Chapter 4: Parametric Contin. and Dynamic Prog.

Math 368

© Copyright 2012, 2013 R Clark Robinson

May 22, 2013

Chapter 4: Parametric Contin. and Dynamic Prog.

Use set-valued correspondences in parametric maximization problems and multiple period dynamic programming problems

Definition

Let $\mathbf{S} \subset \mathbb{R}^{\ell}$, $\mathbf{X} \subset \mathbb{R}^{n}$.

A correspondence \mathscr{C} from **S** to **X** is a map to nonempty subsets of **X**:

$$s\in \textbf{S}\,\mapsto\, \mathscr{C}(s)\subset \textbf{X} \quad \text{with} \ \mathscr{C}(s)\neq \emptyset$$

 $\mathscr{P}(X)$ be collection of all nonempty subsets of X.

 \mathscr{C} is function with values in $\mathscr{P}(X)$.

 $\mathscr{C}: \mathsf{S} \to \mathscr{P}(\mathsf{X}).$

Graph of Correspondences

When give examples, draw graph of correspondence

 ${\mathscr C}_1(s) = [0,s] \qquad {
m for} \ 0 \le s \le 1.$

Definition

$$\begin{aligned} & \textbf{Graph} \text{ of a correspondence } \mathscr{C}: \textbf{S} \to \mathscr{P}(\textbf{X}) \text{ is} \\ & \textbf{Gr}(\mathscr{C}) = \{\, (\textbf{s},\textbf{x}) \in \textbf{S} \times \textbf{X} : \textbf{s} \in \textbf{S}, \ \textbf{x} \in \mathscr{C}(\textbf{s}) \,\} \subset \textbf{S} \times \textbf{X}. \end{aligned}$$

Types of Correspondences

Definition

$$\label{eq:starsest} \begin{split} \mathscr{C}: \mathbf{S} & \to \mathscr{P}(\mathbf{X}) \text{ is a closed-graph correspondence p.t.} \\ & \mathsf{Gr}(\mathscr{C}) \text{ is a closed subset of } \mathbf{S} \times \mathbf{X}. \end{split}$$

A correspondence $\mathscr{C} : S \to \mathscr{P}(X)$ is closed-valued p.t. $\mathscr{C}(s)$ is a closed subset of X for each fixed $s \in S$. compact-valued if each $\mathscr{C}(s)$ is compact.

A correspondence \mathscr{C} is **bounded** p.t. $\exists K > 0$ such that $\mathscr{C}(\mathbf{s}) \subset \overline{\mathbf{B}}(\mathbf{0}, K)$ for all $\mathbf{s} \in \mathbf{S}$.

 $\begin{aligned} & \textbf{\mathscr{C}} \text{ is locally bounded p.t. for each } \mathbf{s}_0 \in \mathbf{S}, \ \exists \ K > 0 \ \& \ r > 0 \ \text{ s.t.} \\ & \textbf{\mathscr{C}}(\mathbf{s}) \subset \overline{\mathbf{B}}(\mathbf{0}, K) \ \text{ for all } \mathbf{s} \in \mathbf{B}(\theta_0, r) \cap \mathbf{S}. \end{aligned}$

Example

Unbounded Correspondence

Example

$${\mathscr C}_4(s) = egin{cases} \left\{ rac{1}{s}
ight\} & s
eq 0 \ \left\{ 0
ight\} & s = 0 \end{cases}$$

 \mathscr{C}_4 is a closed-graph correspondence, compact valued

 \mathscr{C}_4 is not bounded, nor locally bounded at s = 0.

Maximizing $f(\mathbf{s}, \mathbf{x})$ subject to $\mathbf{x} \in \mathscr{F}(\mathbf{s}) \subset \mathbb{R}^n$ $\mathbf{s} \in \mathbf{S}$: parameter space both f and domain \mathscr{F} can depend on \mathbf{s} .

For $\mathbf{s} \in \mathbf{S}$,

$$egin{aligned} &f^*(\mathbf{s})=\max\{f(\mathbf{s},\mathbf{x}):\mathbf{x}\in\mathscr{F}(\mathbf{s})\}\in\mathbb{R}\ &\mathscr{F}^*(\mathbf{s})=\{\mathbf{x}\in\mathscr{F}(\mathbf{s}):f(\mathbf{s},\mathbf{x})=f^*(\mathbf{s})\}\ \subset\mathscr{F}(\mathbf{s})\subset\mathbb{R}^n. \end{aligned}$$

For each $s,\ \mathscr{F}(s)$ and $\mathscr{F}^*(s)$ are sets,

so ${\mathscr F}$ and ${\mathscr F}^*$ are examples of correspondences.

 $f^*(\mathbf{s})$ is a number, so f^* is a function

Question: How do $f^*(s)$ and $\mathscr{F}^*(s)$ vary with s?

Example

Let
$$f_1(s, x) = (s - \frac{1}{3})x$$
 for $s \in [0, 1] = \mathbf{S}$ and $x \in [0, 1] = \mathbf{\mathscr{F}}_1$
 $(< 0 \text{ for } s < \frac{1}{3})$

$$\frac{\partial f_1}{\partial x}(s,x) = (s - \frac{1}{3}) \begin{cases} \equiv 0 & \text{for } s = \frac{1}{3} \\ > 0 & \text{for } s > \frac{1}{3}. \end{cases}$$

$$\mathscr{F}_1^*(s) = \begin{cases} \{0\} & \text{for } s < \frac{1}{3} \\ [0,1] & \text{for } s = \frac{1}{3} \\ \{1\} & \text{for } s > \frac{1}{3}. \end{cases} & \& f_1^*(s) = \begin{cases} 0 & \text{for } s \le \frac{1}{3} \\ (s - \frac{1}{3}) & \text{for } s > \frac{1}{3}. \end{cases}$$

 $f_1^*(s)$ is continuous, $\mathscr{F}_1^*(s)$ changes dramatically at $s=rac{1}{3},$

In game theory, $\mathscr{F}_1^*(s)$ called **best response correspondence**

Set and Values for Example 1, continued

Example 2

Let
$$f_2(s, x) = -\frac{1}{4}x^4 + \frac{1}{3}sx^3 + \frac{1}{2}x^2$$
 for $x \in \mathbb{R} = \mathscr{F}_2$.
 $\overbrace{x_s^- \ x_s^+}$ $\overbrace{x_s^+ \ s < 0}$ $\overbrace{x_s^- \ x_s^+}$ $\overbrace{x_s^+ \ x_s^+}$ $\overbrace{x_s^- \ x_s^+}$ $\overbrace{x_s^- \ x_s^+}$

$$f_{2x}(s,x) = -x^3 + s x^2 + x$$
,

Critical points: 0, $x_s^{\pm} = \frac{1}{2} \left[s \pm \sqrt{s^2 + 4} \right]$. For s = 0: $x_0^{\pm} = \pm 1$, $f_2(0, \pm 1) = \frac{1}{4} > 0 = f(0, 0)$. $f_{2xx}(s, x) = -3x^2 + 2sx + 1$. $f_{2xx}(s, 0) = 1 > 0$: local minimum at x = 0. $f_{2xx}(s, x_s^{\pm}) = -(x_s^{\pm})^2 + 2 \left[-(x_s^{\pm})^2 + sx_s^{\pm} + 1 \right] - 1 = -(x_s^{\pm})^2 - 1 < 0$, local maximum at x_s^+ , x_s^- .

Chapter 4: Parametric Contin. and Dynamic Prog.

Example 2, continued

Do not calculate $f(s, x_s^{\pm})$ but

$$\begin{aligned} \frac{d}{ds}f_2(s, x_s^{\pm}) &= f_{2x}(s, x_s^{\pm})\frac{dx_s^{\pm}}{ds} + \frac{1}{3}\left(x_s^{\pm}\right)^3 = \frac{1}{3}\left(x_s^{\pm}\right)^3 \\ \text{For } s > 0, \qquad f_2(s, x_s^{-}) < f(0, \pm 1) < f_2(s, x_s^{+}). \end{aligned}$$

For $s < 0, \qquad f_2(s, x_s^{-}) > f(0, \pm 1) > f_2(s, x_s^{+}). \end{aligned}$

Thus,

$${\mathscr F}_2^*(s) = egin{cases} \{x_s^-\} & \mbox{ for } s < 0 \ \{-1,1\} & \mbox{ for } s = 0 \ \{x_s^+\} & \mbox{ for } s > 0. \end{cases}$$

Set and Values for Example 2

 $\mathscr{F}_{2}^{*}(s)$ jumps at s = 0, not continuous

is compact valued, closed graph, locally bounded.

 $f_2^*(s)$ is continuous by Parametric Maximization Theorem.

Upper-Hemicontinuous

Continuity of correspondences defined using small region around set.

Definition

For a set $\mathbf{A} \subset \mathbb{R}^n$, ϵ -neighborhood of \mathbf{A} is

 $\mathbf{B}(\mathbf{A},\epsilon) = \{ \mathbf{x} \in \mathbb{R}^n : \text{ there is a } \mathbf{y} \in \mathbf{A} \text{ with } \|\mathbf{x} - \mathbf{y}\| < \epsilon \}.$

Definition

A compact-valued correspondence $\mathscr{C}: \mathbf{S} \subset \mathbb{R}^\ell \to \mathscr{P}(\mathbf{X})$ is

upper-hemicontinuous (uhc) at $s_0 \in S$ p.t.

for any $\epsilon > 0$ exists $\delta > 0$ such that

 $\text{if } \mathbf{s} \in \mathbf{B}(\mathbf{s}_0, \delta) \cap \mathbf{S} \text{ then } \mathscr{C}(\mathbf{s}) \subset \mathbf{B}(\mathscr{C}(\mathbf{s}_0), \epsilon).$

Image set cannot get a lot bigger for small changes from \boldsymbol{s}_0 to nearby \boldsymbol{s}

 ${\mathscr C}$ is upper-hemicontinuous on S p.t. it is uhc at each $s_0 \in S$.

