delta^{2 T-2 t} k^{T-t}\right)^{\frac{1}{2}}} \\
& =\delta^{t}\left(1+\cdots+\delta^{2 T-2 t} k^{T-t}\right)^{\frac{1}{2}} w_{t}^{\frac{1}{2}}=V_{t}\left(w_{t}\right) .
\end{aligned}
\end{aligned}
$$

Consumption-Savings Problem, continued

Shown if the maximum from $t+1$ to T has form of $V_{t+1}(w)$ given then maximum from t to T has form of $V_{t}(w)$ given.

Therefore, valid for all $t=T, T-1, \ldots, 0$.
Maximal payoff all periods $t=0$ to T

$$
V_{0}\left(w_{0}\right)=\left(1+\delta^{2} k+\cdots+\delta^{2 T} k^{T}\right)^{\frac{1}{2}} w_{0}^{\frac{1}{2}}
$$

Optimal strategy profile is $\sigma^{*}=\left(\sigma_{0}^{*}, \ldots, \sigma_{T}^{*}\right)$ where

$$
\bar{c}_{t}=\sigma_{t}^{*}\left(w_{t}\right)=\frac{w_{t}}{1+\cdots+\delta^{2 T-2 t} k^{T-t}}
$$

Example with Production

Include some production in feasibility correspondence for $0 \leq t \leq T$.
w_{t} be wealth or capital; labor force is held fixed so production is w_{t}^{β} with $0<\beta<1$.
$0 \leq c \leq w_{t}^{\beta} \quad$ consumption
$f\left(w_{t}, c_{t}\right)=w_{t}^{\beta}-c_{t}=w_{t+1}$.
$r_{t}(w, c)=\delta^{t} \ln (c)$, where $0<\delta \leq 1$.
(T) Maximizer $\delta^{T} \ln (c)$ for $0 \leq c \leq w^{\beta}$,

$$
\begin{aligned}
& \sigma_{T}^{*}(w)=c^{*}=w^{\beta} \\
& V_{T}(w)=\delta^{T} \ln \left(w^{\beta}\right)=\delta^{T} \beta \ln (w)
\end{aligned}
$$

Example with Production, contin.

$$
\begin{aligned}
& (\mathbf{T}-1) \quad h(w, c)=\delta^{T-1} \ln (c)+V_{T}\left(w^{\beta}-c\right) \\
& =\delta^{T-1} \ln (c)+\delta^{T} \beta \ln \left(w^{\beta}-c\right) \\
& 0=\frac{\partial h}{\partial c}=\delta^{T-1} \frac{1}{c}-\delta^{T} \beta \frac{1}{w^{\beta}-c} \\
& w^{\beta}-c=\delta \beta c \quad w^{\beta}=(1+\delta \beta) c \\
& \bar{c}=\sigma_{T-1}^{*}(w)=\frac{w^{\beta}}{1+\delta \beta} \leq w^{\beta} \\
& V_{T-1}(w)=\delta^{T-1} \ln (\bar{c})+V_{t}\left(w^{\beta}-\bar{c}\right) \\
& =\delta^{T-1} \ln (\bar{c})+\delta^{T} \beta \ln (\delta \beta \bar{c}) \\
& =\delta^{T-1}[1+\delta \beta][\beta \ln (w)-\ln (1+\delta \beta)]+\delta^{T} \beta \ln (\delta \beta) \\
& =\delta^{T-1} \beta[1+\delta \beta] \ln (w)+v_{T-1} .
\end{aligned}
$$

Example with Production, contin.

Induction hypothesis with v_{j} a constant

$$
\begin{aligned}
& \quad V_{j}(w)=\delta^{j} \beta\left[1+\delta \beta+\cdots+\delta^{T-j} \beta^{T-j}\right] \ln (w)+v_{j} \\
& h(w, c)=\delta^{t} \ln (c)+V_{t+1}\left(w^{\beta}-c\right) \\
& \quad=\delta^{t} \ln (c)+\delta^{t+1} \beta\left[1+\cdots+\delta^{T-t-1} \beta^{T-t-1}\right] \ln \left(w^{\beta}-c\right)+v_{t+1} \\
& 0=\frac{\partial h}{\partial c}=\delta^{t} \frac{1}{c}-\delta^{t+1} \beta\left[1+\cdots+\delta^{T-t-1} \beta^{T-t-1}\right] \frac{1}{w^{\beta}-c} \\
& w^{\beta}-c=\left[\delta \beta+\cdots+\delta^{T-t} \beta^{T-t}\right] c \\
& w^{\beta}=\left[1+\cdots+\delta^{T-t} \beta^{T-t}\right] c \\
& \bar{c}=\sigma_{T-t}^{*}(w)=\frac{w^{\beta}}{1+\cdots+\delta^{T-t} \beta^{T-t}} \leq w^{\beta}
\end{aligned}
$$

Example with Production, contin.

$$
\begin{aligned}
V_{t}(w)= & \delta^{t} \ln (\bar{c})+V_{t+1}\left(w^{\beta}-\bar{c}\right) \\
= & \delta^{t} \ln (\bar{c})+V_{t+1}\left(\left[\delta \beta+\cdots+\delta^{T-t} \beta^{T-t}\right] \bar{c}\right) \\
= & \delta^{t} \ln (\bar{c})+\delta^{t}\left[\delta \beta+\cdots+\delta^{T-t} \beta^{T-t}\right] \ln (\bar{c}) \\
& +\delta^{t}\left[\delta \beta+\cdots+\delta^{T-t} \beta^{T-t}\right] \ln \left(\delta \beta+\cdots+\delta^{T-t} \beta^{T-t}\right)+v_{t+1} \\
= & \delta^{t}\left[1+\cdots+\delta^{T-t} \beta^{T-t}\right] \beta \ln (w) \\
& \quad-\delta^{t}\left[1+\cdots+\delta^{T-t} \beta^{T-t}\right] \ln \left(1+\cdots+\delta^{T-t} \beta^{T-t}\right) \\
& +\delta^{t}\left[\delta \beta+\cdots+\delta^{T-t} \beta^{T-t}\right] \ln \left(\delta \beta+\cdots+\delta^{T-t} \beta^{T-t}\right)+v_{t+1} \\
= & \delta^{t} \beta\left[1+\cdots+\delta^{t} \beta^{t}\right] \ln (w)+v_{t}
\end{aligned}
$$

End of Example

Supremum

Supremum or least upper bound for $f: \mathbf{X} \rightarrow \mathbb{R}$ is
M such that $f(\mathbf{x}) \leq M$ for all $\mathbf{x} \in \mathbf{X}$,
and no small number works.

$$
\sup \{f(\mathbf{x}): \mathbf{x} \in \mathbf{X}\}
$$

If function is bounded above, a finite supremum exists.
Supremum $=\infty$ if $f(\mathbf{x})$ is not bounded above.

Example

$\arctan (x)$ is bounded above on \mathbb{R} but no maximum,

$$
\sup \{\arctan (x): x \in \mathbb{R}\}=\frac{\pi}{2}
$$

$$
\sup \left\{\frac{1}{x}: x>0\right\}=\infty \quad \sup \left\{\frac{1}{x}: x<0\right\}=0
$$

Infimum

Infimum or greatest lower bound for $f: \mathbf{X} \rightarrow \mathbb{R}$ is m such that $f(\mathbf{x}) \geq m$ for all $\mathbf{x} \in \mathbf{X}$, and no larger number works.

$$
\inf \{f(\mathbf{x}): \mathbf{x} \in \mathbf{X}\} .
$$

Infimum $=-\infty$ iff $f(\mathbf{x})$ is not bounded below.
If function is bounded below, a greatest lower bound or infimum exists.

Example

$\arctan (x)$ is bounded below on \mathbb{R} but no minimum, $\inf \{\arctan (x): x \in \mathbb{R}\}=-\frac{\pi}{2}$,
$\inf \left\{\frac{1}{x}: x>0\right\}=0, \quad \inf \left\{\frac{1}{x}: x<0\right\}=-\infty$

General Finite-Horizon Dynamic Program

A general FHDP consists of $\left\{\mathbf{S}, \mathbf{A}, T,\left(r_{t}, f_{t}, \mathscr{F}_{t}\right)_{t=0}^{T}\right\}$.

