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Abstract. These notes present recent progress on a conjecture about the dynamics

of rational maps on P1(C), connecting critical orbit relations and the structure of

the bifurcation locus to the geometry and arithmetic of postcritically finite maps

within the moduli space Md. The conjecture first appeared in [BD2]. Also presented

are some related results and open questions.

1. The critical orbit conjecture

These lecture notes are devoted to a conjecture presented in my work with M. Baker

[BD2] and the progress made over the past five years. The setting for this problem is

the dynamics of rational maps

f : P1(C)→ P1(C)

of degree d > 1. Such a map has exactly 2d − 2 critical points, when counted with

multiplicity, and it is well known in the study of complex dynamical systems that the

critical orbits of f play a fundamental role in understanding its general dynamical

features. For example, hyperbolicity on the Julia set, linearizability near a neutral

fixed point, and stability in families can all be characterized in terms of critical orbit

behavior. The postcritically finite maps – those for which each of the critical points

has a finite forward orbit – play a special role within the family of all maps of a given

degree d.

The critical orbit conjecture, in its most basic form, is the following:

Conjecture 1.1. Let ft : P1 → P1 be a nontrivial algebraic family of rational maps

of degree d > 1, parametrized by t in a quasiprojective complex algebraic curve X.

There are infinitely many t ∈ X for which ft is postcritically finite if and only if the

family ft has at most one independent critical orbit.

Remark 1.2. Favre and Gauthier have recently announced a proof of Conjecture

1.1 for all families ft of polynomials, building on the series of works [BD1], [GHT1],

[BD2], [GY], [FG2]. Other forms of this conjecture appear as [BD2, Conjecture 1.10],

[GHT2, Conjecture 2.3], [De2, Conjecture 6.1], [De3, Conjecture 4.8], treating also

the higher-dimensional parameter spaces X, where much less is known.
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An algebraic family is, by definition, one for which the coefficients of ft are mero-

morphic functions of t on a compactification X. We also assume that ft is a holomor-

phic family on the Riemann surface X, in the sense that it determines a holomorphic

map f : X × P1 → P1. The family is said to be trivial if all ft, for t ∈ X, are Möbius

conjugate rational maps.

The notion of having “at most one independent critical orbit” is a bit subtle to

define. I will give two candidate definitions of this notion in Section 2, so Conjecture

1.1 is actually two distinct conjectures. But, roughly speaking, if ci : X → P1,

i = 1, . . . , 2d−2, parametrize the critical points of ft, then “at most one independent

critical orbit” should mean that, for every pair i 6= j, either (1) at least one of ci or cj
is persistently preperiodic, so that fnt (ci(t)) = fmt (ci(t)) or fnt (cj(t)) = fmt (cj(t)) for

some n > m and all t ∈ X; or (2) there is an orbit relation of the form fnt (ci(t)) =

fmt (cj(t)) holding for all t. (Assuming condition (1) or (2) for every pair {i, j} easily

implies that there are infinitely many postcritically finite maps in the family ft, but

this assumption is too strong for a characterization: these conditions do not capture

the possible symmetries in the family ft.)

Let us put this conjecture into context. From a complex-dynamical point of view,

the independent critical orbits in a holomorphic family ft induce bifurcations. Indeed,

a holomorphic family ft with holomorphically-parametrized critical points ci(t) (for t

in a disk D ⊂ C) is structurally stable on its Julia set if and only if each of the critical

orbits determines a normal family of holomorphic functions {t 7→ fnt (c(t))}n≥0 from

D to P1 [MSS], [Ly]. For nontrivial algebraic families as in Conjecture 1.1, McMullen

proved that the family is stable on all of X if and only if all of the critical points

are persistently preperiodic [Mc1]; in other words, the family will be postcritically

finite for all t ∈ X. Thurston’s Rigidity Theorem states that the only nontrivial

families of postcritically finite maps are the flexible Lattès maps, meaning that they

are quotients of holomorphic maps on a family of elliptic curves [DH]; thus, we obtain

a complete characterization of stable algebraic families. From this perspective, then,

Conjecture 1.1 is an attempt to characterize a slight weakening of stability, where

the number of independent critical orbits is allowed to be equal to the dimension

of the parameter space. One then expects interesting geometric consequences: for

example, the postcritically finite maps should be uniformly distributed with respect

to the bifurcation measure (defined in [De1] when dimX = 1 and [BB] in general) on

any such parameter space X.