Definition

A compact-valued correspondence $\mathscr{C}: \mathbf{S} \to \mathscr{P}(\mathbf{X})$ is

continuous at $s_0 \in S$ p.t.

for any $\epsilon > 0$, $\exists \ \delta > 0$ s.t. if $\mathbf{s} \in \mathbf{B}(\mathbf{s}_0, \delta) \cap \mathbf{S}$ then

 $\mathscr{C}(\mathbf{s}_0) \subset \mathbf{B}(\mathscr{C}(\mathbf{s}), \epsilon) \&$ $\mathscr{C}(\mathbf{s}) \subset \mathbf{B}(\mathscr{C}(\mathbf{s}_0), \epsilon).$

Image sets $\mathscr{C}(\mathbf{s}_0)$ & $\mathscr{C}(\mathbf{s})$ within small neighborhoods of each other not a lot smaller nor bigger for small changes from \mathbf{s}_0 to nearby \mathbf{s}

 \mathscr{C} is continuous on **S** p.t. it is continuous at each $\mathbf{s}_0 \in \mathbf{S}$.

- \mathscr{C}_1 is continuous correspondence
- \mathscr{C}_2 , \mathscr{F}_1^* , and \mathscr{F}_2^* are upper-hemicontinuous not continuous.
- \mathscr{C}_3 is not uhc at 0.5 or 1.5: [1,2] jumps to [0,3] with changes of s = 0.5 to $0.5 + \delta$ or s = 1.5 to $1.5 - \delta$
- \mathscr{C}_4 is neither upper-hemicontinuous nor continuous at s = 0: As s changes from 0 to δ , $\mathscr{C}_4(0) = \{0\}$ changes to $\mathscr{C}_4(\delta) = \{\frac{1}{\delta}\}, \{\frac{1}{\delta}\} \notin \mathbf{B}(\{0\}, \epsilon) = (-\epsilon, \epsilon)$ &

$$\{\mathbf{0}\} \nsubseteq \mathbf{B}\left(\left\{\frac{1}{\delta}\right\}, \epsilon\right) = \left(-\epsilon + \frac{1}{\delta}, \epsilon + \frac{1}{\delta}\right).$$

Proposition (1)

Let $\mathscr{C}: S \to \mathscr{P}(X)$ be a compact-valued, locally bded correspondence.

 ${\mathscr C}$ is upper-hemicontinuous iff ${\mathscr C}$ is a closed-graph correspondence.

See online class book for proof.

Remark

 $\mathscr{C}_4(s) = \left\{\frac{1}{s}\right\}$ above shows why correspondence

must be locally bounded in this proposition.

Theorem (2 Parametric Maximization Theorem)

Assume $f : \mathbf{S} \times \mathbf{X} \to \mathbb{R}$ is a continuous function and $\mathscr{F} : \mathbf{S} \to \mathscr{P}(\mathbf{X})$ is a compact-valued continuous correspondence. Then, $f^*(\mathbf{s}) = \max\{f(\mathbf{s}, \mathbf{x}) : \mathbf{x} \in \mathscr{F}(\mathbf{s})\}$ is continuous, and $\mathscr{F}^*(\mathbf{s}) = \{\mathbf{x} \in \mathscr{F}(\mathbf{s}) : f(\mathbf{s}, \mathbf{x}) = f^*(\mathbf{s})\}$

is a compact-valued upper-hemicontinuous correspondence.

If
$$\mathscr{F}^{*}(\mathbf{s})$$
 is single point for each \mathbf{s} ,
then continuous correspondence or function.

If f(s,x) is strictly concave fn of x for each s, then each F*(s) is a single point and so F* is continuous.
Domains for Dynamic Programs often have F(s) = [0, s], which satisfies theorem.

Example 4

Let
$$\mathbf{S} = \mathbf{X} = \mathbb{R}_+$$
 and $h : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ be defined by
 $h(s, x) = x^{\frac{1}{2}} + (s - x)^{\frac{1}{2}}$ for $x \in [0, s] = \mathscr{F}(s)$.

h is continuous and $\mathscr{F}(s)$ continuous correspondence.

Parametric Maximization Theorem applies.

Critical point satisfies

$$0 = \frac{\partial h}{\partial x} = \frac{1}{2} x^{-\frac{1}{2}} - \frac{1}{2} (s - x)^{-\frac{1}{2}},$$

$$x^{-\frac{1}{2}} = (s - x)^{-\frac{1}{2}},$$

$$s - x = x,$$

$$s = 2x,$$

$$\bar{x} = \frac{1}{2} s \in [0, s].$$

$$\frac{\partial^2 h}{\partial x^2} = -\frac{1}{4} x^{-\frac{3}{2}} - \frac{1}{4} (s-x)^{-\frac{3}{2}} < 0 \text{ for all } x > 0, \text{ so}$$
$$h(s,x) \text{ is a concave function of } x \text{ on } [0,s]$$
$$\bar{x} = \frac{1}{2}s \text{ is the unique maximizer on } [0,s].$$
$$\mathscr{F}^*(s) = \left\{\frac{1}{2}s\right\} \text{ is a continuous correspondence}$$
$$h^*(s) = \left(\frac{1}{2}s\right)^{\frac{1}{2}} + \left(\frac{1}{2}s\right)^{\frac{1}{2}} = 2^{\frac{1}{2}s^{\frac{1}{2}}} \text{ is continuous as it must be}$$

Consumer Theory

Theorem (3)

Commodity bundles are points in \mathbb{R}^n_+ .

Parameters are prices $p_i > 0$ for $1 \le i \le n$ and income l > 0. Parameter space $\mathbf{S} = \{ (\mathbf{p}, l) \in \mathbb{R}^{n+1}_{++} \}.$

Budget correspondence \mathscr{B} : $S \to \mathscr{P}(\mathbb{R}^n_+)$ is

$$\mathscr{B}(\mathbf{p}, I) = \{ \mathbf{x} \in \mathbb{R}^n_+ : \mathbf{p} \cdot \mathbf{x} \leq I \}.$$

B is a continuous, compact-valued correspondence.

Proof.

Obviously, *B* is compact-valued.

Intuitively, it is continuous.

An explicit proof is given in online class book.

Corollary (**4)**

 $u: \mathbb{R}^n_+ \to \mathbb{R}$ be a continuous utility function.

Then indirect utility function $v : \mathbf{S} \to \mathbb{R}$, $v(\mathbf{p}, l) = \max\{u(\mathbf{x}) : \mathbf{x} \in \mathscr{B}(\mathbf{p}, l)\},\$

is continuous.

Also, demand correspondence $d : \mathbf{S} \to \mathscr{P}(\mathbb{R}^n_+)$,

$$\mathbf{d}(\mathbf{p}, l) = \mathscr{B}^* = \{ \mathbf{x} \in \mathscr{B}(\mathbf{p}, l) : u(\mathbf{x}) = v(\mathbf{p}, l) \},\$$

is a compact-valued uhc correspondence.

2. Finite Horizon Dyn Prog: Consumption-Savings

T is number of time periods fixed at start of problem.

t period is integer for $0 \le t \le T$.

 $w_t \in \mathbb{R}_+$ is wealth at period t, called state. w_0 initial state c_t consumption at period t, chosen with $0 \le c_t \le w_t$, action $\mathscr{F}(w_t) = [0, w_t]$ is feasible action correspondence, $c_t \in [0, w_t]$. $w_{t+1} = f(w_t, c_t) = k(w_t - c_t)$ is transition function, where $k \ge 1$ for fixed production rate. $u(c_t) = \sqrt{c_t}$ is utility of c_t valued at period t. For $0 < \delta \le 1$, $r_t(c_t) = \delta^t u(c_t) = \delta^t \sqrt{c_t}$ reward function valued at t = 0.

Problem: Given k, δ , u(c), and w_0 , maximize $\sum_{t=0}^{T} \delta^t u(c_t)$. subject to $0 \le c_t \le w_t$ and $w_{t+1} = k(w_t - c_t)$. Can solve as KKT problem as function of w_0 :

maximize $\sum_{t=0}^{T} \delta^{t} u(c_{t})$ subject to $0 \le c_{t} \le w_{t}$ and $w_{t+1} = k(w_{t} - c_{t})$,

Easier to break up and solve simpler problem at each time period, starting at t = T

called backward induction

Treat as a Dynamic Programming Problem

Markovian strategy profile is rule σ_t at each period t for a choice of c_t as function of only w_t, c_t = σ_t(w_t), and not of w_{t'} for t' ≠ t.
Use backward induction to find maximal Markovian strategy profile
(T) For t = T: maximize r_T(c) = δ^Tc^{1/2} for 0 ≤ c = c_T ≤ w_T. r_T is strictly increasing, so optimal choice is c̄ = w_T. Denote this choice by c̄_T = σ^{*}_T(w_T) = w_T.

Optimal strategy at period *T*.

Value function at T-period is maximum payoff for period T

given w_T ,

$$V_{\mathcal{T}}(w_{\mathcal{T}}) = r_{\mathcal{T}}(\sigma_{\mathcal{T}}^*(w_{\mathcal{T}})) = \delta^{\mathcal{T}} w_{\mathcal{T}}^{\frac{1}{2}}.$$

$$\begin{aligned} (\mathbf{T}-1) & \text{Let } w = w_{T-1} \text{ at period } t = T-1. \\ r_{T-1}(c) &= \delta^{T-1} c^{\frac{1}{2}} \text{ is one period payoff for action } c \\ w_T &= f_{T-1}(w_{T-1},c) = k(w_{T-1}-c) \text{ carry forward to period } T \\ V_T(k(w-c)) &= \delta^T k^{\frac{1}{2}} (w_{T-1}-c)^{\frac{1}{2}} \text{ is maximal payoff at period } T \\ \text{For } 0 &\leq c \leq w_{T-1}, \text{ seek to maximize} \\ h(w_{T-1},c) &= r_{T-1}(c) + V_T(k(w-c)) \\ &= \delta^{T-1} c^{\frac{1}{2}} + \delta^T k^{\frac{1}{2}} (w_{T-1}-c)^{\frac{1}{2}} \\ 0 &= \frac{\partial h}{\partial c} = \delta^{T-1} \frac{1}{2} c^{-\frac{1}{2}} + \delta^T k^{\frac{1}{2}} \frac{1}{2} (w_{T-1}-c)^{-\frac{1}{2}} (-1), \\ c^{-\frac{1}{2}} &= \delta k^{\frac{1}{2}} (w_{T-1}-c)^{-\frac{1}{2}}, \qquad w_{T-1}-c = \delta^2 k c, \\ w_{T-1} &= (1+\delta^2 k) c, \qquad \overline{c} = \frac{w_{T-1}}{1+\delta^2 k}. \\ \text{Since } \frac{\partial^2 h}{\partial c^2} < 0, \text{ this critical point is a maximum.} \end{aligned}$$

Optimal strategy is
$$\bar{c} = \sigma^*_{T-1}(w_{T-1}) = \frac{w_{T-1}}{1 + \delta^2 k} \le w_{T-1}$$
.