- T is a positive integer; periods t are taken with $0 \leq t \leq T$.
- \mathbf{S} is state space, with state at period t given by $s_{t} \in \mathbf{S}$. (In C-S problem, $s_{t}=w_{t} \in[0, \infty)=\mathbf{S}$.)
- A is action space, with action at period t given by a_{t}. (In C-S problem, $c_{t} \in[0, \infty)=A$.)
- For each $0 \leq t \leq T$, following are defined:
- $r_{t}: \mathbf{S} \times \mathbf{A} \rightarrow \mathbb{R}$ is continuous period- t reward function. (In C-S problem, $r_{t}(w, c)=\delta^{t} c^{\frac{1}{2}}$.)
- $f_{t}: \mathbf{S} \times \mathbf{A} \rightarrow \mathbf{S}$ is continuous period- t transition function, $s_{t+1}=f_{t}\left(s_{t}, a_{t}\right) \quad$ (In C-S problem, $f_{t}(w, c)=k(w-c)$.)
- $\mathscr{F}_{t}: \mathbf{S} \rightarrow \mathscr{P}(\mathbf{A})$ is feasible action correspondences, and is assumed to be a continuous and compact-valued correspondence on \mathbf{S}.
Only $a_{t} \in \mathscr{F}_{t}\left(s_{t}\right)$ are allowed. (In C-S problem, $\left.c_{t} \in\left[0, w_{t}\right]=\mathscr{F}_{t}\left(w_{t}\right).\right)$

Value Function

Total reward for s_{0}, allowable $\left\{a_{t}\right\}_{t=0}^{T}$, \& $s_{t+1}=f_{t}\left(s_{t}, a_{t}\right)$ is

$$
W\left(s_{0},\left\{a_{t}\right\}_{t=0}^{T}\right)=\sum_{t=0}^{T} r_{t}\left(s_{t}, a_{t}\right)
$$

Value function of continuation FHDP starting at period t,

$$
\begin{aligned}
V_{t}\left(s_{t}\right)= & \sup \left\{\sum_{j=t}^{T} r_{j}\left(s_{j}, a_{j}\right): a_{j} \in \mathscr{F}_{j}\left(s_{j}\right)\right. \\
& \left.s_{j+1}=f_{j}\left(s_{j}, a_{j}\right) \text { for } j=t, \ldots, T\right\} \\
= & \sup \left\{W\left(s_{t},\left\{a_{j}\right\}_{j=t}^{T}\right):\left\{a_{j}\right\}_{j=t}^{T} \text { allowable }\right\}
\end{aligned}
$$

$V\left(s_{0}\right)=V_{0}\left(s_{0}\right)$ is value function for whole FHDP.

Problem: Find actions that realize supremum so maximum value.

Markovian Strategies

A Markovian strategy profile is a collection of (choice) functions

$$
\begin{aligned}
\boldsymbol{\sigma}= & \left(\sigma_{0}, \ldots, \sigma_{T}\right), \text { each } \sigma_{t}: \mathbf{S} \rightarrow \mathbf{A}, a_{t}=\sigma_{t}\left(s_{t}\right) \in \mathscr{F}_{t}\left(s_{t}\right), \\
& \sigma_{t} \text { function of only } s_{t}
\end{aligned}
$$

A non-Markovian strategy σ_{t} is a function of $\left(s_{0}, \ldots, s_{t}\right)$ and not just s_{t}.
Strategy σ and initial state s_{0}, determines all a_{t} and $s_{t}: \quad s_{0}\left(s_{0}, \sigma\right)=s_{0}$;

$$
\text { Given } s_{t}=s_{t}\left(s_{0}, \sigma\right) \text { for } 0 \leq t \leq T
$$

$$
\begin{aligned}
& a_{t}=a_{t}\left(s_{0}, \boldsymbol{\sigma}\right)=\sigma_{t}\left(s_{t}\right), \\
& r_{t}\left(s_{0}, \boldsymbol{\sigma}\right)=r_{t}\left(s_{t}, a_{t}\right), \quad \text { and } \\
& s_{t+1}=s_{t+1}\left(s_{0}, \boldsymbol{\sigma}\right)=f_{t}\left(s_{t}, a_{t}\right) .
\end{aligned}
$$

Total reward for a strategy profile σ and initial state s_{0} is

$$
W\left(s_{0}, \boldsymbol{\sigma}\right)=\sum_{t=0}^{T} r_{t}\left(s_{0}, \boldsymbol{\sigma}\right)
$$

σ^{*} is optimal strategy profile p.t. realizes max in defn of value fn ,

$$
W\left(s_{0}, \boldsymbol{\sigma}^{*}\right)=V\left(s_{0}\right) \quad \text { for all } s_{0} \in \mathbf{S}
$$

FHDP Bellman Equation \& Optimal Strategy

Theorem (4.15)

If a FHDP satisfies assumptions, then following holds:
a. For $0 \leq t \leq T, V_{t}\left(s_{t}\right)<\infty$ for each s_{t}, is continuous, and satisfies Bellman equation

$$
\begin{aligned}
& \quad V_{t}(s)=\max _{a \in \mathscr{F}_{t}(s)} r_{t}(s, a)+V_{t+1}\left(f_{t}(s, a)\right) \\
& \text { where } V_{T+1}\left(f_{T}(s, a)\right) \equiv 0
\end{aligned}
$$

b. There is optimal Markovian strategy profile $\boldsymbol{\sigma}^{*}$ s.t.

$$
W\left(s_{0}, \sigma^{*}\right)=V\left(s_{0}\right) \text { for all } s_{0}
$$

Proof

Use backward induction to get Bellman equation.
For $j=T, r(s, a)$ continuous \& $\mathscr{F}_{T}(s)$ is compact, so

$$
V_{T}(s)=\max \left\{r_{T}(s, a): a \in \mathscr{F}_{T}(s)\right\} \quad \text { exists for each } s .
$$

By Parametric Maximization Theorem,

$$
\mathscr{F}_{T}^{*}(s)=\left\{a \in \mathscr{F}_{T}(s): r_{T}(s, a)=V_{T}(s)\right\} \neq \emptyset
$$

uhc correspondence and $V_{T}(s)$ is continuous function of s.
Pick $\sigma_{T}^{*}(s) \in \mathscr{F}_{T}^{*}(s)$ for all $s \in \mathbf{S}, \quad \sigma_{T}^{*}: \mathbf{S} \rightarrow \mathbf{A}$.
$r_{T}\left(s, \sigma_{T}^{*}(s)\right)=W\left(s, \sigma_{T}^{*}\right)=V_{T}(s)$, so σ_{T}^{*} is an optimal strategy.
Have proved result for $j=T$.

Induction Step

Lemma

For $0 \leq t<T$, suppose that continuation FHDP starting a period $t+1$ has continuous V_{t+1} with $V_{t+1}\left(s_{t+1}\right)<\infty$ for each s_{t+1}, also admits a optimal Markovian strategy profile $\left(\sigma_{t+1}^{*}, \ldots, \sigma_{T}^{*}\right)$ with $V_{t+1}\left(s_{t+1}\right)=W\left(s_{t+1},\left(\sigma_{t+1}^{*}, \ldots, \sigma_{T}^{*}\right)\right)$.

Then following hold
a. For each $s_{t}, V_{t}\left(s_{t}\right)$ attains a finite max value, V_{t} is continuous, and satisfies

$$
V_{t}\left(s_{t}\right)=\max \left\{r_{t}\left(s_{t}, a_{t}\right)+V_{t+1}\left(f_{t}\left(s_{t}, a_{t}\right)\right): a_{t} \in \mathscr{F}_{t}\left(s_{t}\right)\right\} .
$$

b. There exists $\sigma_{t}^{*}\left(s_{t}\right)$, s.t. $\left(\sigma_{t}^{*}, \ldots, \sigma_{T}^{*}\right)$ is a optimal Markovian strategy profile for starting at period t.

Proof of Lemma

By induction, V_{t+1} is a continuous function,
f_{t} and r_{t} are continuous, so

$$
h_{t}\left(s_{t}, a_{t}\right)=r_{t}\left(s_{t}, a_{t}\right)+V_{t+1}\left(f_{t}\left(s_{t}, a_{t}\right)\right) \text { is continuous }
$$

\mathscr{F}_{t} is is continuous and compact-valued correspondence.
By Param. Maxim. Thm, $\mathscr{F}^{*}\left(s_{t}\right) \neq \emptyset$ (points that realize max) max value $h_{t}^{*}\left(s_{t}\right)$ is continuous

If select point $\sigma_{t}^{*}\left(s_{t}\right) \in \mathscr{F}^{*}\left(s_{t}\right)$, then

$$
h_{t}^{*}\left(s_{t}\right)=r_{t}\left(s_{t}, \sigma_{t}^{*}\left(s_{t}\right)\right)+V_{t+1}\left(f_{t}\left(s_{t}, \sigma_{t}^{*}\left(s_{t}\right)\right)\right) .
$$

optimal strategy.
Need to show, $V_{t}\left(s_{t}\right)=h_{t}^{*}\left(s_{t}\right)$, i.e., satisfied Bellman equation.

