
STABILITY OF ANOSOV DIFFEOMORPHISMS

CLARK ROBINSON AND A. VERJOVSKY

In these notes we give a proof of Anosov’s theorem on structural stability of
diffeomorphisms of a compact C∞ manifold M without boundary. We also show
that the Anosov diffeomorphisms form an open (maybe empty according to M) set
in D, where D is the set of Cr diffeomorphisms of M with the Cr topology, r ≥ 1.

The main references are Moser [1], Mather’s appendix in [2] and Hirsch-Pugh
[4].

Definition 1. Let < , > be a C∞ Riemannian metric on M and | · | its induced
norm on TxM for each x ∈ M . We say that f ∈ D is Anosov if

1. the tangent bundle of M splits in a Whitney direct sum of continuous sub-
bundles TM = Es ⊕ Eu, where Es and Eu are Df -invariant,

2. there exists constants c, c′ > 0 and 0 < λ < 1 such that

|Dfn
xv| < c λn|v|

|Df−n
x w| < c′ λn|w|

for all x ∈ M , v ∈ Es
x, and w ∈ Eu

x and n > 0.
M being compact, this definition is independent of the Riemannian metric < , >.

Also, Es and Eu are uniquely determined by the above conditions.

A vector bundle π : E → M of class Cr is said to be normed if there is a Cs

(0 ≤ s ≤ r) real function F : E → R such that F |π−1(x) defines a norm on π−1(x)
for every x ∈ M . We usually denote such a norm by |v|.

Let π : E → M be a normed vector bundle over M . We denote by Γ(E)
the Banach space of continuous sections of E, with norm ‖σ‖ = supx∈M |σ(x)|,
σ ∈ Γ(E).

We denote Γ(TM) simply by Γ(M). If f ∈ D, then f induces a continuous
operator f∗ : Γ(M) → Γ(M), defined by f∗σ = Dfσ ◦ f−1, σ ∈ Γ(M). That
is f∗σ(x) = Dff−1(x)σ(f−1(x)). The linearity of f∗ is clear and its continuity
follows from the fact that M is compact. In fact, f∗ is an isomorphism, where
(f∗)−1 = (f−1)∗.

In order to prove that the Anosov diffeomorphisms form an open set, we need
the following lemmas.

Lemma 1. f ∈ D is Anosov if and only if f∗ is hyperbolic. Also, if f is Anosov
then there is a C∞ structure of normed vector bundle on TM for which we can take
c = c′ = 1 in Definition 1.

Proof. If f is Anosov, then Γ(M) splits in a direct sum of closed subspaces

Γ(M) = Γ(Es)⊕ Γ(Eu)
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where

σ ∈ Γ(Es) ⇔ σ(x) ∈ Es, ∀ x ∈ M

σ ∈ Γ(Eu) ⇔ σ(x) ∈ Eu, ∀ x ∈ M.

Since Es and Eu are Df -invariant, Γ(Es) and Γ(Eu) are f∗-invariant. Let fs =
f |Γ(Es) and fu = f |Γ(Eu). Then f∗ = fs⊕ fu and fs, fu are (continuous) isomor-
phisms of Γ(Es), Γ(Eu). This implies that

Spectrum(f∗) = Spectrum(fs) ∪ Spectrum(fu).

But f being Anosov,

‖fn
s ‖ ≤ c λn

‖f−n
u ‖ ≤ c′ λn.

Therefore the spectral radius of fs and f−1
u are not bigger than λ < 1. Thus f∗ is

hyperbolic.
Let us now assume that f∗ : Γ(M) → Γ(M) is hyperbolic for f ∈ D and Γ(M)

with the norm induced as before by a Riemannian metric on M . As in [3], Γ(M)
can be decomposed in a direct sum of f∗-invariant subspaces Γ(M) = Γs ⊕ Γu, so
that the spectral radius of fs = f∗|Γs and of f−1

u = f−1
∗ |Γu are smaller than 1.

For each x ∈ M , define

Es
x = {σ(x) |σ ∈ Γs}

Eu
x = {σ(x) |σ ∈ Γu}.

It is not hard to see that Es =
⋃

x∈M Es
x and Eu =

⋃
x∈M Eu

x are continuous
subbundles of TM , Df -invariant and TM = Es⊕Eu. To see that this sum is direct,
we let v ∈ Es

x ∩ Eu
x for some x ∈ M . Since the spectral radius of fs and f−1

u are
smaller than 1, there is an integer n0 so that ‖fn0

s ‖ < k, ‖f−n0
u ‖ < k with 0 < k < 1.