Value fn at period T-1 is maximal payoff for periods $t \geq T-1$,

$$\begin{split} V_{T-1}(w_{T-1}) &= h^*(w_{T-1}) = \delta^{T-1} \, \bar{c}^{\frac{1}{2}} + \delta^T \left[k(w - \bar{c}) \right]^{\frac{1}{2}} \\ &= \delta^{T-1} \, \bar{c}^{\frac{1}{2}} + \delta^T \left[\delta^2 k^2 \bar{c} \right]^{\frac{1}{2}} \\ &= \delta^{T-1} \left(1 + \delta^2 k \right) \bar{c}^{\frac{1}{2}} \\ &= \delta^{T-1} \left(1 + \delta^2 k \right) \left[\frac{w_{T-1}}{1 + \delta^2 k} \right]^{\frac{1}{2}} \\ &= \delta^{T-1} \left(1 + \delta^2 k \right)^{\frac{1}{2}} w_{T-1}^{\frac{1}{2}}. \end{split}$$

By backward induction
$$V_j(w_j) = \delta^j \left(1 + \delta^2 k + \dots + \delta^{2T-2j} k^{T-j}\right)^{\frac{1}{2}} w_j^{\frac{1}{2}}$$
.
Valid for $j = T$ and $T-1$. Assume true $t + 1$.
(t) Given $w = w_t$: For $0 \le c \le w$, maximize
 $h(w, c) = r_t(c) + V_{t+1}(k(w-c))$
 $= \delta^t c^{\frac{1}{2}} + \delta^{t+1} \left(1 + \dots + \delta^{2T-2t-2}k^{T-t-1}\right)^{\frac{1}{2}} k^{\frac{1}{2}} (w-c)^{\frac{1}{2}}$
 $0 = \frac{\partial h}{\partial c} = \delta^t \frac{1}{2} c^{-\frac{1}{2}} + \delta^{t+1} \left(1 + \dots + \delta^{2T-2t-2}k^{T-t-1}\right)^{\frac{1}{2}} k^{\frac{1}{2}} \frac{1}{2} (w-c)^{-\frac{1}{2}} (-1)$
 $(w-c)^{\frac{1}{2}} = \delta \left(1 + \dots + \delta^{2T-2t-2}k^{T-t-1}\right)^{\frac{1}{2}} k^{\frac{1}{2}} c^{\frac{1}{2}}$
 $w-c = \delta^2 k \left(1 + \dots + \delta^{2T-2t-2}k^{T-t-1}\right) c$
 $= \left(\delta^2 k + \dots + \delta^{2T-2t}k^{T-t}\right) c$
 $w = \left(1 + \delta^2 k + \dots + \delta^{2T-2t}k^{T-t}\right) c$
 $\overline{c} = \frac{w}{1 + \dots + \delta^{2T-2t}k^{T-t}} \le w.$

Since
$$\frac{\partial^2 h}{\partial c^2} < 0$$
, this critical point is a maximum.
Optimal strategy: $\bar{c} = \sigma_t^*(w_t) = \frac{w_t}{1 + \dots + \delta^{2T - 2t}k^{T - t}} \le w_t.$
 $[k(w_t - \bar{c})]^{\frac{1}{2}} = \delta k \left[1 + \dots + \delta^{2T - 2t - 2}k^{T - t - 1}\right]^{\frac{1}{2}} \bar{c}^{\frac{1}{2}}$
 $h_t^*(w_t) = \delta^t \bar{c}^{\frac{1}{2}} + V_{t+1}(k(w_t - \bar{c}))$
 $= \delta^t \bar{c}^{\frac{1}{2}} + \delta^{t+1}(1 + \dots + \delta^{2T - 2t - 2}k^{T - t - 1})^{\frac{1}{2}} [k(w_t - \bar{c})]^{\frac{1}{2}}$
 $= \delta^t \bar{c}^{\frac{1}{2}} + \delta^{t+2}k(1 + \dots + \delta^{2T - 2t - 2}k^{T - t - 1}) \bar{c}^{\frac{1}{2}}$
 $= \delta^t (1 + \delta^2 k + \dots + \delta^{2T - 2t}k^{T - t}) \bar{c}^{\frac{1}{2}}$
 $= \frac{\delta^t (1 + \dots + \delta^{2T - 2t}k^{T - t}) w_t^{\frac{1}{2}}}{(1 + \dots + \delta^{2T - 2t}k^{T - t})^{\frac{1}{2}}}$
 $= \delta^t (1 + \dots + \delta^{2T - 2t}k^{T - t})^{\frac{1}{2}} w_t^{\frac{1}{2}} = V_t(w_t).$

- Shown if the maximum from t + 1 to T has form of $V_{t+1}(w)$ given then maximum from t to T has form of $V_t(w)$ given.
 - Therefore, valid for all t = T, T 1, ..., 0.

Maximal payoff all periods t = 0 to T

$$V_0(w_0) = (1 + \delta^2 k + \dots + \delta^{2T} k^T)^{\frac{1}{2}} w_0^{\frac{1}{2}}.$$

Optimal strategy profile is $\boldsymbol{\sigma^*} = (\sigma^*_0, \dots, \sigma^*_T)$ where

$$\bar{c}_t = \sigma_t^*(w_t) = \frac{w_t}{1 + \dots + \delta^{2T - 2t} k^{T - t}}$$
 End of Example

Include some production in feasibility correspondence for $0 \le t \le T$. w_t be wealth or capital; labor force is held fixed so

production is w_t^{β} with $0 < \beta < 1$. $0 < c < w_{\star}^{\beta}$ consumption $f(w_t, c_t) = w_t^{\beta} - c_t = w_{t+1}$ $r_t(w, c) = \delta^t \ln(c)$, where $0 < \delta < 1$. (**T**) Maximizer $\delta^T \ln(c)$ for $0 < c < w^{\beta}$, $\sigma^*_{\tau}(w) = c^* = w^{\beta}$ $V_{\tau}(w) = \delta^T \ln(w^{\beta}) = \delta^T \beta \ln(w)$

Example with Production, contin.

$$\begin{aligned} (\mathbf{T} - \mathbf{1}) \quad h(w, c) &= \delta^{T-1} \ln(c) + V_T(w^\beta - c) \\ &= \delta^{T-1} \ln(c) + \delta^T \beta \ln(w^\beta - c) \\ 0 &= \frac{\partial h}{\partial c} = \delta^{T-1} \frac{1}{c} - \delta^T \beta \frac{1}{w^\beta - c} \\ w^\beta - c &= \delta \beta c \qquad w^\beta = (1 + \delta \beta) c \\ \bar{c} &= \sigma^*_{T-1}(w) = \frac{w^\beta}{1 + \delta \beta} \leq w^\beta \\ V_{T-1}(w) &= \delta^{T-1} \ln(\bar{c}) + V_t(w^\beta - \bar{c}) \\ &= \delta^{T-1} \ln(\bar{c}) + \delta^T \beta \ln(\delta \beta \bar{c}) \\ &= \delta^{T-1} [1 + \delta \beta] [\beta \ln(w) - \ln(1 + \delta \beta)] + \delta^T \beta \ln(\delta \beta) \\ &= \delta^{T-1} \beta [1 + \delta \beta] \ln(w) + v_{T-1}. \end{aligned}$$

Induction hypothesis with v_i a constant

$$V_j(w) = \delta^j \beta \left[1 + \delta\beta + \dots + \delta^{T-j} \beta^{T-j} \right] \ln(w) + v_j$$

$$h(w, c) = \delta^t \ln(c) + V_{t+1}(w^\beta - c)$$

$$= \delta^t \ln(c) + \delta^{t+1} \beta \left[1 + \dots + \delta^{T-t-1} \beta^{T-t-1} \right] \ln(w^\beta - c) + v_{t+1}$$

$$0 = \frac{\partial h}{\partial c} = \delta^{t} \frac{1}{c} - \delta^{t+1} \beta \left[1 + \dots + \delta^{T-t-1} \beta^{T-t-1} \right] \frac{1}{w^{\beta} - c}$$
$$w^{\beta} - c = \left[\delta \beta + \dots + \delta^{T-t} \beta^{T-t} \right] c$$
$$w^{\beta} = \left[1 + \dots + \delta^{T-t} \beta^{T-t} \right] c$$
$$\bar{c} = \sigma^{*}_{T-t}(w) = \frac{w^{\beta}}{1 + \dots + \delta^{T-t} \beta^{T-t}} \leq w^{\beta}$$

Example with Production, contin.

$$\begin{split} \mathcal{V}_{t}(w) &= \delta^{t} \ln(\bar{c}) + \mathcal{V}_{t+1}(w^{\beta} - \bar{c}) \\ &= \delta^{t} \ln(\bar{c}) + \mathcal{V}_{t+1}\left([\delta\beta + \dots + \delta^{T-t}\beta^{T-t}]\bar{c}\right) \\ &= \delta^{t} \ln(\bar{c}) + \delta^{t}[\delta\beta + \dots + \delta^{T-t}\beta^{T-t}] \ln(\bar{c}) \\ &+ \delta^{t}[\delta\beta + \dots + \delta^{T-t}\beta^{T-t}] \ln(\delta\beta + \dots + \delta^{T-t}\beta^{T-t}) + v_{t+1} \\ &= \delta^{t}[1 + \dots + \delta^{T-t}\beta^{T-t}]\beta \ln(w) \\ &- \delta^{t}[1 + \dots + \delta^{T-t}\beta^{T-t}] \ln(1 + \dots + \delta^{T-t}\beta^{T-t}) \\ &+ \delta^{t}[\delta\beta + \dots + \delta^{T-t}\beta^{T-t}] \ln(\delta\beta + \dots + \delta^{T-t}\beta^{T-t}) + v_{t+1} \\ &= \delta^{t}\beta [1 + \dots + \delta^{t}\beta^{t}] \ln(w) + v_{t} \end{split}$$

End of Example

Supremum

Supremum or **least upper bound** for $f : \mathbf{X} \to \mathbb{R}$ is

M such that $f(\mathbf{x}) \leq M$ for all $\mathbf{x} \in \mathbf{X}$,

and no small number works.