Proof of Lemma, contin.

For any $s_{t} \&$ allowable sequences $s_{t}^{0}=s_{t}$,

$$
\begin{aligned}
& \quad a_{i}^{0} \in \mathscr{F}_{i}\left(s_{i}\right) \& s_{i+1}^{0}=f_{i}\left(s_{i}^{0}, a_{i}^{0}\right) \text { for } i \geq t \\
& \sum_{i=t}^{T} r_{i}\left(s_{i}^{0}, a_{i}^{0}\right)=r_{t}\left(s_{t}^{0}, a_{t}^{0}\right)+\sum_{i=t+1}^{T} r_{i}\left(s_{i}^{0}, a_{i}^{0}\right) \\
& \quad \leq r_{t}\left(s_{t}^{0}, a_{t}^{0}\right) \\
& \quad \quad+\max \left\{\sum_{i=t+1}^{T} r_{i}\left(s_{i}, a_{i}\right): a_{i} \in \mathscr{F}_{i}\left(s_{i}\right), s_{i+1}=f_{i}\left(s_{i}, a_{i}\right)\right\} \\
& \quad=r_{t}\left(s_{t}, a_{t}^{0}\right)+V_{t+1}\left(f_{i}\left(s_{t}, a_{t}^{0}\right)\right)=h_{t}\left(s_{t}, a_{t}^{0}\right) \\
& \quad \leq \max \left\{h_{t}\left(s_{t}, a_{t}\right): a_{t} \in \mathscr{F}_{t}\left(s_{t}\right)\right\} \\
& \quad=h_{t}^{*}\left(s_{t}\right) .
\end{aligned}
$$

Taking supremum over allowable sequences

$$
V_{t}\left(s_{t}\right) \leq h_{t}^{*}\left(s_{t}\right)
$$

Proof of Lemma, contin.

$$
\begin{aligned}
& h_{t}^{*}\left(s_{t}\right)=h_{t}\left(s_{t}, \sigma_{t}^{*}\left(s_{t}\right)\right) \\
& =r_{t}\left(s_{t}, \sigma_{t}^{*}\left(s_{t}\right)\right)+V_{t+1}\left(f_{t}\left(s_{t}, \sigma_{t}^{*}\left(s_{t}\right)\right)\right. \\
& =r_{t}\left(s_{t}, \sigma_{t}^{*}\left(s_{t}\right)\right)+\sum_{i=t+1}^{T} r_{i}\left(s_{i}^{*}, \sigma_{i}^{*}\left(s_{i}^{*}\right)\right) \leq V_{t}\left(s_{t}\right) \text {, } \\
& \text { where } s_{t}^{*}=s_{t} \text { and } s_{i+1}^{*}=f_{i}\left(s_{i}^{*}, \sigma_{t}^{*}\left(s_{i}^{*}\right)\right) \text {. } \\
& \begin{array}{c}
V_{t}\left(s_{t}\right) \leq h_{t}^{*}\left(s_{t}\right) \leq V_{t}\left(s_{t}\right) \text { so } V_{t}\left(s_{t}\right)=h_{t}^{*}\left(s_{t}\right)<\infty . \\
V_{t}\left(s_{t}\right)=h_{t}^{*}\left(s_{t}\right)=\max \left\{r_{t}\left(s_{t}, a_{t}\right)+V_{t+1}\left(f_{t}\left(s_{t}, a_{t}\right)\right): a_{t} \in \mathscr{F}_{t}\left(s_{t}\right)\right\},
\end{array} \\
& V_{t} \text { satisfies Bellman equation \& is continuous. } \\
& V_{t}\left(s_{t}\right)=r_{t}\left(s_{t}, \sigma_{t}^{*}\left(s_{t}\right)\right)+V_{t+1}\left(f_{t}\left(s_{t}, \sigma_{t}^{*}\left(s_{t}\right)\right)\right) \\
& =r_{t}\left(s_{t}, \sigma_{t}^{*}\left(s_{t}\right)\right)+W\left(f_{t}\left(s_{t}, \sigma_{t}^{*}\left(s_{t}\right)\right),\left(\sigma_{t+1}^{*}, \ldots, \sigma_{T}^{*}\right)\right) \\
& =W\left(s_{t},\left(\sigma_{t}^{*}, \ldots, \sigma_{T}^{*}\right)\right) \text {, }
\end{aligned}
$$

so optimal Markovian strategy profile as claimed.

QED

Solution of FHDP by Bellman Equation

Bellman equation determines solution method for a FHDP.
(T) Maximize $r_{T}\left(s_{T}, a_{T}\right)$ with parameter s_{T} determines
strategy $a_{T}=\sigma_{T}^{*}\left(s_{T}\right)$
value function $V_{T}\left(s_{T}\right)=r^{*}\left(s_{T}\right)=r_{T}\left(s_{T}, \sigma_{T}^{*}\left(s_{T}\right)\right)$.
By backward induction, once strategies σ_{j}^{*} and value functions V_{j} have been determined for $T \geq j \geq t+1$, then $a_{t}=\sigma_{t}^{*}\left(s_{t}\right)$ maximizes

$$
h_{t}(s, a)=r_{t}(s, a)+V_{t+1}\left(f_{t}(s, a)\right)
$$

Period t value function

$$
V_{t}\left(s_{t}\right)=h_{t}^{*}\left(s_{t}\right)=r_{t}\left(s_{t}, \sigma_{t}^{*}\left(s_{t}\right)\right)+V_{t+1}\left(f_{t}\left(s_{t}, \sigma_{t}^{*}\left(s_{t}\right)\right)\right)
$$

By induction, get back to $V_{0}\left(s_{0}\right)=V\left(s_{0}\right)$.

Infinite Horizon Dynamic Program

Definition

A stationary dynamic program (SDP) is $\{\mathbf{S}, \mathbf{A}, \mathscr{F}, f, r, \delta\}$ with infinite horizon:

- $\mathbf{S} \subset \mathbb{R}^{n}$ is state space. - $\mathbf{A} \subset \mathbb{R}^{k}$ is action space.
- $\mathscr{F}: \mathbf{S} \rightarrow \mathscr{P}(\mathbf{A})$, feasible action correspondence, is compact-valued, nonempty, continuous correspondence.
$\mathscr{F}(s) \subset \mathbf{A}$ is set of allowable actions given $s \in \mathbf{S}$.
- $f: \mathbf{S} \times \mathbf{A} \rightarrow \mathbf{S}$, continuous transition function:
$s_{t+1}=f\left(s_{t}, a_{t}\right)$ from s_{t} and a_{t} to s_{t+1} for $t \geq 0$.
- $r: \mathbf{S} \times \mathbf{A} \rightarrow \mathbb{R}$ continuous, one-period reward function that specifies reward $r(s, a)$ for an action a taken at state s.
- $0<\delta<1$ discount factor. $r\left(s_{t}, a_{t}\right)$ discounted back to period-0 is $\delta^{t} r\left(s_{t}, a_{t}\right)$.

Value Function

Same r, f, \mathscr{F} for all t.

Definition

For allowable actions $a_{t} \in \mathscr{F}\left(s_{t}\right)$ and states $s_{t+1}=f\left(s_{t}, a_{t}\right)$

$$
W\left(s_{0},\left\{a_{t}\right\}\right)=\sum_{t=0}^{\infty} \delta^{t} r\left(s_{t}, a_{t}\right) \text { total reward }
$$

Discount factor allows infinite sum possibly to be finite.

Definition

Value function $V: \mathbf{S} \rightarrow \mathbb{R}$ is supremum of total reward,

$$
V\left(s_{0}\right)=\sup \left\{W\left(s_{0},\left\{a_{t}\right\}\right):\left\{a_{t}\right\} \text { allowable sequence }\right\} .
$$

Problem: Maximize total reward $W\left(s_{0},\left\{a_{t}\right\}\right)=\sum_{t=0}^{\infty} \delta^{t} r\left(s_{t}, a_{t}\right)$, for allowable actions $a_{t} \in \mathscr{F}\left(s_{t}\right)$ and states $s_{t+1}=f\left(s_{t}, a_{t}\right)$.
So realize $V\left(s_{0}\right)$ as a maximum with some sequence of actions.

Optimal Stationary Strategy

Definition

A stationary strategy σ is a choice $\sigma(s) \in \mathscr{F}(s) \subset \mathbf{A}$ for each $s \in \mathbf{S}$ that is same for all periods.