Define σs ∈ Γs and σu ∈ Γu such that σs(f−n0(x)) = Df−n0
x v, ‖σs‖ = |Df−n0

x v|,
σu(x) = v, and ‖σu‖ = |v|. From this we get ‖fn0

s (σs)‖ ≤ k |Df−n0
x v| and

‖f−n0
u (σu)‖ ≤ k |v|. This means that |v| ≤ k |Df−n0

x v| and |Df−n0
x v| ≤ k |v|,

which implies that v = 0 since 0 < k < 1. Thus TM = Es ⊕ Eu.
Now set λ = k1/n0 < 1,

c = sup
0≤i<n0

{‖fs‖i λ−i } and

c′ = sup
0≤i<n0

{‖f−1
u ‖i λi }.

From ‖fn0
s ‖ < k and ‖f−n0

u ‖ < k we get

|Dfn
xv| ≤ c λn |v|

|Df−n
x w| ≤ c′ λn |w|

for each x ∈ M , v ∈ Es
x and w ∈ Eu

x . This shows that f is Anosov, finishing the
proof of the first part of the lemma.

Finally, we prove that if f is Anosov then there is a C∞ norm on TM so that
we can take c = c′ = 1 in the above inequalities. Following [3], let ρ be such that
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λ < ρ < 1 and define

|v|s =
∞∑

n=0

ρ−n |Dfn
xv|

|w|u =
∞∑

n=0

ρ−n |Df−n
x w|

for v ∈ Es
x and w ∈ Eu

x . For any α ∈ TxM , α can be written as α = v + w, with
v ∈ Es

x and w ∈ Eu
x . Define |α|1 = |v|s + |w|u. Then | |1 is a norm equivalent to

the original one and

|Dfxv|1 ≤ ρ |v|1
|Df−1

x w|1 ≤ ρ |w|1
for v ∈ Es

x and w ∈ Eu
x . Of course, we can only say that | |1 is a C0 norm. But now

we approximate | |1 by a C∞ norm so that the above inequalities still hold.

Let E be a Banach space and E1, E2 closed subspaces so that E = E1 ⊕ E2.
Given 0 < τ < 1, we denote by Lτ the hyperbolic isomorphisms L of E leaving E1,
E2 invariant such that ‖L|E1‖ < τ and ‖L−1|E2‖ < τ .

The following lemma, due to Hirsch and Pugh, was proved in [4]. The proof we
present here was suggested by Palis.

Lemma 2. Given τ , 0 < τ < 1, there exists ε > 0 such that if the isomorphism

T : E → E with respect to the splitting E = E1 ⊕ E2 has the form
(

A B
C D

)
, with

L =
(

A 0
0 D

)
∈ Lτ and ‖B‖ < ε, ‖C‖ < ε, then T is hyperbolic.

Proof. First we notice that there exists ε > 0 (which depends only on τ) such that
if ‖B‖ < ε, ‖C‖ < ε, then T is locally conjugate to L. (See [3].) In fact, we
get a global uniformly continuous conjugacy h between T and L, i.e., T̃ h = h L,
where T̃ = T near the origin. It is easy to see that the local images of E1 and E2,
h(E1) and h(E2), generate closed linear subspaces Ẽ1 and Ẽ2, invariant by T and
Ẽ1 ∩ Ẽ2 = 0. Also, ‖T n|Ẽ1‖ < 1 and ‖T−n|Ẽ2‖ < 1 for some integer n, which
imply that the spectral radii of T |Ẽ1 and of T−1|Ẽ2 are less than one. Notice that
Ẽ1 and Ẽ2 are characterized by the fact that T nv → 0 and T−nw → 0 as n →∞
for any v ∈ Ẽ1 and w ∈ Ẽ2.

Finally, we show that E = Ẽ1 ⊕ Ẽ2. To see this, it is enough to show that
h(v + w)− h(v) ∈ Ẽ2 for small v ∈ Ẽ1 and w ∈ Ẽ2. In fact,

‖L−n(v + w)− L−nv‖ = ‖L−nw‖ < λn ‖w‖.
Therefore,

h(L−n(v + w))− h(L−nv) = T−n(h(v + w)− h(v))

converges to the origin as n →∞ for h uniformly continuous. Thus E = Ẽ1⊕Ẽ2 and
since the spectral radii of T |Ẽ1 and of T−1|Ẽ2 are less than one, T is hyperbolic.