 $\sup\{f(\mathbf{x}): \mathbf{x} \in \mathbf{X}\}.$

If function is bounded above, a finite supremum exists.

Supremum = ∞ if $f(\mathbf{x})$ is not bounded above.

Example

 $\arctan(x)$ is bounded above on \mathbb{R} but no maximum,

 $\sup\{\arctan(x): x \in \mathbb{R}\} = \frac{\pi}{2}$

 $\sup\big\{ \, \tfrac{1}{x} : x > 0 \, \big\} = \infty \qquad \sup\big\{ \, \tfrac{1}{x} : x < 0 \, \big\} = 0$

Infimum

Infimum or **greatest lower bound** for $f : \mathbf{X} \to \mathbb{R}$ is

m such that $f(\mathbf{x}) \geq m$ for all $\mathbf{x} \in \mathbf{X}$,

and no larger number works.

 $\inf\{f(\mathbf{x}):\mathbf{x}\in\mathbf{X}\}.$

Infimum = $-\infty$ iff $f(\mathbf{x})$ is not bounded below.

If function is bounded below, a greatest lower bound or infimum exists.

Example

 $\arctan(x)$ is bounded below on \mathbb{R} but no minimum,

$$\inf \{ \arctan(x) : x \in \mathbb{R} \, \} = -rac{\pi}{2},$$

$$\inf \left\{ \frac{1}{x} : x > 0 \right\} = 0, \qquad \inf \left\{ \frac{1}{x} : x < 0 \right\} = -\infty$$

General Finite-Horizon Dynamic Program

A general FHDP consists of $\{\mathbf{S}, \mathbf{A}, T, (r_t, f_t, \mathscr{F}_t)_{t=0}^T\}$.

- T is a positive integer; periods t are taken with $0 \le t \le T$.
- **S** is state space, with state at period t given by $s_t \in \mathbf{S}$. (In C-S problem, $s_t = w_t \in [0, \infty) = \mathbf{S}$.)
- A is action space, with action at period t given by a_t . (In C-S problem, $c_t \in [0, \infty) = A$.)
- For each $0 \le t \le T$, following are defined:
 - $r_t : \mathbf{S} \times \mathbf{A} \to \mathbb{R}$ is continuous period-*t* reward function.

(In C-S problem,
$$r_t(w,c) = \delta^t c^{rac{1}{2}}$$
.)

- $f_t : \mathbf{S} \times \mathbf{A} \to \mathbf{S}$ is continuous period-*t* transition function, $s_{t+1} = f_t(s_t, a_t)$ (In C-S problem, $f_t(w, c) = k(w - c)$.)
- 𝔅_t: S → 𝔅(A) is feasible action correspondences, and is assumed to be a continuous and compact-valued correspondence on S.
 Only a_t ∈ 𝔅_t(s_t) are allowed.
 (In C-S problem, c_t ∈ [0, w_t] = 𝔅_t(w_t).)
Value Function

Total reward for s_0 , allowable $\{a_t\}_{t=0}^T$, & $s_{t+1} = f_t(s_t, a_t)$ is $W\left(s_0, \{a_t\}_{t=0}^T\right) = \sum_{t=0}^T r_t(s_t, a_t)$

Value function of continuation FHDP starting at period t,

$$V_t(s_t) = \sup \left\{ \sum_{j=t}^T r_j(s_j, a_j) : a_j \in \mathscr{F}_j(s_j), \\ s_{j+1} = f_j(s_j, a_j) \text{ for } j = t, \dots, T \right\}.$$
$$= \sup \left\{ W\left(s_t, \{a_j\}_{j=t}^T\right) : \{a_j\}_{j=t}^T \text{ allowable } \right\}$$
$$V(s_0) = V_0(s_0) \text{ is value function for whole FHDP.}$$

Problem: Find actions that realize supremum so maximum value.

Markovian Strategies

A Markovian strategy profile is a collection of (choice) functions

$$oldsymbol{\sigma} = (\sigma_0, \dots, \sigma_T)$$
, each $\sigma_t : \mathbf{S} o \mathbf{A}$, $a_t = \sigma_t(s_t) \in \mathscr{F}_t(s_t)$,
 σ_t function of only s_t

A non-Markovian strategy σ_t is a function of (s_0, \ldots, s_t) and not just s_t . Strategy $\boldsymbol{\sigma}$ and initial state s_0 , determines all a_t and s_t : $s_0(s_0, \boldsymbol{\sigma}) = s_0$;

Given
$$s_t = s_t(s_0, \sigma)$$
 for $0 \le t \le T$,
 $a_t = a_t(s_0, \sigma) = \sigma_t(s_t)$,
 $r_t(s_0, \sigma) = r_t(s_t, a_t)$, and
 $s_{t+1} = s_{t+1}(s_0, \sigma) = f_t(s_t, a_t)$.

Total reward for a strategy profile $\boldsymbol{\sigma}$ and initial state s_0 is $W(s_0, \boldsymbol{\sigma}) = \sum_{t=0}^{T} r_t(s_0, \boldsymbol{\sigma}).$

 σ^* is optimal strategy profile p.t. realizes max in defn of value fn,

$$W(s_0, \sigma^*) = V(s_0)$$
 for all $s_0 \in S$.

Theorem (4.15)

w

If a FHDP satisfies assumptions, then following holds:

a. For
$$0 \le t \le T$$
, $V_t(s_t) < \infty$ for each s_t , is continuous,
and satisfies **Bellman equation**

$$V_t(s) = \max_{a \in \mathscr{F}_t(s)} r_t(s, a) + V_{t+1}(f_t(s, a)),$$

here $V_{T+1}(f_T(s, a)) \equiv 0.$

b. There is optimal Markovian strategy profile σ^* s.t. $W(s_0, \sigma^*) = V(s_0)$ for all s_0 .

Proof

Use backward induction to get Bellman equation.

For
$$j = T$$
, $r(s, a)$ continuous & $\mathscr{F}_T(s)$ is compact, so
 $V_T(s) = \max\{r_T(s, a) : a \in \mathscr{F}_T(s)\}$ exists for each s .

By Parametric Maximization Theorem,

$$\mathscr{F}_{T}^{*}(s) = \{ a \in \mathscr{F}_{T}(s) : r_{T}(s, a) = V_{T}(s) \} \neq \emptyset$$

uhc correspondence and $V_T(s)$ is continuous function of s.

Pick
$$\sigma_T^*(s) \in \mathscr{F}_T^*(s)$$
 for all $s \in \mathbf{S}$, $\sigma_T^* : \mathbf{S} \to \mathbf{A}$.
 $r_T(s, \sigma_T^*(s)) = W(s, \sigma_T^*) = V_T(s)$, so σ_T^* is an optimal strategy.

Have proved result for j = T.

Lemma

For $0 \le t < T$, suppose that continuation FHDP starting a period t + 1has continuous V_{t+1} with $V_{t+1}(s_{t+1}) < \infty$ for each s_{t+1} , also admits a optimal Markovian strategy profile $(\sigma_{t+1}^*, \ldots, \sigma_T^*)$ with $V_{t+1}(s_{t+1}) = W(s_{t+1}, (\sigma_{t+1}^*, \ldots, \sigma_T^*))$.

Then following hold

a. For each s_t, V_t(s_t) attains a finite max value,
 V_t is continuous, and satisfies

 $V_t(s_t) = \max\{r_t(s_t, a_t) + V_{t+1}(f_t(s_t, a_t)) : a_t \in \mathscr{F}_t(s_t)\}.$

b. There exists
$$\sigma_t^*(s_t)$$
, s.t. $(\sigma_t^*, \ldots, \sigma_T^*)$

is a optimal Markovian strategy profile for starting at period t.

Proof of Lemma

By induction, V_{t+1} is a continuous function,

 f_t and r_t are continuous, so

 $h_t(s_t, a_t) = r_t(s_t, a_t) + V_{t+1}(f_t(s_t, a_t))$ is continuous

 \mathscr{F}_t is is continuous and compact-valued correspondence.

By Param. Maxim. Thm, $\mathscr{F}^*(s_t) \neq \emptyset$ (points that realize max) max value $h_t^*(s_t)$ is continuous

If select point $\sigma^*_t(s_t)\in \mathscr{F}^*(s_t)$, then

$$h_t^*(s_t) = r_t(s_t, \sigma_t^*(s_t)) + V_{t+1}(f_t(s_t, \sigma_t^*(s_t))).$$

optimal strategy.

Need to show, $V_t(s_t) = h_t^*(s_t)$, i.e., satisfied Bellman equation.

Proof of Lemma, contin.