Given a stationary strategy σ and s_{0}, by induction,

$$
\begin{aligned}
& a_{t}=a_{t}\left(s_{0}, \sigma\right)=\sigma\left(s_{t}\right) \\
& s_{t+1}=s_{t+1}\left(s_{0}, \sigma\right)=f\left(s_{t}, a_{t}\right), \text { and } \\
& W\left(s_{0}, \sigma\right)=\sum_{t=0}^{\infty} \delta^{t} r\left(s_{t}, a_{t}\right) \quad \text { total reward. }
\end{aligned}
$$

An optimal stationary strategy σ^{*} is a stationary strategy s.t.

$$
W\left(s_{0}, \sigma^{*}\right)=V\left(s_{0}\right) \text { for all } s_{0} \in \mathbf{S}
$$

SDP Bellman Equation

Theorem (9 SDP Bellman Equation)

Value function $V(s)$ satisfies Bellman Equation

$$
V(s)=\sup _{a \in \mathscr{F}(s)} r(s, a)+\delta V(f(s, a)) .
$$

Remark

Note that for an infinite horizon SDP,
same function V is on both sides of Bellman equation.
Necessary to solve equation for a function
and not just value for a given value of s.

Proof of Bellman Equation:

For any choice of actions, reward satisfies

$$
\begin{aligned}
\sum_{t=0}^{\infty} \delta^{t} r\left(s_{t}, a_{t}\right) & =r\left(s_{0}, a_{0}\right)+\delta \sum_{t=1}^{\infty} \delta^{t-1} r\left(s_{t}, a_{t}\right) \\
& =r\left(s_{0}, a_{0}\right)+\delta \sum_{j=0}^{\infty} \delta^{j} r\left(s_{j+1}, a_{j+1}\right) \\
& \leq r\left(s_{0}, a_{0}\right)+\delta \sup _{a_{t}, t \geq 1} \sum_{j=0}^{\infty} \delta^{j} r\left(s_{j+1}, a_{j+1}\right) \\
& \leq r\left(s_{0}, a_{0}\right)+\delta V\left(f\left(s_{0}, a_{0}\right)\right)
\end{aligned}
$$

Taking supremum over all allowable a_{0},

$$
V\left(s_{0}\right) \leq \sup _{a_{0} \in \phi\left(s_{0}\right)}\left\{r\left(s_{0}, a_{0}\right)+\delta V\left(f\left(s_{0}, a_{0}\right)\right)\right\} .
$$

Also, can get a sequence of allowable actions s.t.
$W\left(s_{0},\left\{a_{t}\right\}\right)$ is within ϵ of right hand side,
$V\left(s_{0}\right)+\epsilon$ is \geq right hand side, so equality.
Valid even if $=\infty$.
QED

Outline of Theorems

For properties of value function assume either (i) $r(s, a)$ is bounded or
(ii) 1 sector economy with assumptions E1-E2 on f, r,

Finite value function: $V(s)<\infty$ for each $s \in \mathbf{S}$,
so $V(s)$ well defined function: (i) Thm 10, (ii) Thm 13
Continuity: \exists unique bounded fn satisfying Bellman equation.
By an iterative process like for FHDP, get sequence of $V_{j}(s)$ that converge uniformly to $V(s)$ on bounded intervals $[0, \bar{s}]$, so $V(s)$ is continuous. (i) Thm 11, (ii) Thm 13
Optimal Strategy: Exists by Param Max: Thms 12, 14(b)
First give examples finding value function using Bellman Equation Then give precise theorems and proofs to show why works.

Example of Optimal Growth for One-Sector Economy

Optimal Growth of one-sector economy: More general case later Determine Value Function and Optimal Strategy for

$$
\begin{aligned}
& 0<\delta<1, \\
& \mathbf{S}=\mathbb{R}_{+}, \\
& \mathbf{A}=\mathbb{R}_{+}, \\
& \mathscr{F}(s)=[0, s], \\
& f(s, a)=k(s-a), \quad \text { with } k \geq 1 \text { and } k \delta^{2}<1, \\
& r(s, a)=u(a)=a^{\frac{1}{2}} .
\end{aligned}
$$

$r(s, a)=a^{\frac{1}{2}}$ is not bounded on \mathbb{R}_{+}, but $s_{t} \leq k^{t} s_{0}, \quad a_{t} \leq k^{t} s_{0}$,

$$
\begin{gathered}
\text { so } \delta^{t} r\left(s_{t}, a_{t}\right) \leq \delta^{t} u\left(k^{t} s_{0}\right)=\delta^{t}\left(k^{t} s_{0}\right)^{\frac{1}{2}}=\left(\delta k^{\frac{1}{2}}\right)^{t} s_{0}^{\frac{1}{2}} \\
\qquad V\left(s_{0}\right) \leq \sum_{t=0}^{\infty}\left(\delta k^{\frac{1}{2}}\right)^{t} s_{0}^{\frac{1}{2}}=\frac{1}{1-\delta k^{\frac{1}{2}}} s_{0}^{\frac{1}{2}}<\infty .
\end{gathered}
$$

Iterative Solution to get V

Solution Method 1: Form sequence of continuous fns $V_{j}(s)$ that converge to value function $V(s)$
Assume $V_{j}(s)$ is continuous

$$
\begin{gathered}
h_{j+1}(s, a)=r(s, a)+\delta V_{j}(f(s, a))=a^{\frac{1}{2}}+\delta V_{j}(k(s-a)) . \\
V_{j+1}(s)=h_{j+1}^{*}(s)=\max \left\{h_{j+1}(s, a): a \in \mathscr{F}(s)\right\} .
\end{gathered}
$$ continuous by Param Max Thm. $\quad \mathscr{F}^{*}(s) \neq \emptyset$.

Start $V_{0}(s) \equiv 0$.
$h_{1}(s, a)=a^{\frac{1}{2}}+\delta V_{0}(k(s-k))=a^{\frac{1}{2}}$.
h_{1} is an increasing fn of a, is maximized on $[0, s]$ for $\bar{a}=s$,

$$
V_{1}(s)=h_{1}(s, \bar{a})=s^{\frac{1}{2}}, \quad \max 1 \text { period, } t=0
$$

Iterative Solution Method, contin.

$$
\begin{aligned}
& h_{2}(s, a)=a^{\frac{1}{2}}+\delta V_{1}(k(s-a))=a^{\frac{1}{2}}+\delta k^{\frac{1}{2}}(s-a)^{\frac{1}{2}} . \\
& 0= \\
& =\frac{\partial h_{2}}{\partial a}=\frac{1}{2} a^{-\frac{1}{2}}-\frac{1}{2} \delta k^{\frac{1}{2}}(s-a)^{-\frac{1}{2}}, \\
& (s-a)^{\frac{1}{2}}=\delta k^{\frac{1}{2}} a^{\frac{1}{2}}, \quad s-a=\delta^{2} k a, \\
& s= \\
& \left(1+\delta^{2} k\right) a, \quad \bar{a}=\frac{s}{1+\delta^{2} k} . \\
& \\
& \\
& \text { Maximizer since } \frac{\partial^{2} h_{2}}{\partial a^{2}}<0 \text { everywhere on }[0, s] \\
& \begin{aligned}
V_{2}(s)= & h_{2}(s, \bar{a})=(\bar{a})^{\frac{1}{2}}+\delta k^{\frac{1}{2}}(s-\bar{a})^{\frac{1}{2}} \\
= & (\bar{a})^{\frac{1}{2}}+\delta k^{\frac{1}{2} \delta} \delta k^{\frac{1}{2}}(\bar{a})^{\frac{1}{2}} \\
= & \left(1+\delta^{2} k\right) s^{\frac{1}{2}}\left(1+\delta^{2} k\right)^{-\frac{1}{2}} \\
= & \left(1+\delta^{2} k\right)^{\frac{1}{2}} s^{\frac{1}{2}}, \quad \max 2 \text { periods, } t=0,1 .
\end{aligned}
\end{aligned}
$$

Iterative Solution Method, contin.