We can now prove the following theorem.

Theorem 1. The Anosov diffeomorphisms form an open set in Diff(M).
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Proof. Let f be an Anosov diffeomorphism. Then f∗ is a hyperbolic isomorphism
of Γ(M). Thus Γ(M) = Γs ⊕ Γu, where Γs and Γu are given by Lemma 1. Γs and
Γu are f∗-invariant and ‖f∗|Γs‖ < τ , ‖f−1

∗ |Γu‖ < τ for some τ such that 0 < τ < 1.
It is immediate that given ε > 0, there is a neighborhood N(f) ⊂ Diff(M) with

the property that for any g ∈ N(f), g∗ =
(

A B
C D

)
with respect to the splitting

Γ(M) = Γs ⊕ Γu, where ‖A‖ < τ , ‖D−1‖ < τ , ‖B‖ < ε, and ‖C‖ < ε. Thus taking
ε as in Lemma 2, g∗ is hyperbolic, and by Lemma 1, g is Anosov.

Remark 1. Notice that the map ρ : Diff(M) → Isom(Γ(M)), defined by ρ(g) = g∗,
is not continuous. What we used in the proof above was the continuity of the
norm of the operators corresponding to the decomposition of g∗ with respect to the
splitting Γ(M) = Γs ⊕ Γu.

As before, we denote by D the space of diffeomorphisms on M with the C1 topol-
ogy. We denote by H the space of homeomorphisms on M with the C0 topology.

Theorem 2. (Anosov) If f is an Anosov diffeomorphism then f is structurally
stable. In particular, there exists a neighborhood V of f in D, a neighborhood U of
the identity id : M → M in H, and a continuous function h : V → U such that if
g ∈ V then h = h(g) is the unique solution in U of the functional equation

h ◦ g = f ◦ h.

Before proving the theorem we need several definitions, constructions, and lem-
mas.

Definition 2. Let K1 and K2 be compact metric spaces, U an open subset of a
Banach space F1, and V an open subset of a Banach space F2. Suppose that we
have f : K1 → K2 and f̄ : K1 × U → K2 × V continuous such that the following
diagram is commutative:

K1 × U
f̄−−−−→ K2 × V

p2−−−−→ V

π

y
yp1

K1
f−−−−→ K2

where π, p1, and p2 are projections. We say that f̄ is vertically of class Cr (r ≥ 0)
if p2 ◦ f has r partial derivatives with respect to the variable in U and the partials
are continuous mappings

Dk
2 (p2 ◦ f̄) : K1 × U → Lk

s(F1, F2)

for k = 0, . . . , r. Here Lk
s(F1, F2) are symmetric k-multilinear mappings from F1 to

F2. In particular, for each fixed x ∈ K1, p2 ◦ f̄(x, ·) : U → V is of class Cr.

Definition 3. Let π1 : E1 → M and π2 : E2 → N be two Riemannian vector
bundles of class C0 over compact metric spaces M and N . Let f̄ : E1 → E2 be a
continuous map that preserves fibers, i.e., there exists a map f : M → N such that
f ◦ π1 = π2 ◦ f̄ . We say that f̄ is vertically of class Cr or f̄ is of class Cr along the
fibers , 0 ≤ r ≤ ∞, if the local representatives of f̄ in local vector bundle charts are
vertically of class Cr (using Definition 2).
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Let f : M → N be a continuous function and π : E → M a Riemannian vector
bundle. f∗(E) is the subset of M × E of pairs (x,v) such that f(x) = π(v). Let
π(f) be the projection on the first factor of M × E. π(f) : f∗(E) → M is a vector
bundle. There is a Riemannian metric induced on f∗(E) by the inclusion in M×E.

Let πi : Ei → M i = 1, 2 be two Riemannian vector bundles. Let U ⊂ E1 be
an open subset such that π1|U : U → M is a surjection. Let Γ(U) ⊂ Γ(E1) be the
open subset of sections with images in U . We assume U is connected enough so the
Γ(U) is nonempty.