For any s_t & allowable sequences $s_t^0 = s_t$, $a_i^0 \in \mathscr{F}_i(s_i) \& s_{i+1}^0 = f_i(s_i^0, a_i^0)$ for i > t $\sum_{i=1}^{T} r_i(s_i^0, a_i^0) = r_t(s_t^0, a_t^0) + \sum_{i=1+1}^{T} r_i(s_i^0, a_i^0)$ $< r_t(s_t^0, a_t^0)$ $+ \max \left\{ \sum_{i=t+1}^{T} r_i(s_i, a_i) : a_i \in \mathscr{F}_i(s_i), \ s_{i+1} = f_i(s_i, a_i) \right\}$ $= r_t(s_t, a_t^0) + V_{t+1}(f_i(s_t, a_t^0)) = h_t(s_t, a_t^0)$ $< \max \{ h_t(s_t, a_t) : a_t \in \mathscr{F}_t(s_t) \}$ $= h_{t}^{*}(s_{t}).$

Taking supremum over allowable sequences

$$V_t(s_t) \leq h_t^*(s_t).$$

Proof of Lemma, contin.

$$\begin{split} h_t^*(s_t) &= h_t(s_t, \sigma_t^*(s_t)) \\ &= r_t(s_t, \sigma_t^*(s_t)) + V_{t+1}(f_t(s_t, \sigma_t^*(s_t))) \\ &= r_t(s_t, \sigma_t^*(s_t)) + \sum_{i=t+1}^T r_i(s_i^*, \sigma_i^*(s_i^*)) \leq V_t(s_t), \\ &\text{where } s_t^* = s_t \text{ and } s_{i+1}^* = f_i(s_i^*, \sigma_t^*(s_i^*)). \\ V_t(s_t) &\leq h_t^*(s_t) \leq V_t(s_t) \text{ so } V_t(s_t) = h_t^*(s_t) < \infty. \\ V_t(s_t) &= h_t^*(s_t) = \max\{r_t(s_t, a_t) + V_{t+1}(f_t(s_t, a_t)) : a_t \in \mathscr{F}_t(s_t)\}, \\ V_t \text{ satisfies Bellman equation & is continuous.} \\ V_t(s_t) &= r_t(s_t, \sigma_t^*(s_t)) + V_{t+1}(f_t(s_t, \sigma_t^*(s_t))) \\ &= r_t(s_t, \sigma_t^*(s_t)) + W(f_t(s_t, \sigma_t^*(s_t)), (\sigma_{t+1}^*, \dots, \sigma_T^*)) \\ &= W(s_t, (\sigma_t^*, \dots, \sigma_T^*)), \end{split}$$

so optimal Markovian strategy profile as claimed.

QED

Solution of FHDP by Bellman Equation

Bellman equation determines solution method for a FHDP.

(*T*) Maximize $r_T(s_T, a_T)$ with parameter s_T determines strategy $a_T = \boldsymbol{\sigma}_T^*(s_T)$ value function $V_T(s_T) = r^*(s_T) = r_T(s_T, \sigma_T^*(s_T))$.

By backward induction, once strategies σ_j^* and value functions V_j have been determined for $T \ge j \ge t+1$, then

$$a_t = \sigma_t^*(s_t)$$
 maximizes
 $h_t(s, a) = r_t(s, a) + V_{t+1}(f_t(s, a)).$

Period t value function

$$V_t(s_t) = h_t^*(s_t) = r_t(s_t, \sigma_t^*(s_t)) + V_{t+1}(f_t(s_t, \sigma_t^*(s_t))).$$

By induction, get back to $V_0(s_0) = V(s_0)$.

Infinite Horizon Dynamic Program

Definition

A stationary dynamic program (SDP) is

 $\{\mathbf{S}, \mathbf{A}, \mathscr{F}, f, r, \delta\}$ with infinite horizon:

- $S \subset \mathbb{R}^n$ is state space. $A \subset \mathbb{R}^k$ is action space.
- 𝔅 : S → 𝔅(A), feasible action correspondence, is compact-valued, nonempty, continuous correspondence.
 𝔅(s) ⊂ A is set of allowable actions given s ∈ S.
- $f : \mathbf{S} \times \mathbf{A} \to \mathbf{S}$, continuous transition function: $s_{t+1} = f(s_t, a_t)$ from s_t and a_t to s_{t+1} for $t \ge 0$.
- r: S × A → ℝ continuous, one-period reward function that specifies reward r(s, a) for an action a taken at state s.
- $0 < \delta < 1$ discount factor.
 - $r(s_t, a_t)$ discounted back to period-0 is $\delta^t r(s_t, a_t)$.

Value Function

Same r, f, \mathscr{F} for all t.

Definition

For allowable actions $a_t \in \mathscr{F}(s_t)$ and states $s_{t+1} = f(s_t, a_t)$

 $W(s_0, \{a_t\}) = \sum_{t=0}^{\infty} \delta^t r(s_t, a_t)$ total reward.

Discount factor allows infinite sum possibly to be finite.

Definition

Value function $V : \mathbf{S} \to \mathbb{R}$ is supremum of total reward,

 $V(s_0) = \sup \{ W(s_0, \{a_t\}) : \{a_t\} \text{ allowable sequence} \}.$

Problem: Maximize total reward $W(s_0, \{a_t\}) = \sum_{t=0}^{\infty} \delta^t r(s_t, a_t),$ for allowable actions $a_t \in \mathscr{F}(s_t)$ and states $s_{t+1} = f(s_t, a_t).$ So realize $V(s_0)$ as a maximum with some sequence of actions.

Definition

A stationary strategy σ is a choice $\sigma(s) \in \mathscr{F}(s) \subset \mathsf{A}$ for each $s \in \mathsf{S}$

that is same for all periods.

Given a stationary strategy σ and s_0 , by induction,

$$a_t = a_t(s_0, \sigma) = \sigma(s_t),$$

 $s_{t+1} = s_{t+1}(s_0, \sigma) = f(s_t, a_t), \text{ and}$
 $W(s_0, \sigma) = \sum_{t=0}^{\infty} \delta^t r(s_t, a_t) \text{ total reward.}$

An optimal stationary strategy σ^* is a stationary strategy s.t. $W(s_0, \sigma^*) = V(s_0)$ for all $s_0 \in \mathbf{S}$.

Theorem (9 SDP Bellman Equation)

Value function V(s) satisfies Bellman Equation

 $V(s) = \sup_{a \in \mathscr{F}(s)} r(s, a) + \delta V(f(s, a)).$

Remark

Note that for an infinite horizon SDP,

same function V is on both sides of Bellman equation.

Necessary to solve equation for a function

and not just value for a given value of s.

Proof of Bellman Equation:

For any choice of actions, reward satisfies

$$\begin{split} \sum_{t=0}^{\infty} \delta^{t} r(s_{t}, a_{t}) &= r(s_{0}, a_{0}) + \delta \sum_{t=1}^{\infty} \delta^{t-1} r(s_{t}, a_{t}) \\ &= r(s_{0}, a_{0}) + \delta \sum_{j=0}^{\infty} \delta^{j} r(s_{j+1}, a_{j+1}). \\ &\leq r(s_{0}, a_{0}) + \delta \sup_{a_{t}, t \geq 1} \sum_{j=0}^{\infty} \delta^{j} r(s_{j+1}, a_{j+1}) \\ &\leq r(s_{0}, a_{0}) + \delta V(f(s_{0}, a_{0})). \end{split}$$

Taking supremum over all allowable a_0 ,

$$V(s_0) \leq \sup_{a_0 \in \phi(s_0)} \{r(s_0, a_0) + \delta V(f(s_0, a_0))\}.$$

Also, can get a sequence of allowable actions s.t.

$$W(s_0, \{a_t\})$$
 is within ϵ of right hand side,
 $V(s_0) + \epsilon$ is \geq right hand side, so equality.

Valid even if $=\infty$.

For properties of value function assume either (i) r(s, a) is bounded or (ii) 1 sector economy with assumptions E1-E2 on f, r, **Finite value function:** $V(s) < \infty$ for each $s \in \mathbf{S}$, so V(s) well defined function: (i) Thm 10, (ii) Thm 13 **Continuity:** \exists unique bounded fn satisfying Bellman equation. By an iterative process like for FHDP, get sequence of $V_i(s)$ that converge uniformly to V(s) on bounded intervals $[0, \overline{s}]$, so V(s) is continuous. (i) Thm 11, (ii) Thm 13 **Optimal Strategy:** Exists by Param Max: Thms 12, 14(b) First give examples finding value function using Bellman Equation Then give precise theorems and proofs to show why works.

Example of Optimal Growth for One-Sector Economy

Optimal Growth of one-sector economy: More general case later **Determine Value Function and Optimal Strategy** for

 $0 < \delta < 1.$ $\mathbf{S} = \mathbb{R}_{\perp}$. $\mathbf{A} = \mathbb{R}_+$. $\mathscr{F}(s) = [0, s].$ f(s,a) = k(s-a), with $k \ge 1$ and $k\delta^2 < 1$, $r(s, a) = u(a) = a^{\frac{1}{2}}$. $r(s, a) = a^{\frac{1}{2}}$ is not bounded on \mathbb{R}_+ , but $s_t \leq k^t s_0$, $a_t \leq k^t s_0$, so $\delta^t r(s_t, a_t) \leq \delta^t u(k^t s_0) = \delta^t (k^t s_0)^{\frac{1}{2}} = \left(\delta k^{\frac{1}{2}}\right)^t s_0^{\frac{1}{2}}$ $V(s_0) \leq \sum_{t=0}^{\infty} \left(\delta k^{\frac{1}{2}}\right)^t s_0^{\frac{1}{2}} = \frac{1}{1 - \delta L^{\frac{1}{2}}} s_0^{\frac{1}{2}} < \infty.$

Solution Method 1: Form sequence of continuous fns $V_i(s)$ that converge to value function V(s)Assume $V_i(s)$ is continuous $h_{i+1}(s,a) = r(s,a) + \delta V_i(f(s,a)) = a^{\frac{1}{2}} + \delta V_i(k(s-a)).$ $V_{i+1}(s) = h_{i+1}^*(s) = \max\{h_{i+1}(s,a) : a \in \mathscr{F}(s)\}.$ continuous by Param Max Thm. $\mathscr{F}^*(s) \neq \emptyset$. Start $V_0(s) \equiv 0$. $h_1(s, a) = a^{\frac{1}{2}} + \delta V_0(k(s-k)) = a^{\frac{1}{2}}.$

 h_1 is an increasing fn of a, is maximized on [0, s] for $\bar{a} = s$, $V_1(s) = h_1(s, \bar{a}) = s^{\frac{1}{2}}$, max 1 period, t = 0

$$h_{2}(s,a) = a^{\frac{1}{2}} + \delta V_{1} (k(s-a)) = a^{\frac{1}{2}} + \delta k^{\frac{1}{2}} (s-a)^{\frac{1}{2}}.$$

$$0 = \frac{\partial h_{2}}{\partial a} = \frac{1}{2} a^{-\frac{1}{2}} - \frac{1}{2} \delta k^{\frac{1}{2}} (s-a)^{-\frac{1}{2}},$$

$$(s-a)^{\frac{1}{2}} = \delta k^{\frac{1}{2}} a^{\frac{1}{2}}, \quad s-a = \delta^{2} k a,$$

$$s = (1 + \delta^{2} k)a, \quad \bar{a} = \frac{s}{1 + \delta^{2} k}.$$

$$\begin{array}{l} \text{Maximizer since } & \frac{\partial^2 h_2}{\partial a^2} < 0 \ \text{everywhere on } [0,s] \\ V_2(s) = h_2(s,\bar{a}) = (\bar{a})^{\frac{1}{2}} + \delta \, k^{\frac{1}{2}}(s-\bar{a})^{\frac{1}{2}} \\ & = (\bar{a})^{\frac{1}{2}} + \delta \, k^{\frac{1}{2}} \delta \, k^{\frac{1}{2}} \, (\bar{a})^{\frac{1}{2}} \\ & = (1+\delta^2 \, k) \, s^{\frac{1}{2}} (1+\delta^2 \, k)^{-\frac{1}{2}} \\ & = (1+\delta^2 \, k)^{\frac{1}{2}} \, s^{\frac{1}{2}}, \quad \text{max 2 periods, } t=0,1. \end{array}$$