Induction hypothesis $V_{j}(s)=\left(1+\delta^{2} k+\cdots+\delta^{2 j-2} k^{j-1}\right)^{\frac{1}{2}} s^{\frac{1}{2}}$

$$
\sigma_{j}^{*}(s)=\left(1+\delta^{2} k+\cdots+\delta^{2 j-2} k^{j-1}\right)^{-1} s .
$$

Assume true for $j=t$,

$$
\bar{a}=\left(1+\cdots+\delta^{2 t} k^{t}\right)^{-1} s . \quad \text { Verify induction for form of } \sigma_{t+1}^{*}(s)
$$

$$
\begin{aligned}
& h_{t+1}(s, a)=r(s, a)+\delta V_{t}(f(s, a)) \\
& =a^{\frac{1}{2}}+\delta\left(1+\cdots+\delta^{2 t-2} k^{t-1}\right)^{\frac{1}{2}}(k(s-a))^{\frac{1}{2}} . \\
& 0=\frac{\partial h_{t+1}}{\partial a}=\frac{1}{2} a^{-\frac{1}{2}}-\frac{1}{2} \delta k^{\frac{1}{2}}\left(1+\cdots+\delta^{2 t-2} k^{t-1}\right)^{\frac{1}{2}}(s-a)^{-\frac{1}{2}} . \\
& s-a=\delta^{2} k\left(1+\cdots+\delta^{2 t-2} k^{t-1}\right) a \\
& s=\left(1+\cdots+\delta^{2 t} k^{t}\right) a \text {, }
\end{aligned}
$$

Iterative Solution Method, contin.

$$
\begin{aligned}
& \bar{a}=\left(1+\cdots+\delta^{2 t} k^{t}\right)^{-1} s \\
& \begin{aligned}
V_{t+1} & (s)=h_{t+1}^{*}(s)=h_{t+1}(s, \bar{a}) \\
& =\bar{a}^{\frac{1}{2}}+\delta\left(1+\cdots+\delta^{2 t-2} k^{t-1}\right)^{\frac{1}{2}}(k(s-\bar{a}))^{\frac{1}{2}} \\
& =\bar{a}^{\frac{1}{2}}+\delta\left(1+\cdots+\delta^{2 t-2} k^{t-1}\right)^{\frac{1}{2}}\left(\delta^{2} k^{2}\left(1+\cdots+\delta^{2 t-2} k^{t-1}\right) \bar{a}\right)^{\frac{1}{2}} \\
& =\bar{a}^{\frac{1}{2}}+\delta^{2} k\left(1+\cdots+\delta^{2 t-2} k^{t-1}\right) \bar{a}^{\frac{1}{2}} \\
& =\left(1+\cdots+\delta^{2 t} k^{t}\right) \bar{a}^{\frac{1}{2}} \\
& =\left(1+\cdots+\delta^{2 t} k^{t}\right)\left(1+\cdots+\delta^{2 t} k^{t}\right)^{-\frac{1}{2}} s^{\frac{1}{2}} \\
& =\left(1+\cdots+\delta^{2 t} k^{t}\right)^{\frac{1}{2}} s^{\frac{1}{2}} .
\end{aligned} .
\end{aligned}
$$

Verifies induction for form of $V_{t+1}(s)$.

Iterative Solution Method, contin.

$$
\begin{aligned}
V_{\infty}(s) & =\lim _{t \rightarrow \infty} V_{t}(s)=\lim _{t \rightarrow \infty}\left(1+\delta^{2} k+\cdots+\delta^{2 t-2} k^{t-1}\right)^{\frac{1}{2}} s^{\frac{1}{2}} \\
& =\frac{s^{\frac{1}{2}}}{\left(1-\delta^{2} k\right)^{\frac{1}{2}}} . \\
V_{\infty}(s) & =\lim _{t \rightarrow \infty} V_{t+1}(s)=\lim _{t \rightarrow \infty} \max \left\{a^{\frac{1}{2}}+\delta V_{t}(k(s-a)): 0 \leq a \leq s\right\} \\
& =\max \left\{a^{\frac{1}{2}}+\delta V_{\infty}(k(s-a)): 0 \leq a \leq s\right\}
\end{aligned}
$$

$V_{\infty}(s)$ satisfies Bellman equation
Since $V(s)$ is unique locally bounded solution of Bellman eq,

$$
V(s)=V_{\infty}(s)=\frac{s^{\frac{1}{2}}}{\left(1-\delta^{2} k\right)^{\frac{1}{2}}} \quad \text { value function. }
$$

$$
\begin{aligned}
\sigma^{*}(s) & =\lim _{t \rightarrow \infty} \sigma_{t}(s)=\lim _{t \rightarrow \infty}\left(1+\cdots+\delta^{2 t-2} k^{t-1}\right)^{-1} s \\
& =\left(1-k \delta^{2}\right) s \quad \text { optimal strategy }
\end{aligned}
$$

Steps Solving SDP by Iteration, Method 1

(1) Start with $V_{0}(s) \equiv 0$ for all s.
(2) Using Param Max Thm, by induction continuous

$$
V_{j+1}(s)=\max \left\{r(s, a)+\delta V_{j}(f(s, a)): a \in \mathscr{F}(s)\right\}
$$

$V_{1}(s)$ max over 1 period, $t=0$
$V_{2}(s)$ max over 2 periods, $t=0,1$
$V_{j}(s)$ max over j periods, $t=0, \ldots, j-1$
(3) $V_{j}(s) \rightarrow V(s)$ for each s. max over all periods.

Converges uniformly on compact intervals so continuous.
(9) $\sigma_{j}(s) \rightarrow \sigma^{*}(s)$ optimal strategy

$$
\sigma^{*}(s) \in \mathscr{F}^{*}(s)=\{a \in \mathscr{F}(s): r(s, a)+\delta V(f(s, a)) \text { is maximal }\}
$$

One-Sector Economy, Solution Method 2

Solution Method 2: Find $V \& \sigma^{*}$ by guessing form of V. Guess

$$
V(s)=M s^{\frac{1}{2}}, \quad M \text { unspecified parameter, } \quad \text { related to } r(s, a)
$$

Use Bellman equation to determine parameter M of guess.

$$
\begin{aligned}
& h(s, a)=r(s, a)+\delta V(f(s, a))=a^{\frac{1}{2}}+\delta M k^{\frac{1}{2}}(s-a)^{\frac{1}{2}} \\
& 0=\frac{\partial}{\partial a} h(s, a)=\frac{1}{2} a^{-\frac{1}{2}}-\delta M k^{\frac{1}{2} \frac{1}{2}(s-a)^{-\frac{1}{2}}} \\
& a^{-\frac{1}{2}}=\delta M k^{\frac{1}{2}}(s-a)^{-\frac{1}{2}}, \quad(s-a)^{\frac{1}{2}}=\delta M k^{\frac{1}{2}} a^{\frac{1}{2}}, \\
& s-a=a \delta^{2} M^{2} k, \quad \text { and }
\end{aligned}
$$

$$
\bar{a}=\frac{s}{1+\delta^{2} M^{2} k} \leq s \quad \text { critical point }
$$

$\frac{\partial^{2}}{\partial a^{2}} h(s, a)<0$ on $[0, s]$, so \bar{a} is a maximizer and an optimal strategy.

One-Sector Economy, Solution Method 2, continued

$\bar{a}=\sigma^{*}(s)$ and $V(s)$ must satisfy Bellman equation:

$$
\begin{aligned}
V(s) & =r\left(s, \sigma^{*}(s)\right)+V\left(s, f\left(s, \sigma^{*}(s)\right)\right), \\
M s^{\frac{1}{2}} & =\bar{a}^{\frac{1}{2}}+\delta M k^{\frac{1}{2}}(s-\bar{a})^{\frac{1}{2}} \\
& =\bar{a}^{\frac{1}{2}}+\delta M k^{\frac{1}{2}} \delta M k^{\frac{1}{2}} \bar{a}^{\frac{1}{2}}=\left(1+\delta^{2} M^{2} k\right) \bar{a}^{\frac{1}{2}} \\
& =\left(1+\delta^{2} M^{2} k\right)\left[\frac{s}{1+\delta^{2} M^{2} k}\right]^{\frac{1}{2}}=\left(1+\delta^{2} M^{2} k\right)^{\frac{1}{2}} s^{\frac{1}{2}} .
\end{aligned}
$$

$$
M^{2}=1+\delta^{2} M^{2} k
$$

$$
M^{2}\left(1-\delta^{2} k\right)=1
$$

$$
M^{2}=\frac{1}{1-\delta^{2} k}, \quad \text { and }
$$

$$
\bar{M}=\left[\frac{1}{1-\delta^{2} k}\right]^{\frac{1}{2}} \quad \text { Need } \delta^{2} k<1
$$

One-Sector Economy, Solution Method 2, continued

Therefore, value function is

$$
V(s)=\left[\frac{s}{1-\delta^{2} k}\right]^{\frac{1}{2}}
$$

The optimal strategy is

$$
\begin{aligned}
\sigma^{*}(s) & =\bar{a}=\frac{s}{1+\delta^{2} \bar{M}^{2} k} \\
& =\frac{s}{\bar{M}^{2}} \\
& =\left(1-\delta^{2} k\right) s \leq s .
\end{aligned}
$$