Let f̄ : U → E2 be a continuous function that preserves fibers covering f : M →
M . We denote by

Ωf̄ : Γ(U) → Γ(f∗E2)

the map induced by composition on the left by f̄ ,

Ωf̄ : γ 7→ f̄ ◦ γ.

Lemma 3. If f̄ is vertically of class Cr, 0 ≤ r ≤ ∞, then Ωf̄ : Γ(U) → Γ(f∗E2)
is of class Cr.

Proof. For r = 0, Ωf̄ corresponds to the composition of continuous functions on a
compact set. It is a standard result that Ωf̄ is continuous.

Let γ ∈ Γ(U). Let σ ∈ Γ(E1) be small enough in norm so that γ + σ ∈ Γ(U).
For each x ∈ M , we apply Taylor’s Theorem to the function f̄x : E1

x → E2
f(x) at

the point γ(x). We obtain

Ωf̄ (γ + σ)(x) = Ωf̄ (γ)(x) +
r∑

k=1

1
k!

Dkf̄x(γ(x))(σ(x))k(1)

+ R(γ(x), σ(x))(σ(x))r .

Here (σ(x))k = (σ(x), . . . , σ(x)), and R(x,y) ∈ Lr
x(E1

x, E2
f(x)). Lr

x(E1
x, E2

f(x)) are
symmetric r-multilinear functions from E1

x to E2
f(x). Writing formula (1) without

evaluation at x we obtain

Ωf̄ (γ + σ) = Ωf̄ (γ) +
r∑

k=1

1
k!

Dkf̄x(γ)(σ)k + R(γ, σ)(σ)r(2)

where we are only taking the derivative of f̄ along the fiber and

R(γ, σ) ∈ Lr
x(Γ(E1), Γ(f∗E2)).

We leave it to the reader to check that R( , ) is continuous and that R(γ,0) = 0.
By the converse to Taylor’s Theorem, [7,2.1], it follows that Ωf̄ is of class Cr and
that

DkΩf̄ (γ)(σ1, . . . , σk) = Dkf̄x(γ)(σ1, . . . , σk)

for σ1, . . . , σk ∈ Γ(E1). Then DkΩf̄ : Γ(U) → Lk
x(Γ(E1), Γ(f∗E2)).

The following lemma is obvious.

Lemma 4. Let π : E → N be a Riemannian vector bundle of class C0. Let M
and N be compact metric spaces. Let f : M → N be a continuous function. Let
Af : Γ(E) → Γ(f∗E) be defined by γ 7→ γ ◦ f . Then for fixed f , Af is a continuous
linear function in γ and hence C∞.
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Let C be the space of continuous functions from M to M . We give M a C∞

Riemannian metric. The topology of C is given by the metric d̄:

d̄(f, g) = sup{d(f(x), g(x)) : x ∈ M}
where d is the distance between points of M induced by the Riemannian structure
on M . In Theorem 2 we have

H = {h ∈ C : h is a homeomorphism }.
We take this opportunity to give the construction that makes C into a Banach
manifold. To prove Theorem 2 we only use the local coordinate chart at the identity
given by the following lemma.

Lemma 5. C admits the structure of a C∞ manifold modeled on a Banach space.

Proof. Let U be an open cover of M by convex neighborhoods. (Convex with
respect to the Riemannian structure.) Let δ > 0 be a Lebesgue number associated
to the open cover, i.e., given a ball B of radius less than or equal to δ there exists
a U ∈ U such that B ⊂ U .

Let f ∈ C. Let Γ(f) denote the Banach space of continuous sections of f∗(TM),
Γ(f∗(TM)). Let U(f) = Uδ(f) be the open ball in Γ(f) of radius δ centered at the
zero section. Let B(f) = Bδ(f) be the open ball in C centered at f or radius δ.
We parameterize B(f) by U(f) as follows. Let φf : U(f) → B(f) be given by

(φf (σ))(x) = expf(x)(σ(x))

for σ ∈ U(f). We have that

d̄(φf (σ1), φf (σ2)) = sup
x∈M

d(expf(x) σ1(x), expf(x) σ2(x) )

≤ sup
x∈M

{|σ1(x)− σ2(x)|}
≤ ‖σ1 − σ2‖.

Therefore φf is continuous. On the other hand, φf has an inverse φ−1
f : B(f) →

U(f) defined by

φ−1
f (g)(x) = (x, (expf(x))

−1(g(x))).