Induction hypothesis
$$V_j(s) = (1 + \delta^2 k + \dots + \delta^{2j-2} k^{j-1})^{\frac{1}{2}} s^{\frac{1}{2}}$$

 $\sigma_j^*(s) = (1 + \delta^2 k + \dots + \delta^{2j-2} k^{j-1})^{-1} s.$

Assume true for j = t,

$$\begin{aligned} h_{t+1}(s,a) &= r(s,a) + \delta V_t(f(s,a)) \\ &= a^{\frac{1}{2}} + \delta \left(1 + \dots + \delta^{2t-2} k^{t-1} \right)^{\frac{1}{2}} \left(k(s-a) \right)^{\frac{1}{2}}. \\ 0 &= \frac{\partial h_{t+1}}{\partial a} = \frac{1}{2} a^{-\frac{1}{2}} - \frac{1}{2} \delta k^{\frac{1}{2}} \left(1 + \dots + \delta^{2t-2} k^{t-1} \right)^{\frac{1}{2}} (s-a)^{-\frac{1}{2}}. \\ s-a &= \delta^2 k \left(1 + \dots + \delta^{2t-2} k^{t-1} \right) a \\ s &= \left(1 + \dots + \delta^{2t} k^t \right) a, \\ \bar{a} &= \left(1 + \dots + \delta^{2t} k^t \right)^{-1} s. \end{aligned}$$
 Verify induction for form of $\sigma_{t+1}^*(s)$.

$$\begin{split} \bar{a} &= \left(1 + \dots + \delta^{2t} \, k^t\right)^{-1} s. \\ V_{t+1}(s) &= h_{t+1}^*(s) = h_{t+1}(s, \bar{a}). \\ &= \bar{a}^{\frac{1}{2}} + \delta \, \left(1 + \dots + \delta^{2t-2} \, k^{t-1}\right)^{\frac{1}{2}} \, \left(k(s-\bar{a})\right)^{\frac{1}{2}}. \\ &= \bar{a}^{\frac{1}{2}} + \delta \, \left(1 + \dots + \delta^{2t-2} \, k^{t-1}\right)^{\frac{1}{2}} \left(\delta^2 k^2 \left(1 + \dots + \delta^{2t-2} \, k^{t-1}\right) \bar{a}\right)^{\frac{1}{2}} \\ &= \bar{a}^{\frac{1}{2}} + \delta^2 k \left(1 + \dots + \delta^{2t-2} \, k^{t-1}\right) \bar{a}^{\frac{1}{2}} \\ &= \left(1 + \dots + \delta^{2t} \, k^t\right) \bar{a}^{\frac{1}{2}} \\ &= \left(1 + \dots + \delta^{2t} \, k^t\right) \left(1 + \dots + \delta^{2t} \, k^t\right)^{-\frac{1}{2}} s^{\frac{1}{2}}. \\ &= \left(1 + \dots + \delta^{2t} \, k^t\right)^{\frac{1}{2}} s^{\frac{1}{2}}. \end{split}$$

Verifies induction for form of $V_{t+1}(s)$.

$$V_{\infty}(s) = \lim_{t \to \infty} V_t(s) = \lim_{t \to \infty} \left(1 + \delta^2 \, k + \dots + \delta^{2t-2} \, k^{t-1} \right)^{\frac{1}{2}} \, s^{\frac{1}{2}}$$
$$= \frac{s^{\frac{1}{2}}}{(1 - \delta^2 k)^{\frac{1}{2}}}.$$
$$V_{\infty}(s) = \lim_{t \to \infty} V_{t+1}(s) = \lim_{t \to \infty} \max\{ \, a^{\frac{1}{2}} + \delta \, V_t(k(s-a)) : 0 \le a \le s \, \}$$
$$= \max\{ \, a^{\frac{1}{2}} + \delta \, V_{\infty}(k(s-a)) : 0 \le a \le s \, \}$$

 $V_{\infty}(s)$ satisfies Bellman equation

Since V(s) is unique locally bounded solution of Bellman eq,

$$V(s) = V_{\infty}(s) = \frac{s^{\frac{1}{2}}}{(1-\delta^2 k)^{\frac{1}{2}}} \quad \text{value function.}$$
$$\sigma^*(s) = \lim_{t \to \infty} \sigma_t(s) = \lim_{t \to \infty} \left(1 + \dots + \delta^{2t-2} k^{t-1}\right)^{-1} s$$
$$= (1 - k \delta^2) s \quad \text{optimal strategy}$$

Steps Solving SDP by Iteration, Method 1

• Start with
$$V_0(s) \equiv 0$$
 for all s .

Osing Param Max Thm, by induction continuous

$$V_{j+1}(s) = \max\{r(s,a) + \delta V_j(f(s,a)) : a \in \mathscr{F}(s)\}.$$

 $V_1(s)$ max over 1 period, t = 0

$$V_2(s)$$
 max over 2 periods, $t=0,1$

$$V_j(s)$$
 max over j periods, $t=0,\ldots,j-1$

Converges uniformly on compact intervals so continuous.

•
$$\sigma_j(s) \to \sigma^*(s)$$
 optimal strategy
 $\sigma^*(s) \in \mathscr{F}^*(s) = \{ a \in \mathscr{F}(s) : r(s, a) + \delta V(f(s, a)) \text{ is maximal } \}$

۱

One-Sector Economy, Solution Method 2

Solution Method 2: Find V & σ^* by guessing form of V. Guess

 $V(s) = M s^{\frac{1}{2}}$, *M* unspecified parameter, related to r(s, a).

Use Bellman equation to determine parameter M of guess.

$$h(s,a) = r(s,a) + \delta V(f(s,a)) = a^{\frac{1}{2}} + \delta M k^{\frac{1}{2}}(s-a)^{\frac{1}{2}}.$$

$$0 = \frac{\partial}{\partial a}h(s,a) = \frac{1}{2}a^{-\frac{1}{2}} - \delta M k^{\frac{1}{2}}\frac{1}{2}(s-a)^{-\frac{1}{2}},$$

$$a^{-\frac{1}{2}} = \delta M k^{\frac{1}{2}}(s-a)^{-\frac{1}{2}}, \quad (s-a)^{\frac{1}{2}} = \delta M k^{\frac{1}{2}}a^{\frac{1}{2}},$$

$$s-a = a\delta^2 M^2 k, \quad s = a(1+\delta^2 M^2 k), \quad \text{and}$$

$$\bar{a} = \frac{s}{1+\delta^2 M^2 k} \leq s \quad \text{critical point}$$

$$\frac{\partial^2}{\partial a^2}h(s,a) < 0 \text{ on } [0,s], \text{ so } \bar{a} \text{ is a maximizer and an optimal strategy.}$$

One-Sector Economy, Solution Method 2, continued

 $\bar{a} = \sigma^*(s)$ and V(s) must satisfy Bellman equation: $V(s) = r(s, \sigma^*(s)) + V(s, f(s, \sigma^*(s))),$ $Ms^{\frac{1}{2}} = \bar{a}^{\frac{1}{2}} + \delta Mk^{\frac{1}{2}}(s-\bar{a})^{\frac{1}{2}}$ $=\bar{a}^{\frac{1}{2}}+\delta M k^{\frac{1}{2}}\delta M k^{\frac{1}{2}}\bar{a}^{\frac{1}{2}}=(1+\delta^2 M^2 k)\,\bar{a}^{\frac{1}{2}}$ $= \left(1+\delta^2 M^2 k\right) \left[\frac{s}{1+\delta^2 M^2 k}\right]^{\frac{1}{2}} \quad = \left(1+\delta^2 M^2 k\right)^{\frac{1}{2}} s^{\frac{1}{2}}.$ $M^2 = 1 + \delta^2 M^2 k$ $M^2(1-\delta^2 k) = 1$ $M^2 = \frac{1}{1 - \frac{\kappa^2 L}{2}}, \qquad \text{and} \qquad$ $\bar{M} = \left[\frac{1}{1-\delta^2 k}\right]^{\frac{1}{2}}$ Need $\delta^2 k < 1$.

Therefore, value function is

$$V(s) = \left[rac{s}{1-\delta^2 k}
ight]^{rac{1}{2}}.$$

The optimal strategy is

$$egin{aligned} \sigma^*(s) &= ar{a} = rac{s}{1+\delta^2ar{M}^2k} \ &= rac{s}{ar{M}^2} \ &= (1-\delta^2k)\,s \leq s. \end{aligned}$$

End of Example

Steps Solving SDP using Method 2

- Guess form of value function with unspecified parameters
 Use r(s, a) or 1st few V_j from Method 1, to make guess.
- Determine the critical point ā of h(s, a) = r(s, a) + δ V(f(s, a)) using guess for V(s)

Verify that \bar{a} is maximizer for $a \in \mathscr{F}(s)$.

- Solution $h^*(s) = h(s, \bar{a})$ in terms of parameters.
- Use Bellman equat. V(s) = h*(s) to solve for unspecified parameters in guess.
 Gives V(s) in terms of original data of problem.
- Substitute parameters found into ā to get optimal strategy, σ*(s) = ā

On each day, a vintner can split his effort between:

 $b_t \in [0,1]$ is effort for baking bread and $1 - b_t$ is effort for squeezing grapes for wine. $w_{t+1} = 1 - b_t \in [0,1]$ is amount of wine in next period. $r(w_t, b_t) = \sqrt{w_t b_t}$ is reward or utility function for each period. $0 < \delta < 1$ is discount factor.

