
9.3.1 An Invariant Measure for an Expanding Markov Map

A C2 piecewise expanding map of the interval is a relatively simple example with an absolutely
continuous ergodic invariant measure. This case was proved by Lasota and Yorke (1973). We
consider an even simpler situation which has the Markov Property.

Definition. Let I = [0, 1] be the closed unit interval. A map f : I → I is called a C2 piecewise
expanding Markov map provided there is a partition into subintervals Ii = [xi, xi+1] for i = 1, . . . , k
with endpoints 0 = x1 < x2 < · · · < xk+1 = 1 satisfying the following properties.

(i) The map f is C2 on
⋃

i int(Ii) with a uniform bound on the function and its first two derivatives.
(ii) (Onto) The image of f covers the union of the open subintervals,

f(
⋃
i

int(Ii)) ⊃
⋃
i

int(Ii).

(iii) (Piecewise expanding) There exist constants 1 < α < β such that α ≤ |f ′(x)| ≤ β for all
x ∈ ⋃

i int(Ii).
(iv) (Markov Property) If f(int(Ii)) ∩ int(Ij) 6= ∅, then f(int(Ii)) ⊃ int(Ij).

In the simplest case, f induces a full k-shift, i.e., f(int(Ii)) = int(I) for all 1 ≤ i ≤ k. An example
of such a map is f(x) = k x mod 1.

The main theorem below states that a C2 piecewise expanding Markov map has an invariant
measure µ which is absolutely continuous with respect to Lebesgue measure, λ, i.e., µ = ρλ where
ρ : I → R is an L1 function. In fact the density function is bounded and bounded away from 0, so
log(ρ) is bounded. This condition on ρ implies that the measure µ is equivalent to Lebesgue, in the
sense that it has the same sets of zero measure as Lebesgue.

Theorem. Assume f : I → I is a C2 piecewise expanding Markov map. Then there exists an
invariant measure µ with the following properties.

(a) The measure µ is absolutely continuous with respect to Lebesgue measure, µ = ρ∗ λ. More-
over, the density function ρ∗ is continuous on each int(Ii) and log(ρ∗) is bounded so the
measure is equivalent to Lebesgue.

(b) Assume that the subshift of finite type induced by f is irreducible. Then the map f is ergodic
with respect to µ.

To the complexity of the proof, we assume that f induces a full k-shift. It turns out in this case
that the density function ρ∗ is continuous on all of I. The book Pollicott and Yuri (1998) has a
proof of the general case, which leads to a density function with possibly discontinuities at the end
points of the partition intervals.

When f induces a full k-shift, f restricted to each int(Ii) has an inverse ψi : int(I) → int(Ii)
which extends to a C1 function ψi from all of I to Ii. (If f merely has the Markov Property, then
the different ψi gave different domains which must be taken care of in the proof.) (If f does not
have the Markov Property, then Lasota and Yorke consider the total variation of the function to get
a similar convergence.)
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Before we start the proof, we want to derive an operator whose fixed point correspond to invariant
measures which are absolutely continuous with respect to Lebesgue. If µ is of the form ρ λ, then

∫
I

h(y) dµ(y) =
∫

I

h(y)ρ(y) dλ(y)

for any continuous function h. For the measure µ to be invariant, we need
∫

I

h(y) dµ(y) =
∫

I

h ◦ f(x) dµ(x)

for any continuous function h, i.e.,
∫

I

h(y)ρ(y) dλ(y) =
∫

I

h ◦ f(x)ρ(x) dλ(x)

=
k∑

i=1

∫
Ii

h ◦ f(x)ρ(x) dλ(x)

=
k∑

i=1

∫
I

h(y)ρ(ψi(y))|ψ′i(y)| dλ(y)

=
∫

I

h(y)
[ k∑

i=1

ρ(ψi(y))|ψ′i(y)|
]
dλ(y),

where the third equality uses the change of variable formula for the substitution x = ψi(y). If we
define

L(ρ)(y) =
k∑

i=1

ρ(ψi(y))|ψ′i(y)|

=
∑

x∈f−1(y)

ρ(x)
|f ′(x)| ,

then we need
L(ρ) = ρ.