Because the neighborhoods in U are convex, the expression (expf(x))−1(g(x)) is
well defined. By the uniform continuity of the exponential on M , it follow there is
a constant e such that

‖φ−1
f (g1)− φ−1

f (g2)‖ = sup
x∈M

{|(expf(x))
−1(g1(x))− (expf(x))

−1(g2(x))|}
≤ e sup

x∈M
{d(g1(x), g2(x))}

≤ e d̄(g1, g2).

Thus φ−1
f is continuous.

We have defined an atlas for C, whose local charts are modeled on the Banach
spaces f∗(TM) where f ∈ C. To complete the proof, it suffices to show the changes
of coordinates are C∞.

Let φf : U(f) → B(f) and φg : U(g) → B(g) be two charts. We need to prove
that

φ−1
g φf : U(f) → U(g)
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is a diffeomorphism of class C∞ on it domain of definition.
Let V (f) = {v ∈ f∗(TM) : |v| < δ} and V (g) = {v ∈ g∗(TM) : |v| < δ}.

Then U(f) = Γ(V (f)), U(g) = Γ(V (g)). Define the homeomorphism G : V (f) →
V (g) by

G(x,v) = (x, (expg(x))
−1 ◦ expf(x) v).

G is well defined by the convexity of the neighborhoods. We have that φ−1
g φf (v) =

G ◦ v = ΩG(v). G preserves fibers. G is vertically of class C∞ since along a fixed
fiber

G(x, ·) = (x, (expg(x))
−1 ◦ expf(x) ·).

By Lemma 3, φ−1
g φf is of class C∞. In the same way, (ΩG)−1 = ΩG−1 = φ−1

f φg is
of class C∞.

Remark 2. The tangent space of C at f , TfC, can be identified with Γ(f∗TM). In
particular, TidC = Γ(TM) = Γ(M).

Remark 3. Let Λ ⊂ M be a compact subset. Let B(Λ, M) be the topological space
of bounded functions from Λ to M . Then we can give B(Λ, M) the structure of a
manifold of class C∞ modeled on bounded sections of TM |Λ.

Proof of Theorem 2: We want to look at the map D × D × C → C given by
(g1, g2, h) 7→ g1 ◦ h ◦ g−1

2 . If g1 ◦ h ◦ g−1
2 = h then g1 ◦ h = h ◦ g2. Thus fixed

points of the map give a semiconjugacy between g1 and g2. (To be a conjugacy,
we need h to be a homeomorphism.) Also g ◦ id ◦ g−1 = id. We want to prove the
stability of this fixed point.

We take local coordinates in C near id, φ : U ⊂ Γ(M) → C with φ(σ)(x) =
expx σ(x). For neighborhoods V of f in D and U of 0 in Γ(M),

A : V × V × U → Γ(M)

is well defined by

A(g1, g2, h) = φ−1(g1 ◦ φ(h) ◦ g−1
2 ), or

A(g1, g2, h)(x) = exp−1
x (g1 ◦ expg−1

2 (x) ◦(h ◦ g−1
2 (x))).

For g1, g2 ∈ V , define G(g2, g2) : TM → TM by

G(g1, g2)(vx) = exp−1
g2(x)(g2 ◦ expx vx).

Then

(ΩG(g1,g2)A
′
g−1
2

h)(x) = G(g1, g2) ◦ h ◦ g−1
2 (x)

= exp−1
x (g1 ◦ expg−1

2 (x)(h ◦ g−1
2 (x)))

= A(g1, g2, h)(x).

Here A′
g−1
2

is the map given by Lemma 4.

Lemma 6. A has a partial derivative with respect to the third variable. When
g1 = g2 = g we have

D3A(g, g, 0)k = Dg(g−1)k ◦ g−1 = g∗k.
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D3A(g1, g2, h) is continuous in the first and third variables, uniformly in the second
variable, i.e., given (g1, h) and ε > 0 there exists neighborhoods V ′ of g1 and U ′ of
h such that for f11, f12 ∈ V ′, f2 ∈ V , and h1, h2 ∈ U ′

‖D3A(f11, f2, h1)−D3A(f12, f2, h2)‖ < ε.