Maximized $\sum_{t=0}^{\infty} \delta^t \sqrt{w_t b_t}$.

 w_t is state variable,

 b_t is action, and

 $w_{t+1} = 1 - b_t$ is transition function.

Bellman equation

$$V(w) = \max\{\sqrt{wb} + \delta V(1-b) : b \in [0,1]\}.$$

Iterative Solution Method for Vintner Ex

Method 1: function to be maximized as function of b is $h_{i+1}(w,b) = w^{\frac{1}{2}}b^{\frac{1}{2}} + \delta V_i(1-b)$ $b \in [0,1].$ $V_0(w) = 0$ for all w, $h_1(w, b) = w^{\frac{1}{2}} b^{\frac{1}{2}}$ is an increasing function of b Max at b = 1: $V_1(w) = h_1(w, 1) = w^{\frac{1}{2}}$. $h_2(w, b) = w^{\frac{1}{2}}b^{\frac{1}{2}} + \delta(1-b)^{\frac{1}{2}}.$ $0 = \frac{\partial h_2}{\partial b} = \frac{1}{2} w^{\frac{1}{2}} b^{-\frac{1}{2}} - \frac{1}{2} \delta (1-b)^{-\frac{1}{2}},$ $wb^{-1} = \delta^2 (1-b)^{-1}$ $w(1-b) = \delta^2 b,$ $w = (w + \delta^2) b$ $\bar{b} = \frac{W}{W + \delta^2}.$

Chapter 4: Parametric Contin. and Dynamic Prog.

Iterative Solution Method for Vintner Ex, contin.

$$\begin{split} V_2(w) &= h_2(w, \bar{b}) = w^{\frac{1}{2}} \bar{b}^{\frac{1}{2}} + \delta \left(1 - \bar{b}\right)^{\frac{1}{2}} \\ &= w^{\frac{1}{2}} \left(\frac{w}{w + \delta^2}\right)^{\frac{1}{2}} + \delta \left(\frac{\delta^2}{w + \delta^2}\right)^{\frac{1}{2}} = \frac{w + \delta^2}{[w + \delta^2]^{\frac{1}{2}}} = [w + \delta^2]^{\frac{1}{2}}. \end{split}$$

Similar calculations show

$$V_{3}(w) = (1 + \delta^{2})^{\frac{1}{2}} [w + \delta^{2}]^{\frac{1}{2}}$$

$$V_{4}(w) = (1 + \delta^{2})^{\frac{1}{2}} [w + \delta^{2} + \delta^{4}]^{\frac{1}{2}}$$

$$V_{2j}(w) = (1 + \delta^{2} + \dots + \delta^{2j-2})^{\frac{1}{2}} [w + \delta^{2} + \dots + \delta^{2j}]^{\frac{1}{2}}$$

$$V_{2j+1}(w) = (1 + \dots + \delta^{2j})^{\frac{1}{2}} [w + \delta^{2} + \dots + \delta^{2j}]^{\frac{1}{2}}$$

Note that constants appeared both before and under square root sign Converges to value function

$$V(s) = \left(\frac{1}{1-\delta^2}\right)^{\frac{1}{2}} \left[w + \frac{\delta^2}{1-\delta^2}\right]^{\frac{1}{2}}.$$

Chapter 4: Parametric Contin. and Dynamic Prog.

Method 2: Assume

 $V(w) = A(w + C)^{\frac{1}{2}}$, A and C unspecified parameters.

Let

$$h(w,b) = b^{\frac{1}{2}}w^{\frac{1}{2}} + \delta A(1-b+C)^{\frac{1}{2}}.$$

Critical point

$$0 = \frac{\partial h}{\partial b} = \frac{1}{2}b^{-\frac{1}{2}}w^{\frac{1}{2}} - \frac{1}{2}\delta A(C+1-b)^{-\frac{1}{2}}$$
$$w(C+1-b) = \delta^{2}A^{2}b$$
$$w(C+1) = b\left[w + \delta^{2}A^{2}\right]$$
$$\bar{b} = \frac{w(C+1)}{w + \delta^{2}A^{2}}.$$

Vintner Example, Solution Method 2, continued

As a preliminary step to calculate maximum value:

$$(C+1-\bar{b}) = \left(\frac{\bar{b}}{w}\right) \delta^2 A^2,$$

$$\delta A(C+1-\bar{b})^{\frac{1}{2}} = \left(\frac{\bar{b}}{w}\right)^{\frac{1}{2}} \delta^2 A^2$$

$$= \frac{(C+1)^{\frac{1}{2}} \delta^2 A^2}{[w+\delta^2 A^2]^{\frac{1}{2}}}.$$

Max value $h(w,\bar{b}) = (w\,\bar{b})^{\frac{1}{2}} + \delta A(1-\bar{b}+C)^{\frac{1}{2}}$ is

$$\frac{(C+1)^{\frac{1}{2}}w}{[w+\delta^2 A^2]^{\frac{1}{2}}} + \frac{(C+1)^{\frac{1}{2}} \delta^2 A^2}{[w+\delta^2 A^2]^{\frac{1}{2}}} = \frac{(C+1)^{\frac{1}{2}} [w+\delta^2 A^2]}{[w+\delta^2 A^2]^{\frac{1}{2}}}.$$

$$= (C+1)^{\frac{1}{2}} [w+\delta^2 A^2]^{\frac{1}{2}}.$$

Vintner Example, Solution Method 2, continued

Bellman equation becomes

$$A(w+C)^{rac{1}{2}} = (C+1)^{rac{1}{2}} \left[w+\delta^2 A^2\right]^{rac{1}{2}}.$$

Equating similar coefficients, we get $A = (C+1)^{\frac{1}{2}}$ and $C = \delta^2 A^2$, so $A^2 = \delta^2 A^2 + 1$, $(1 - \delta^2) A^2 = 1$, $\bar{A}^2 = \frac{1}{1 - \delta^2}$, and $\bar{C} = \frac{\delta^2}{1 - \delta^2}$.

Value function is

$$V(w) = \left(rac{1}{1-\delta^2}
ight)^{rac{1}{2}} \left[w + rac{\delta^2}{1-\delta^2}
ight]^{rac{1}{2}} = rac{\left[w(1-\delta^2) + \delta^2
ight]^{rac{1}{2}}}{1-\delta^2}.$$

Vintner Example, Solution Method 2, continued

Using

$$ar{\mathcal{A}}^2 = rac{1}{1-\delta^2}$$

 $ar{\mathcal{C}} + 1 = rac{\delta^2}{1-\delta^2} + 1 = rac{\delta^2+1-\delta^2}{1-\delta^2} = rac{1}{1-\delta^2},$

optimal strategy is

$$\sigma^*(w) = \overline{b} = \frac{w(\overline{C}+1)}{w+\delta^2\overline{A}^2} = \frac{w\left[\frac{1}{1-\delta^2}\right]}{w+\frac{\delta^2}{1-\delta^2}}$$
$$= \frac{w}{w(1-\delta^2)+\delta^2}.$$

End of Example

First assume bounded *r*:

SDB Reward fn r is continuous and bounded on $\mathbf{S} \times \mathbf{A}$: $r(s, a) \leq K$ for all $(s, a) \in \mathbf{S} \times \mathbf{A}$.

Show if SDB, then $V(s) < \infty$, V is continuous,

and optimal strategy exists.

Theorem (10)

Assume SDP with bounded r (SDB).

Then value function V(s) is a bounded function, $\exists \ 0 < K' < \infty \ s.t. \ V(s) \le K'$ for each s.

Proof.

Total reward for any choice of actions is bounded:

$$\sum_{t=0}^{\infty} \delta^t r(s_t, a_t) | \leq \sum_{t=0}^{\infty} \delta^t | r(s_t, a_t) | \leq \sum_{t=0}^{\infty} \delta^t K = \frac{\kappa}{1-\delta} = K'.$$

Taking supremum over all allowable $\{a_t\}$,

 $V(s_0) \leq K' < \infty$ for all s_0 . V is bounded function.

1/

Theorem (11)

Assume a SDP satisfies SDB & has bounded V(s).

Then, ∃ unique bounded fn that satisfies Bellman equation. Unique sol'n is continuous.

So, V(s) is continuous.

Continuity of $V : \mathbf{S} \to \mathbb{R}$ cannot be proved directly from Bellman equat because do not know *a priori* that right hand side is continuous.

Instead continuity is proved by means of a process that

takes a bounded fn and returns another bounded fn.

Earlier showed process for two examples.
Proof of Continuity

Proof: Assume $G : \mathbf{S} \to \mathbb{R}$ is any bounded function.

 $h_G(s,a) = r(s,a) + \delta G(f(s,a)),$

 $\mathscr{T}(G)(s) = h_G^*(s) = \sup\{r(s,a) + \delta G(f(s,a)) : a \in \mathscr{F}(s)\}.$

Can shown $\mathscr{T}(G) : \mathbf{S} \to \mathbb{R}$ is a new bounded function,

if G_1 and G_2 are two such functions then $\mathscr{T}(G_1)$ and $\mathscr{T}(G_2)$ are closer together than G_1 and G_2 , i.e., \mathscr{T} is a contraction on space of bounded fns.

Need to show set of bounded functions is complete,

i.e., a Cauchy sequence of fns getting closer together must converge to a bounded function.

Follows that there is a unique bounded function that \mathscr{T} takes to itself. So V(s) is unique function satisfying Bellman eq. If $V_0 : \mathbf{S} \to \mathbb{R}$ is any bounded function and inductively $V_{j+1} = \mathscr{T}(V_j)$, then $V_j(s)$ converges to unique bounded function fixed by \mathscr{F} . If V_0 is continuous, then all $V_j(s)$ are continuous by Parametric Maximization Theorem.

In terms of distance on function space,

distance between functions $V_i(s)$ and V(s) goes to zero,

 $V_j(s)$ converges uniformly to V(S), so V(s) is continuous.

More details in online class book.