End of Example

Steps Solving SDP using Method 2

(1) Guess form of value function with unspecified parameters Use $r(s, a)$ or 1st few V_{j} from Method 1, to make guess.
(2) Determine the critical point \bar{a} of $h(s, a)=r(s, a)+\delta V(f(s, a))$ using guess for $V(s)$
Verify that \bar{a} is maximizer for $a \in \mathscr{F}(s)$.
(3) Calculate $h^{*}(s)=h(s, \bar{a})$ in terms of parameters.
(9) Use Bellman equat. $V(s)=h^{*}(s)$
to solve for unspecified parameters in guess.
Gives $V(s)$ in terms of original data of problem.
(3) Substitute parameters found into \bar{a} to get optimal strategy, $\sigma^{*}(s)=\bar{a}$

Vintner Example Attributed to Weitzman

On each day, a vintner can split his effort between:
$b_{t} \in[0,1]$ is effort for baking bread and
$1-b_{t}$ is effort for squeezing grapes for wine.
$w_{t+1}=1-b_{t} \in[0,1]$ is amount of wine in next period.
$r\left(w_{t}, b_{t}\right)=\sqrt{w_{t} b_{t}}$ is reward or utility function for each period.
$0<\delta<1$ is discount factor.
Maximized $\quad \sum_{t=0}^{\infty} \delta^{t} \sqrt{w_{t} b_{t}}$.
w_{t} is state variable,
b_{t} is action, and

$$
w_{t+1}=1-b_{t} \text { is transition function. }
$$

Bellman equation

$$
V(w)=\max \{\sqrt{w b}+\delta V(1-b): b \in[0,1]\} .
$$

Iterative Solution Method for Vintner Ex

Method 1: function to be maximized as function of b is

$$
h_{j+1}(w, b)=w^{\frac{1}{2}} b^{\frac{1}{2}}+\delta V_{j}(1-b) \quad b \in[0,1] .
$$

$V_{0}(w)=0$ for all w,
$h_{1}(w, b)=w^{\frac{1}{2}} b^{\frac{1}{2}}$ is an increasing function of b
Max at $b=1: \quad V_{1}(w)=h_{1}(w, 1)=w^{\frac{1}{2}}$.
$h_{2}(w, b)=w^{\frac{1}{2}} b^{\frac{1}{2}}+\delta(1-b)^{\frac{1}{2}}$.

$$
\begin{aligned}
& 0=\frac{\partial h_{2}}{\partial b}=\frac{1}{2} w^{\frac{1}{2}} b^{-\frac{1}{2}}-\frac{1}{2} \delta(1-b)^{-\frac{1}{2}}, \\
& w b^{-1}=\delta^{2}(1-b)^{-1}, \\
& w(1-b)=\delta^{2} b, \\
& w=\left(w+\delta^{2}\right) b, \\
& \bar{b}=\frac{w}{w+\delta^{2}} .
\end{aligned}
$$

Iterative Solution Method for Vintner Ex, contin.

$$
\begin{aligned}
V_{2}(w) & =h_{2}(w, \bar{b})=w^{\frac{1}{2}} \bar{b}^{\frac{1}{2}}+\delta(1-\bar{b})^{\frac{1}{2}} \\
& =w^{\frac{1}{2}}\left(\frac{w}{w+\delta^{2}}\right)^{\frac{1}{2}}+\delta\left(\frac{\delta^{2}}{w+\delta^{2}}\right)^{\frac{1}{2}}=\frac{w+\delta^{2}}{\left[w+\delta^{2}\right]^{\frac{1}{2}}}=\left[w+\delta^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

Similar calculations show

$$
\begin{aligned}
& V_{3}(w)=\left(1+\delta^{2}\right)^{\frac{1}{2}}\left[w+\delta^{2}\right]^{\frac{1}{2}} \\
& V_{4}(w)=\left(1+\delta^{2}\right)^{\frac{1}{2}}\left[w+\delta^{2}+\delta^{4}\right]^{\frac{1}{2}} \\
& V_{2 j}(w)=\left(1+\delta^{2}+\cdots+\delta^{2 j-2}\right)^{\frac{1}{2}}\left[w+\delta^{2}+\cdots+\delta^{2 j}\right]^{\frac{1}{2}} \\
& V_{2 j+1}(w)=\left(1+\cdots+\delta^{2 j}\right)^{\frac{1}{2}}\left[w+\delta^{2}+\cdots+\delta^{2 j}\right]^{\frac{1}{2}}
\end{aligned}
$$

Note that constants appeared both before and under square root sign Converges to value function

$$
V(s)=\left(\frac{1}{1-\delta^{2}}\right)^{\frac{1}{2}}\left[w+\frac{\delta^{2}}{1-\delta^{2}}\right]^{\frac{1}{2}}
$$

Vintner Example, Solution Method 2

Method 2: Assume

$$
V(w)=A(w+C)^{\frac{1}{2}}, \quad A \text { and } C \text { unspecified parameters. }
$$

Let

$$
h(w, b)=b^{\frac{1}{2}} w^{\frac{1}{2}}+\delta A(1-b+C)^{\frac{1}{2}}
$$

Critical point

$$
\begin{aligned}
& 0=\frac{\partial h}{\partial b}=\frac{1}{2} b^{-\frac{1}{2}} w^{\frac{1}{2}}-\frac{1}{2} \delta A(C+1-b)^{-\frac{1}{2}} \\
& w(C+1-b)=\delta^{2} A^{2} b \\
& w(C+1)=b\left[w+\delta^{2} A^{2}\right] \\
& \bar{b}=\frac{w(C+1)}{w+\delta^{2} A^{2}} .
\end{aligned}
$$

Vintner Example, Solution Method 2, continued

As a preliminary step to calculate maximum value:

$$
\begin{aligned}
(C+1-\bar{b}) & =\left(\frac{\bar{b}}{w}\right) \delta^{2} A^{2} \\
\delta A(C+1-\bar{b})^{\frac{1}{2}} & =\left(\frac{\bar{b}}{w}\right)^{\frac{1}{2}} \delta^{2} A^{2} \\
& =\frac{(C+1)^{\frac{1}{2}} \delta^{2} A^{2}}{\left[w+\delta^{2} A^{2}\right]^{\frac{1}{2}}}
\end{aligned}
$$

Max value $h(w, \bar{b})=(w \bar{b})^{\frac{1}{2}}+\delta A(1-\bar{b}+C)^{\frac{1}{2}}$ is

$$
\begin{aligned}
\frac{(C+1)^{\frac{1}{2}} w}{\left[w+\delta^{2} A^{2}\right]^{\frac{1}{2}}}+\frac{(C+1)^{\frac{1}{2}} \delta^{2} A^{2}}{\left[w+\delta^{2} A^{2}\right]^{\frac{1}{2}}} & =\frac{(C+1)^{\frac{1}{2}}\left[w+\delta^{2} A^{2}\right]}{\left[w+\delta^{2} A^{2}\right]^{\frac{1}{2}}} \\
& =(C+1)^{\frac{1}{2}}\left[w+\delta^{2} A^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

Vintner Example, Solution Method 2, continued

Bellman equation becomes

$$
A(w+C)^{\frac{1}{2}}=(C+1)^{\frac{1}{2}}\left[w+\delta^{2} A^{2}\right]^{\frac{1}{2}}
$$

Equating similar coefficients, we get $A=(C+1)^{\frac{1}{2}}$ and $C=\delta^{2} A^{2}$, so

$$
\begin{aligned}
& A^{2}=\delta^{2} A^{2}+1, \\
& \left(1-\delta^{2}\right) A^{2}=1, \\
& \bar{A}^{2}=\frac{1}{1-\delta^{2}}, \quad \text { and } \\
& \bar{C}=\frac{\delta^{2}}{1-\delta^{2}}
\end{aligned}
$$

Value function is

$$
V(w)=\left(\frac{1}{1-\delta^{2}}\right)^{\frac{1}{2}}\left[w+\frac{\delta^{2}}{1-\delta^{2}}\right]^{\frac{1}{2}}=\frac{\left[w\left(1-\delta^{2}\right)+\delta^{2}\right]^{\frac{1}{2}}}{1-\delta^{2}}
$$

Vintner Example, Solution Method 2, continued

Using

$$
\begin{aligned}
& \bar{A}^{2}=\frac{1}{1-\delta^{2}} \\
& \bar{C}+1=\frac{\delta^{2}}{1-\delta^{2}}+1=\frac{\delta^{2}+1-\delta^{2}}{1-\delta^{2}}=\frac{1}{1-\delta^{2}}
\end{aligned}
$$

optimal strategy is

$$
\begin{aligned}
\sigma^{*}(w)=\bar{b} & =\frac{w(\bar{C}+1)}{w+\delta^{2} \bar{A}^{2}}=\frac{w\left[\frac{1}{1-\delta^{2}}\right]}{w+\frac{\delta^{2}}{1-\delta^{2}}} \\
& =\frac{w}{w\left(1-\delta^{2}\right)+\delta^{2}} .
\end{aligned}
$$

3.2 Optimization for Bounded r

First assume bounded r :

SDB Reward fn r is continuous and bounded on $\mathbf{S} \times \mathbf{A}$:

$$
r(s, a) \leq K \text { for all }(s, a) \in \mathbf{S} \times \mathbf{A}
$$

Show if SDB, then $V(s)<\infty, V$ is continuous, and optimal strategy exists.