Conversely, if L(ρ) = ρ, then µ = ρλ is an invariant measure for f which is absolutely continuous
with respect to Lebesgue. The operator L is called the Perron-Frobenius operator . It maps densities
for which log(ρ) is bounded to densities with the same property. Also, by the change of variables
formula, ∫

I

L(ρ)(y) dλ(y) =
∫

I

ρ(y) dλ(y),

so L preserves densities of integral one. Finally, L is easily seen to by a bounded linear operator on
the space of continuous functions on all of I. (This fact uses the extension of ψi to all of I. If f
induces a subshift of finite type, then it is necessary to allow discontinuities at the xj which can be
the end points of the domain of definition of one of the ψi.) Notice that we do not prove that L is
a contraction.

Proof of Part (a) of the Theorem:.
The idea of the proof is to show that the sequence of densities 1, L(1), L2(1), · · · is bounded and

equicontinuous on the intervals int(Ii) separately. It follows that Pn =
1
n

[1 + L(1) + · · ·+ Ln−1(1)]

is bounded and equicontinuous on the intervals int(Ii) separately. By the Ascoli-Arzela Theorem,
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there is a subsequence Pnj which converge to a function ρ∗ which is continuous on
⋃k

i=1 int(Ii). Also
ρ∗ is fixed by L because

L(ρ∗)← L(Pnj ) = L(
1
nj

[1 + L(1) + · · ·+ Lnj−1(1)])

=
1
nj

[L(1) + · · ·+ Lnj (1)]

= Pnj +
1
nj

[Lnj (1)− 1]→ ρ∗.

To show that the family of densities in equicontinuous, we show that the logarithm of the densities
Ln(1) is uniformly Lipschitz on each int(Ii), i.e., there is a constant C independent of n such that
for y, y′ ∈ I,

log(Ln(1)(y))− log(Ln(1)(y′))| ≤ C |y − y′|,

or

Ln(1)(y)
Ln(1)(y′)

≤ eC |y−y′|.

As a first step in the proof of the of the uniform Lipschitz constant, we prove the following lemma
about the ratios of derivatives of powers of f are uniformly Lipschitz. For i = (i1, . . . , in), let ψi be
the inverse of fn restricted to

⋂n−1
j=0 f

j(Iij+1 ). Notice for x ∈ ⋂n−1
j=0 f

j(Iij+1 ), x ∈ Ii1 , f(x) ∈ Ii2 , . . . ,
fn−1(x) ∈ Iin . Therefore, for any y, y′ ∈ I, ψin(y), ψin(y′) ∈ Iin , ψ(in−j ,...,in)(y), ψ(in−j ,...,in)(y′) ∈
Iin−j , and ψi(y), ψi(y′) ∈ Ii1 . Let Ii = ψi(I).

Lemma 3.1. Let f and ψi be as above. There is a constant C1 independent of n and i, such that
the following are true.

(1) For x, x′ ∈ ⋂n−1
j=0 f

j(Iij+1 ).

|(fn)′(x)|
|(fn)′(x′)| ≤ e

C1 |fn(x)−fn(x′)|.

(2) For y, y′ ∈ int(I) and for i = (i1, . . . , in),

|ψ′i(y′)|
|ψ′i(y)|

≤ eC1 |y−y′|.

Proof. Because the derivative of the inverse is one over the derivative of the function, the two
parts are equivalent.
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Considering the second part,

log
∣∣ψ′(i1,...,in

(y′)

ψ′(i1,...,in
(y)

∣∣ =
n∑

j=n

log
∣∣ψij (ψ(ij+1,...,in

(y′))
ψij (ψ(ij+1,...,in

(y))

∣∣

=
n∑

j=n

log
∣∣ f ′(ψ(ij ,...,in

(y))
f ′(ψ(ij ,...,in

(y′))

≤
n∑

j=n

log(1 + C2 |ψ(ij ,...,in
(y)− ψ(ij ,...,in

(y′)|)

≤
n∑

j=n

log
(
1 + C2

|y − y′|
αn+1−j

)

≤ log
(
1 + C2 |y − y′|

∞∑
m=1

α−m
)

= log
(
1 +

C2 |y − y′|
α− 1

)

≤ C2 |y − y′|
α− 1

.

where C2 bounds
supt |f ′′(t)|
infx |f ′(x)| . Letting C1 = C2/(α− 1), we get the result. �

Notice that Ln is the L-function for fn. Using the last lemma,

Ln(1)(y) =
∑

(ii,...,in)

|ψ′(ii,...,in)(y)|

≤
∑

(ii,...,in)

|ψ′(ii,...,in)(y
′)|eC1 |y−y′|

= Ln(1)(y′)eC1 |y−y′|.