QED

Value Function as Limit of Finite Horizon Problem

Remark

Take
$$V_0(s) \equiv 0$$
 & $V_{j+1} = \mathscr{F}(V_j)$

$$V_1(s) \,$$
 max over 1 period $\, t=0$

$$V_2(s)$$
 max over 2 periods $t = 0, 1$

$$V_j(s)$$
 max over j periods $t = 0, \ldots, j-1$

Theorem proves $\lim_{j\to\infty} V_j(x)$ is max for all periods $t \ge 0$, so value function V(s).

Theorem (12 Optimal Strategy)

Assume a SDP has continuous, finite valued value function V(s) s.t.

 $\lim_{t\to\infty}\delta^t V(s_t)=0$

for any allowable sequences of $\{a_t\}$ with $s_{t+1} = f(x_t, a_t)$.

Then, an optimal stationary strategy exists:

any choice function

$$\sigma^*(s) \in \mathscr{F}^*(s) = \arg \max\{ r(s, a) + \delta \ V \circ f(s, a) : a \in \mathscr{F}(s) \}.$$

is an optimal strategy.

Remark

Theorem is valid for bounded r(s, a) (SDB) so bounded V(s).

Proof of Optimal Strategy Thm, contin.

$$\begin{split} h(s,a) &= r(s,a) + \delta V \circ f(s,a) \text{ is continuous.} & \text{By Parm Max Them} \\ h^*(s_0) &= \max_{a_0 \in [0,s_0]} r(s_0,a_0) + \delta V(f(s_0,a_0)) \\ &= \max_{a_0 \in [0,s_0]} \left[r(s_0,a_0) + \delta \max_{a_t, t \ge 1} \delta^{t-1} r(s_t,a_t) \right] \\ &= \max_{a_t, t \ge 0} \delta^t r(s_t,a_t) = V(s_0). \end{split}$$
Select $\sigma^*(s) \in \mathscr{F}^*(s) \neq \emptyset$ Show $V(s) = W(s,\sigma^*).$
 $V(s_t) = r(s_t,\sigma^*(s_t)) + \delta V \circ f((s_t,\sigma^*(s_t))) = r(s_t,a_t) + \delta V(s_{t+1}),$
 $V(s_0) = r(s_0,a_0) + \delta V(s_1) \\ &= r(s_0,a_0) + \delta (r(s_1,a_1) + \delta V(s_2)) \\ &= r(s_0,a_0) + \delta r(s_1,a_1) + \delta^2 V(s_2) \\ &= r(s_0,a_0) + \delta r(s_1,a_1) + \delta^2 r(s_2,a_2) + \delta^3 V(s_3) \\ &= r(s_0,a_0) + \delta r(s_1,a_1) + \cdots + \delta^{T-1} r(s_{T-1},a_{T-1}) + \delta^T V(s_T). \\ &\to W(s_0,\sigma^*) \text{ as } T \to \infty. \quad \text{Optimal strategy} \qquad \text{QED} \end{split}$

3.3 Optimal Growth for Gen One Sector Economy, 1-SecE

 $s \in \mathbb{R}_+$ supply of good (state), $c \in [0, s] = \mathscr{F}(s)$ consumption (action), r(s, c) = u(c) utility, $s_{t+1} = f(s_t - c_t)$ production to next period, $0 < \delta < 1$ discount. Assumptions on, u & f:

E1. $u : \mathbb{R}_+ \to \mathbb{R}$ is continuous, strictly increasing, with u(0) = 0. No longer assume r(s, c) = u(c) is bounded.

E2. a. $f : \mathbb{R}_+ \to \mathbb{R}$ continuous and increasing.

- **b.** f(0) = 0: no free production.
- c. Either

(i)
$$\exists \ \bar{x} > 0$$
 s. t. $f(x) \le x$ for $x \ge \bar{x}$ or
(ii) $\exists \ \lambda < 1$, s.t.
 $\delta u(f(x)) \le \lambda u(x)$ for $x \ge 0$.

No longer assume r(s, c) = u(c) is bounded.

Example considered earlier: $u(c) = c^{\frac{1}{2}}$, f(x) = kx.

u(c) is unbounded but

u & *f* satisfy E1 & E2 with c(ii) using $\lambda = \delta k^{\frac{1}{2}} < 1$: $\delta u(f(x)) = \delta k^{\frac{1}{2}} x^{\frac{1}{2}} = \lambda u(x) \text{ for } x \ge 0.$ V(s) for 1-SecE satisfies Bellman equation by Theorem 9.

Theorem (13)

If a 1-SecE satisfies E1- E2, then following are true.

- **a.** $V(s) < \infty$ for each $s \in \mathbb{R}_+$
- V(s) is unique bounded solution of Bellman equation and is continuous.

Proof using E2c(i)

Take any $\overline{s} \ge \overline{x}$. Restrict to $[0, \overline{s}]$. Take $s_0 \in [0, \overline{s}]$. If $s_t \in [0, \overline{s}]$ & $s_{t+1} = f(s_t - c_t)$, then $0 = f(0) \le f(s_t - c_t) = s_{t+1} \le f(s_t) \le f(\overline{s}) \le \overline{s}$. all $s_t \in [0, \overline{s}]$, r is bounded on $[0, \overline{s}]$.

(a) By Theorem 10, V(s₀) is bounded and finite valued on [0, s̄].
(b) By Theorem 11, ∃ unique bounded solution of Bellman equation V(s) is continuous on [0, s̄].

 $ar{s} \geq ar{x}$ arbitrary, so V(s) is locally bounded, finite valued, continuous on all \mathbb{R}_+ .

Proof using E2c(ii)

(a) Take
$$s_0 \ge 0$$
. For allowable sequence,
 $\delta u(c_t) \le \delta u(s_t) = \delta u(f(s_{t-1} - c_{t-1})) \le \delta u(f(s_{t-1})) \le \lambda u(s_{t-1}).$
 $\delta^t u(c_t) \le \delta^t u(s_t) \le \lambda^t u(s_0).$
 $V(s_0) = \sup\{\sum_t \delta^t u(c_t)\} \le \sum_t \lambda^t u(s_0) < \infty.$
(b) For $V^*(s) = A u(s)$ with $A = \frac{1}{1-\lambda}$,
 $u(a) + \delta A u(f(s - c)) \le u(s) + \delta A u(f(s))$
 $\le u(s) + A \lambda u(s)$
 $= A u(s).$
 $\mathscr{T}(V^*)(s) = \sup\{u(c) + \delta A u(f(s, c)) : a \in [0, s]\}$
 $\le A u(s) = V^*(s).$

Let
$$V_0^*(s) = V^*(s)$$
 and $V_{j+1}^* = \mathscr{T}(V_j^*)$ for $j \ge 0$.
Since $V_1^*(s) = \mathscr{T}(V_0^*)(s) \le V_0^*(s)$ for all s ,
 $V_{j+1}^*(s) \le V_j^*(s)$ for all s by induction.

For each $s \ge 0$,

$$V_j^*(s) \ge 0$$
 is a decreasing sequence,

$$\lim_{j
ightarrow\infty}V_j^*(s)$$
 converges to $V_\infty^*(s)$

that satisfies the Bellman equation and so is the value function.

QED

General One-Sector Economy, continued

Theorem (14)

If a 1-SecE satisfies E1- E2, then following hold.

- **a.** $V : \mathbb{R}_+ \to \mathbb{R}$ is increasing.
- **b.** There is an optimal strategy $\sigma^*(s)$.

 $V(s) = u(\sigma^*(s)) + \delta V(f(s - \sigma^*(s))).$

Proof (a).

Let c_t^* & s_t^* be optimal sequences with $c_t^* = \sigma^*(s_t^*)$, $s_{t+1}^* = f(s_t^* - c_t^*)$).
$s_0' > s_0^*.$ Set $c_0' = c_0^* - s_0^* + s_0' > c_0^*.$ $c_0' \le s_0',$	
$s_0'-c_0'=s_0^*-c_0^*\geq 0$, so $s_1'=f(s_0'-c_0')=s_1^*.$	
Let $c_t' = c_t^*$ & $s_t' = s_t^*$ for $t \ge 1$. Allowable, not necessarily optimal	
$V(s_0') \geq \sum_t \delta^t u(c_t') = V(s_0^*) - u(c_0^*) + u(c_0') > V(s_0^*).$	

Proof of Optimal Strategy

Proof (b).

If E2c(i) is satisfied & $\bar{s} \ge \bar{x}$, then V(s) is bounded on $[0, \bar{s}]$ by proof of Thm 12(a) Theorem 11 shows optimal strategy exists on $[0, \bar{s}]$, so \mathbb{R}_+ . If E2c(ii) is satisfied, then by proof of Theorem 12(a), $\delta^T V(s_T) = \sum_{t=T}^{\infty} \delta^t u(c_t) \le \sum_{t=T}^{\infty} \lambda^t u(s_0) \to 0$ as $T \to \infty$, since series $\sum_{t=1}^{\infty} \lambda^t$ converges.

Theorem 11 shows optimal strategy exists on all \mathbb{R}_+ .

These theorems show why the examples worked to find optimal strategy and continuous, increasing value function. More of the properties of value function and optimal strategy of earlier example hold generally with following assumptions:

Assumptions on 1-SecE

- **E3.** Utility function u is strictly concave on \mathbb{R}_+ .
- **E4.** Production function f is concave on \mathbb{R}_+ .
- **E5.** Utility function u is C^1 on \mathbb{R}_{++} with $u'(0+) = \lim_{c \to 0+} u'(c) = \infty$.
- **E6.** Production fn f is C^1 on \mathbb{R}_{++} with $f'(0+) = \lim_{x\to 0+} f'(x) > 0$.

E3–E6 are satisfied for
$$u(c) = c^{\frac{1}{2}}$$
 & $f(x) = kx$.

Theorem

If a 1-SecE satisfies E1- E4 with u & f concave,

then the following hold.

- a. V is concave.
- b. Correspondence *F*^{*} that gives maximizers of Bellman Equation is single-valued.

Therefore, optimal strategy σ^* is uniquely determined and is a continuous function on \mathbb{R}_+ .

Proofs this and following are given in online class book.

Theorem (20, S12.27)

If a 1-SecE satisfies E1- E6,

with
$$u'(0+) = \infty \& f'(0+) > 0$$
,

then optimal strategy σ^* is increasing on \mathbb{R}_+ .