Finite Value Function

Theorem (10)

Assume SDP with bounded r (SDB).
Then value function $V(s)$ is a bounded function,

$$
\exists 0<K^{\prime}<\infty \text { s.t. } V(s) \leq K^{\prime} \text { for each s. }
$$

Proof.

Total reward for any choice of actions is bounded:

$$
\left|\sum_{t=0}^{\infty} \delta^{t} r\left(s_{t}, a_{t}\right)\right| \leq \sum_{t=0}^{\infty} \delta^{t}\left|r\left(s_{t}, a_{t}\right)\right| \leq \sum_{t=0}^{\infty} \delta^{t} K=\frac{K}{1-\delta}=K^{\prime}
$$

Taking supremum over all allowable $\left\{a_{t}\right\}$,

$$
V\left(s_{0}\right) \leq K^{\prime}<\infty \text { for all } s_{0} . \quad V \text { is bounded function. }
$$

Continuous Value Function

Theorem (11)

Assume a SDP satisfies SDB \& has bounded V(s).
Then, \exists unique bounded fn that satisfies Bellman equation.
Unique sol'n is continuous.
So, $V(s)$ is continuous.

Continuity of $V: \mathbf{S} \rightarrow \mathbb{R}$ cannot be proved directly from Bellman equat because do not know a priori that right hand side is continuous.

Instead continuity is proved by means of a process that takes a bounded fn and returns another bounded fn .

Earlier showed process for two examples.

Proof of Continuity

Proof: Assume $G: \mathbf{S} \rightarrow \mathbb{R}$ is any bounded function.

$$
\begin{aligned}
& h_{G}(s, a)=r(s, a)+\delta G(f(s, a)), \\
& \mathscr{T}(G)(s)=h_{G}^{*}(s)=\sup \{r(s, a)+\delta G(f(s, a)): a \in \mathscr{F}(s)\} .
\end{aligned}
$$

Can shown $\mathscr{T}(G): \mathbf{S} \rightarrow \mathbb{R}$ is a new bounded function,
if G_{1} and G_{2} are two such functions then $\mathscr{T}\left(G_{1}\right)$ and $\mathscr{T}\left(G_{2}\right)$ are closer together than
G_{1} and G_{2}, i.e., \mathscr{T} is a contraction on space of bounded fns.
Need to show set of bounded functions is complete,
i.e., a Cauchy sequence of fns getting closer together must converge to a bounded function.

Follows that there is a unique bounded function that \mathscr{T} takes to itself.
So $V(s)$ is unique function satisfying Bellman eq.

Proof of Continuity, contin.

If $V_{0}: \mathbf{S} \rightarrow \mathbb{R}$ is any bounded function and inductively $V_{j+1}=\mathscr{T}\left(V_{j}\right)$, then $V_{j}(s)$ converges to unique bounded function fixed by \mathscr{F}.
If V_{0} is continuous, then all $V_{j}(s)$ are continuous by Parametric Maximization Theorem.

In terms of distance on function space, distance between functions $V_{j}(s)$ and $V(s)$ goes to zero, $V_{j}(s)$ converges uniformly to $V(S)$, so $V(s)$ is continuous.

More details in online class book.

Value Function as Limit of Finite Horizon Problem

Remark

Take $V_{0}(s) \equiv 0 \quad \& \quad V_{j+1}=\mathscr{F}\left(V_{j}\right)$
$V_{1}(s)$ max over 1 period $t=0$
$V_{2}(s)$ max over 2 periods $t=0,1$
$V_{j}(s)$ max over j periods $t=0, \ldots, j-1$
Theorem proves $\lim _{j \rightarrow \infty} V_{j}(x)$ is max for all periods $t \geq 0$, so value function $V(s)$.

Optimal Strategy

Theorem (12 Optimal Strategy)

Assume a SDP has continuous, finite valued value function $V(s)$ s.t.

$$
\lim _{t \rightarrow \infty} \delta^{t} V\left(s_{t}\right)=0
$$

for any allowable sequences of $\left\{a_{t}\right\}$ with $s_{t+1}=f\left(x_{t}, a_{t}\right)$.
Then, an optimal stationary strategy exists:
any choice function

$$
\sigma^{*}(s) \in \mathscr{F}^{*}(s)=\arg \max \{r(s, a)+\delta V \circ f(s, a): a \in \mathscr{F}(s)\} .
$$

is an optimal strategy.

Remark

Theorem is valid for bounded $r(s, a)$ (SDB) so bounded $V(s)$.

Proof of Optimal Strategy Thm, contin.

$h(s, a)=r(s, a)+\delta V \circ f(s, a)$ is continuous. By Parm Max Them

$$
\begin{aligned}
h^{*}\left(s_{0}\right) & =\max _{a_{0} \in\left[0, s_{0}\right]} r\left(s_{0}, a_{0}\right)+\delta V\left(f\left(s_{0}, a_{0}\right)\right) \\
& \left.=\max _{a_{0} \in\left[0, s_{0}\right]} r\left(s_{0}, a_{0}\right)+\delta \max _{a_{t}, t \geq 1} \delta^{t-1} r\left(s_{t}, a_{t}\right)\right] \\
& =\max _{a_{t}, t \geq 0} \delta^{t} r\left(s_{t}, a_{t}\right)=V\left(s_{0}\right) .
\end{aligned}
$$

Select $\sigma^{*}(s) \in \mathscr{F}^{*}(s) \neq \emptyset \quad$ Show $V(s)=W\left(s, \sigma^{*}\right)$.

$$
\begin{aligned}
V\left(s_{t}\right) & =r\left(s_{t}, \sigma^{*}\left(s_{t}\right)\right)+\delta V \circ f\left(\left(s_{t}, \sigma^{*}\left(s_{t}\right)\right)=r\left(s_{t}, a_{t}\right)+\delta V\left(s_{t+1}\right),\right. \\
V\left(s_{0}\right) & =r\left(s_{0}, a_{0}\right)+\delta V\left(s_{1}\right) \\
& =r\left(s_{0}, a_{0}\right)+\delta\left(r\left(s_{1}, a_{1}\right)+\delta V\left(s_{2}\right)\right) \\
& =r\left(s_{0}, a_{0}\right)+\delta r\left(s_{1}, a_{1}\right)+\delta^{2} V\left(s_{2}\right) \\
& =r\left(s_{0}, a_{0}\right)+\delta r\left(s_{1}, a_{1}\right)+\delta^{2} r\left(s_{2}, a_{2}\right)+\delta^{3} V\left(s_{3}\right) \\
& =r\left(s_{0}, a_{0}\right)+\delta r\left(s_{1}, a_{1}\right)+\cdots+\delta^{T-1} r\left(s_{T-1}, a_{T-1}\right)+\delta^{T} V\left(s_{T}\right) . \\
& \rightarrow W\left(s_{0}, \sigma^{*}\right) \text { as } T \rightarrow \infty . \quad \text { Optimal strategy }
\end{aligned}
$$

3.3 Optimal Growth for Gen One Sector Economy, 1-SecE

$s \in \mathbb{R}_{+}$supply of good (state), $c \in[0, s]=\mathscr{F}(s)$ consumption (action), $r(s, c)=u(c)$ utility, $s_{t+1}=f\left(s_{t}-c_{t}\right)$ production to next period, $0<\delta<1$ discount. Assumptions on, u \& f :

E1. $u: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is continuous, strictly increasing, with $u(0)=0$.
No longer assume $r(s, c)=u(c)$ is bounded.
E2. a. $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ continuous and increasing.
b. $f(0)=0$: no free production.
c. Either
(i) $\exists \bar{x}>0$ s. t. $f(x) \leq x$ for $x \geq \bar{x}$ or
(ii) $\exists \lambda<1$, s.t.

$$
\delta u(f(x)) \leq \lambda u(x) \text { for } x \geq 0 .
$$

General One-Sector Economy, continued

No longer assume $r(s, c)=u(c)$ is bounded.
Example considered earlier: $u(c)=c^{\frac{1}{2}}, f(x)=k x$.
$u(c)$ is unbounded but
$u \& f$ satisfy E1 \& E2 with c(ii) using $\lambda=\delta k^{\frac{1}{2}}<1$:

$$
\delta u(f(x))=\delta k^{\frac{1}{2}} x^{\frac{1}{2}}=\lambda u(x) \quad \text { for } x \geq 0
$$

General One-Sector Economy, continued

$V(s)$ for 1 -SecE satisfies Bellman equation by Theorem 9.