Taking logarithms, we get that

log(Ln(1)(y))− log(Ln(1)(y′)) ≤ C1 |y − y′|,

where C1 is independent of n. Because
∫

I Ln(1)(y) dλ(y) = 1, Ln(1)(y) and log(Ln(1)(y)) are
uniformly bounded. It follows that Ln(1) and so Pn are a bounded and equicontinuous family of
functions. By the argument given earlier, a subsequence converge to a fixed point ρ∗ for L. Because
log(ρ∗(y)) is uniformly bounded, the measure induced by ρ∗ is equivalent to Lebesgue. �
Proof of Part (b) of the Theorem:.

In this part of the proof, we again assume that the subshift induced by f is the full k-shift. See
Pollicott and Yuri (1998) for a proof of the general case of f , and for a stronger conclusion than
ergodicity (strongly mixing).

Let A be an invariant set in the Borel σ-algebra with µ(A) > 0, and so λ(A) > 0; by invariant
by f we mean that A = f−1(A). To show that f is ergodic, we need to show that µ(A) = 1 or
µ(Ac) = µ(I \ A) = 0. Given any δ > 0, we want to show the Lebesgue measure of Ac is small
relative to δ so λ(Ac) = 0 and so µ(Ac) = 0.

We first want to see in what sense the cylinder sets form a generating partition partition for
the Borel σ-algebra. (cf. Walters, Theorem 5.25.) Fix a set B in the Borel σ-algebra. For any
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ε > 0, there exists an open set Q such that B ⊂ Q and λ(Q \ B) < ε/2. (See Royden Proposition
15 page 63.) For any i = (i1, . . . , im), the length of Ii is less than α−m. Because the sets Ii get
smaller with the length of i, there exists a countable cover of Q and so of B by cylinder sets with
λ(

⋃
i∈J Ii \ Q) < ε/2 and λ(

⋃
i∈J Ii \ B) < ε. (The open set Q is the countable union of open

intervals, each of with can be covered within an arbitrarily small Lebesgue measure by a countable
number of the cylinder sets.) Therefore, for each set B in the Borel σ-algebra, there is a countable
number of cylinder sets {Ii}i∈J such that B ⊂ ⋃

i∈J Ii and λ(
⋃

i∈J Ii \B) < ε.
Next we show that given any δ > 0, there exits at least one cylinder Ij with j = (j1, . . . jn) for

which

λ(A ∩ Ij) ≥ (1− δ)λ(Ij), or equivalently

λ(Ac ∩ Ij) ≤ δ λ(Ij).

If this is false for all i, then λ(A∩Ii) ≤ (1−δ)λ(Ii) for all i, and so λ(A∩⋃
i∈J Ii) ≤ (1−δ)λ(⋃i∈J Ii)

for any countable union of cylinder sets. Because the cylinder sets form a generating partition, any
set B in the Borel σ-algebra can be approximated by a countable union of disjoint cylinders, and so
λ(A ∩B) ≤ (1− δ)λ(B). By taking B = A, we get that λ(A) ≤ (1− δ)λ(A), which contradicts the
fact that δ > 0 and both µ(A) > 0 and λ(A) > 0.

By Lemma 3.1,
supx∈Ij |(fn)′(x)|
infx∈Ij |(fn)′(x)| ≤ C0 = eC1

for j = (j1, . . . , jn) as above. Since fn(Ij) = I and fn(A)c = Ac, Ac = fn(A)c∩fn(Ij) = fn(Ac∩Ij).
Applying the change of variables formula for integration,

λ(Ac) = λ(fn(Ac ∩ Ij))
=

∫
Ij∩Ac

|(fn)′(x)| dλ(x)

≤ sup
x∈Ij

{|(fn)′(x)|} λ(Ij ∩Ac)

≤ C0 inf
x∈Ij
{|(fn)′(x)|} λ(Ij ∩Ac)

≤ C0
λ(Ij ∩Ac)
λ(Ij)

(since inf
x∈Ij
{|(fn)′(x)|} λ(Ij) ≤ λ(fn(Ij)) = 1)

≤ C0 δ.

Since δ > 0 is arbitrary and C0 is independent of n and so of j and δ, λ(Ac) = 0 and so µ(Ac) = 0.
This completes the proof that f is ergodic. �
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