In particular, given ε > 0, there exist neighborhoods V ′ of f and U ′ of 0 in Γ(M)
such that the Lipschitz constant

L(A(f11, f2, ·)|U ′ −D3A(f11, f2, 0)|U ′) < ε

for g1, g2 ∈ V ′.

Proof. By Lemmas 3 and 4, the partial derivative of A with respect to the third
variable exists. Since D(expx)(0x) = id : TxM → TxM , it follows that

D3A(g, g, 0)k = Dg(g−1)k ◦ g−1.

Let G1 = G(f11, f2) and G2 = G(f12, f2). Then

‖D3A(f11, f2, h1)−D3A(f12, f2, h2)‖
= sup

k∈Γ(M) with ‖k‖=1

{‖DG1(h1 ◦ f−1
2 )k ◦ f−1

2 − |DG2(h2 ◦ f−1
2 )k ◦ f−1

2 ‖}

≤ sup
x∈M

{‖DG1(h1 ◦ f−1
2 (x))−DG2(h2 ◦ f−1

2 (x))‖}.

Using the uniformity in the exponential, and letting f11, f12 → g and h1, h2 → h,
we get that

‖DG1(h1 ◦ f−1
2 (x))−DG2(h2 ◦ f−1

2 (x))‖ → 0

uniformly in f2 and x. Remember that Gi(f−1
2 (x),v) = exp−1

x (f1i ◦ expf−1
2 (x) v).

This proves the desired continuity of D3A.
The Lipschitz constant follows from the above results using the Mean Value

Theorem. See [5, 8.6.2] for example.

Remark 4. (Caution) D3A(g1, g2, h) is not continuous in g2. To see this consider
the case of a map defined in the plane so we can disregard the exponentials. Let
h = 0 and take g′2 arbitrarily near g2 in the C1 topology but with (g2)−1(x0) 6=
(g′2)

−1(x0). For each such g′2 there exists a k ∈ Γ(M) such that ‖k‖0 = 1 and
|k ◦ (g2)−1(x0)− k ◦ (g′2)

−1(x0)| = 1. Then

‖D3A(g1, g2, 0)−D3A(g1, g
′
2, 0)‖

≥ |D(g1)(g2)−1(x0) k ◦ g−1
2 (x0)−D(g1)(g′2)−1(x0) k ◦ (g′2)

−1(x0)|.
This stays bounded away from zero as g′2 goes to g2.

However the following lemma gives a partial result in this direction.

Lemma 7. Let T : D ×D × Γ(M) → Γ(M) be defined by

T (g1, g2, h) = D3A(g1, g2, 0)h.

Then T is continuous in all variables.

In fact D3A(g1, g2, 0)h is a continuous function of g1, g2, and h. The point is
that it is not necessary to take the supremum over all h of unit length but just
those near h0. The proof is left to the reader.

The following lemma is what we need to prove the stability of the fixed point of
A. It is based on the last paragraph of page 144 in [4]. If D3A : D ×D × Γ(M) →
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L(Γ(M), Γ(M)) were continuous, then we could use a standard fixed point theorem
or the Implicit Function Theorem.

Lemma 8. Let P be a topological space. Let F1 ⊕ F2 be a Banach space with the
norm equal to the maximum of the norms on the two factors. Let T : P ×F1⊕F2 →
F1⊕F2 be a function (not necessarily continuous) such that for each x ∈ P , T (x, ·) :
F1⊕F2 → F1⊕F2 is a continuous linear isomorphism. Assume ‖T1(x, ·, 0)−1‖ ≤ τ ,
‖T2(x, 0, ·)‖ ≤ τ , ‖T1(x, 0, ·)‖ ≤ µ, and ‖T2(x, , ·, 0)‖ ≤ µ where Ti(x, ·, 0) : F1 →
Fi. We also have ε > 0 such that τ + µ + ε < 1. Let U1 ⊕ U2 ⊂ F1 ⊕ F2 be a ball
about the origin of radius R. Assume f : P ×U1⊕U2 → F1⊕F2 is a function such
that for all x ∈ P , (i) the Lipschitz constant L(f(x, ·) − T (x, ·)|U1 ⊕ U2) < ε and
(ii) |f(x, 0, 0)| ≤ (1 − τ − µ − ε)R. Then there exists a function u : P → U1 ⊕ U2

such that f(x, u(x)) = u(x) and |u(x)| ≤ |f(x, 0, 0)|/(1− τ − µ− ε). Further, if f
and T are continuous then so is u.