Theorem (13)

If a 1-SecE satisfies E1- E2, then following are true.
a. $V(s)<\infty$ for each $s \in \mathbb{R}_{+}$
b. $V(s)$ is unique bounded solution of Bellman equation and is continuous.

Proof using E2c(i)

Take any $\bar{s} \geq \bar{x}$. Restrict to $[0, \bar{s}]$. Take $s_{0} \in[0, \bar{s}]$.
If $s_{t} \in[0, \bar{s}] \& s_{t+1}=f\left(s_{t}-c_{t}\right)$, then

$$
0=f(0) \leq f\left(s_{t}-c_{t}\right)=s_{t+1} \leq f\left(s_{t}\right) \leq f(\bar{s}) \leq \bar{s} .
$$

all $s_{t} \in[0, \bar{s}]$,
r is bounded on $[0, \bar{s}]$.
(a) By Theorem 10, $V\left(s_{0}\right)$ is bounded and finite valued on $[0, \bar{s}]$.
(b) By Theorem 11, \exists unique bounded solution of Bellman equation $V(s)$ is continuous on $[0, \bar{s}]$.
$\bar{s} \geq \bar{x}$ arbitrary, so $V(s)$ is locally bounded, finite valued, continuous on all \mathbb{R}_{+}.

Proof using E2c(ii)

(a) Take $s_{0} \geq 0$. For allowable sequence,

$$
\begin{aligned}
& \delta u\left(c_{t}\right) \leq \delta u\left(s_{t}\right)=\delta u\left(f\left(s_{t-1}-c_{t-1}\right)\right) \leq \delta u\left(f\left(s_{t-1}\right)\right) \leq \lambda u\left(s_{t-1}\right) \\
& \delta^{t} u\left(c_{t}\right) \leq \delta^{t} u\left(s_{t}\right) \leq \lambda^{t} u\left(s_{0}\right) \\
& V\left(s_{0}\right)=\sup \left\{\sum_{t} \delta^{t} u\left(c_{t}\right)\right\} \leq \sum_{t} \lambda^{t} u\left(s_{0}\right)<\infty
\end{aligned}
$$

(b) For $V^{*}(s)=A u(s)$ with $A=\frac{1}{1-\lambda}$,

$$
\begin{aligned}
u(a)+\delta A u(f(s-c)) & \leq u(s)+\delta A u(f(s)) \\
& \leq u(s)+A \lambda u(s) \\
& =A u(s)
\end{aligned}
$$

$$
\mathscr{T}\left(V^{*}\right)(s)=\sup \{u(c)+\delta A u(f(s, c)): a \in[0, s]\}
$$

$$
\leq A u(s)=V^{*}(s)
$$

Proof using E2(iii)(b), contin.

Let $V_{0}^{*}(s)=V^{*}(s)$ and $V_{j+1}^{*}=\mathscr{T}\left(V_{j}^{*}\right)$ for $j \geq 0$.
Since $V_{1}^{*}(s)=\mathscr{T}\left(V_{0}^{*}\right)(s) \leq V_{0}^{*}(s)$ for all s,

$$
V_{j+1}^{*}(s) \leq V_{j}^{*}(s) \text { for all } s \text { by induction. }
$$

For each $s \geq 0$,

$$
\begin{aligned}
& V_{j}^{*}(s) \geq 0 \text { is a decreasing sequence, } \\
& \lim _{j \rightarrow \infty} V_{j}^{*}(s) \text { converges to } V_{\infty}^{*}(s)
\end{aligned}
$$

that satisfies the Bellman equation and so is the value function.

General One-Sector Economy, continued

Theorem (14)

If a 1-SecE satisfies E1- E2, then following hold.
a. $V: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is increasing.
b. There is an optimal strategy $\sigma^{*}(s)$.

$$
V(s)=u\left(\sigma^{*}(s)\right)+\delta V\left(f\left(s-\sigma^{*}(s)\right)\right)
$$

Proof (a).

Let $c_{t}^{*} \& s_{t}^{*}$ be optimal sequences with $c_{t}^{*}=\sigma^{*}\left(s_{t}^{*}\right), s_{t+1}^{*}=f\left(s_{t}^{*}-c_{t}^{*}\right)$.
$s_{0}^{\prime}>s_{0}^{*} . \quad$ Set $c_{0}^{\prime}=c_{0}^{*}-s_{0}^{*}+s_{0}^{\prime}>c_{0}^{*} . \quad c_{0}^{\prime} \leq s_{0}^{\prime}$,

$$
s_{0}^{\prime}-c_{0}^{\prime}=s_{0}^{*}-c_{0}^{*} \geq 0, \text { so } s_{1}^{\prime}=f\left(s_{0}^{\prime}-c_{0}^{\prime}\right)=s_{1}^{*} .
$$

Let $c_{t}^{\prime}=c_{t}^{*} \& s_{t}^{\prime}=s_{t}^{*}$ for $t \geq 1$. Allowable, not necessarily optimal

$$
V\left(s_{0}^{\prime}\right) \geq \sum_{t} \delta^{t} u\left(c_{t}^{\prime}\right)=V\left(s_{0}^{*}\right)-u\left(c_{0}^{*}\right)+u\left(c_{0}^{\prime}\right)>V\left(s_{0}^{*}\right) .
$$

Proof of Optimal Strategy

Proof (b).

If E2c(i) is satisfied \& $\bar{s} \geq \bar{x}$, then

$$
V(s) \text { is bounded on }[0, \bar{s}] \text { by proof of Thm 12(a) }
$$

Theorem 11 shows optimal strategy exists on $[0, \bar{s}]$, so \mathbb{R}_{+}.
If E2c(ii) is satisfied, then by proof of Theorem 12(a),

$$
\delta^{T} V\left(s_{T}\right)=\sum_{t=T}^{\infty} \delta^{t} u\left(c_{t}\right) \leq \sum_{t=T}^{\infty} \lambda^{t} u\left(s_{0}\right) \rightarrow 0 \text { as } T \rightarrow \infty,
$$ since series $\sum_{t=1}^{\infty} \lambda^{t}$ converges.

Theorem 11 shows optimal strategy exists on all \mathbb{R}_{+}.

These theorems show why the examples worked to find optimal strategy and continuous, increasing value function.

General One-Sector Economy, continued

More of the properties of value function and optimal strategy of earlier example hold generally with following assumptions:

Assumptions on 1-SecE

E3. Utility function u is strictly concave on \mathbb{R}_{+}.
E4. Production function f is concave on \mathbb{R}_{+}.
E5. Utility function u is C^{1} on \mathbb{R}_{++}with $u^{\prime}(0+)=\lim _{c \rightarrow 0+} u^{\prime}(c)=\infty$.
E6. Production fn f is C^{1} on \mathbb{R}_{++}with $f^{\prime}(0+)=\lim _{x \rightarrow 0+} f^{\prime}(x)>0$.

E3-E6 are satisfied for $u(c)=c^{\frac{1}{2}} \& f(x)=k x$.

General One-Sector Economy, continued

Theorem

If a 1-SecE satisfies E1- E4 with u \& f concave, then the following hold.
a. V is concave.
b. Correspondence \mathscr{F}^{*} that gives maximizers of Bellman Equation is single-valued.

Therefore, optimal strategy σ^{*} is uniquely determined and is a continuous function on \mathbb{R}_{+}.

Proofs this and following are given in online class book.

General One-Sector Economy, continued

Theorem (20, S12.27)

If a 1-SecE satisfies E1- E6,
with $u^{\prime}(0+)=\infty$ \& $f^{\prime}(0+)>0$,
then optimal strategy σ^{*} is increasing on \mathbb{R}_{+}.