Proof. Define g : P × U1 ⊕ U2 → F1 ⊕ F2 by

g(x,y1,y2) = (T1(x, ·,0)−1(y1 + T1(x,y1,0)− f1(x,y1,y2)), f2(x,y1,y2)).

Note the fixed points of g(x, ·) are the same as those of f(x, ·).
First we show g(x, ·) is a contraction with contraction constant τ + µ + ε. Let

y = (y1,y2) and y′ = (y′1,y′2).

|g1(x,y) − g1(x,y′)|
≤ τ(|y1 − y′1|+ L(T1 − f1)|y − y′|+ |T1(x,0,y2 − y′2)|)
≤ τ(1 + ε + µ)|y − y′|
≤ (τ + ε + µ)|y − y′|

|g2(x,y) − g2x,y′)|
≤ |T2(x,y − y′)|+ L(f2(x, ·) − T2(x, ·))|y − y′|
≤ (τ + ε + µ)|y − y′|.

By [6, 10.1.1], [4, 1.1], or [5], g has a fixed point, u(x), for each x ∈ P with

|u(x)| ≤ |g(x,0)|/(1− τ − µ− ε) ≤ |f(x,0)|/(1− τ − µ− ε).

Now assume f and T are continuous, so g is continuous. For x0 ∈ P , by [6,10.1.1],
[4, 1.1], or [5],

|u(x0)− u(x)| ≤ |g(x, u(x0))− u(x0)|/(1 − τ − µ− ε).

This shows that u is continuous.

T (f, f, ·) = D3A(f, f, 0) = f∗ : Γ(M) → Γ(M) is hyperbolic and has a splitting
Γ(M) = Γ(Eu) ⊕ Γ(Es). We can approximate Eu and Es by smooth bundles Fu

and F s. Let F1 = Γ(Fu) and F2 = Γ(F s). For a small neighborhood V of f we
can insure that T (g1, g2, h) = D3A(g2, g2, 0)h satisfies Lemma 8. This follows from
the continuity of the norms of the coordinate functions and Lemmas 6 and 7. On
F1 ⊕ F2 we take the norm |(y1,y2) = max{|y1|, |y2|}.

Thus there exists neighborhoods V1 of f in D and U ′
1 of 0 in Γ(M) such that for

g1, g2 ∈ V1 there exists a unique k = u′(g1, g2) ∈ U ′
1 such that A(g1, g2, k) = k. Let

U1 = φ(U ′
1) = exp(U ′

1) ⊂ C, u = φ ◦ u′, and h = u(g1, g2). Then g1 ◦ h = h ◦ g2.
Also u is a continuous function of g1 and g2. Let U2 be a smaller neighborhood of
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id in C such that for all h1, h2 ∈ U2, h1 ◦ h2 ∈ U1. This exists since composition is
continuous. By continuity of u or by continuity of A and the estimate

|u′(g1, g2)− id| ≤ |A(g1, g2, id)− id|/(1− τ − µ− ε),

there exists a smaller neighborhood V2 of f in D such that for g1, g2 ∈ V2, u(g1, g2) ∈
U2. If g ∈ V2 let h = u(g, f) and h′ = u(f, g). Then g ◦h = h◦ f and f ◦h′ = h′ ◦ g.
Thus h ◦ h′ ◦ g = h ◦ f ◦ h′ = g ◦ h ◦ h′. Also h′ ◦ h ◦ f = f ◦ h′ ◦ h. h′ ◦ h, h ◦ h′ ∈ V1

so by uniqueness we get h′ ◦ h = h ◦ h′ = id. Thus h is a homeomorphism.

Remark 5. The proof given above applies directly to prove the local stability of
basic sets. See [4, Theorem 7.3]

Remark 6. Using the Implicit Function Theorem instead of Lemma 8, we can solve
for an h such that g ◦ h = h ◦ f . We do this by always keeping f fixed. h has to
be onto by a degree argument. Using the stable manifold theorem of [4] or [5], we
can show f is expansive, i.e., there exists an r > 0 such that for any two points
x,y ∈ M there exists an integer n such that the distance from fn(x) to fn(y) is
greater than r. From this property, it can be shown that h has to be one to one.

Remark 7. The proof indicated in the Remark 6 does not apply in the general
setting of a basic set of Remark 5.
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