But Conjecture 1.1 was in fact motivated more from the perspective of arithmetic

geometry and the principle of unlikely intersections, as exposited in [Za]. The moduli

space Md of rational maps on P1 of degree d > 1 is naturally an affine scheme defined

over Q [Si1]. From Thurston’s Rigidity Theorem, we may deduce that the postcriti-

cally finite maps lie in Md(Q), except for the 1-parameter families of flexible Lattès

examples. Furthermore, the postcritically finite maps form
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(a) a Zariski dense subset of Md [De3, Theorem A], and

(b) a set of bounded Weil height in Md(Q), after excluding the flexible Lattès

families [BIJL, Theorem 1.1].

It is then natural to ask which algebraic subvarieties V of Md also contain a Zariski-

dense subset of postcritically finite maps. The general form of the conjecture states

that this is a very special property of the variety V : it should hold if and only if V is

itself defined by critical orbit relations.

This type of question is reminiscent of some famous questions and conjectures in

algebraic and arithmetic geometry. To name a few, we may consider the Manin-

Mumford Conjecture about abelian varieties (now theorems of Raynaud [Ra1, Ra2])

or the multiplicative version due to Lang [La] – where a subvariety contains “too

many” torsion points if and only if it is itself a subgroup (or closely related to one)

– and the André-Oort conjecture which is a moduli-space analogue [KY, Pil, Ts]. In

fact, our conjecture has been called the “Dynamical André-Oort Conjecture” in the

literature; however, unlike for the “Dynamical Manin-Mumford Conjecture” of Zhang

[Zh3, GTZ], there is no overlap between the original conjecture and its dynamical

analogue, at least not in the setting presented here for critical orbits and the moduli

space Md. On the other hand, there are generalizations of each – of our critical orbit

conjecture and of these geometric conjectures – which do have overlap, and some of

this is discussed in Section 5. Here I state a sample result, from my recent joint work

with N. M. Mavraki, extending the work of Masser and Zannier in [MZ1, MZ3] and

closely related to that of Ullmo and Zhang in [Ul, Zh2].

Theorem 1.3. [DM] Let B be a quasiprojective algebraic curve defined over Q. Sup-

pose A → B is a family of abelian varieties defined over Q which is isogenous to a

fibered product of m ≥ 2 elliptic surfaces over B. Let L be a line bundle on A which

restricts to an ample and symmetric line bundle on each fiber At, and let ĥt be the in-

duced Néron-Tate canonical height on At, for each t ∈ B(Q). Finally, let P : B → A

be a section defined over Q. Then there exists an infinite sequence of points tn ∈ B
for which

ĥtn(Ptn)→ 0

if and only if P is special.

Of course, I have not given any of the definitions of the words in this statement, so

it is perhaps meaningless at first glance. My goal is merely to illustrate the breadth

of concepts that connect back to the dynamical statement of Conjecture 1.1 and

the existing proofs of various special cases. To make the analogy explicit: fixing a

section P in A = E1 ×B · · · ×B Em would correspond, in a dynamical setting, to

marking m critical points of a family of rational functions; the parameters t ∈ B(Q)

where ĥt(Pt) = 0 correspond to the postcritically finite maps in the family; and

the “specialness” of P corresponds to the family ft having at most one independent
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critical orbit. In Theorem 1.3, however, the novelty is the treatment of parameters t

with small (positive) height and not only height 0.

Outline. I begin by defining critical orbit relations in Section 2. Section 3 contains

the sketch of a proof of a theorem from [BD1] that inspired our formulation of Con-

jecture 1.1 and many of the proofs that appeared afterwards, especially the cases of

treated in [BD2]. Section 4 brings us up to date with what is now known about Con-

jecture 1.1. Finally, in Section 5, I discuss a generalization of the conjecture which

motivated Theorem 1.3 and related results.

Acknowledgements. Special thanks go to Matt Baker, Myrto Mavraki, Xiaoguang

Wang, and Hexi Ye for many interesting discussions and collaborations which led

to the formulation of Conjecture 1.1 and the work that I have done related to it.

I would also like to thank Khashayar Filom, Thomas Gauthier, Holly Krieger, and

Nicole Looper for their assistance in the preparation of these lecture notes.

2. Critical orbit relations

In this section we formalize the notion of dependent critical orbits to make Con-

jecture 1.1 precise.

Let ft be a nontrivial algebraic family of rational maps of degree d > 1, parameter-

ized by t in a quasiprojective, complex algebraic curve X. By passing to a branched

cover of X, we may assume that each of the critical points of ft can be holomorphically

parameterized by ci : X → P1, i = 1, . . . , 2d − 2. A critical point ci is persistently

preperiodic if it satisfies a relation of the form fnt (ci(t)) = fmt (ci(t)), with n 6= m,

for all t. A pair of non-persistently-preperiodic critical points (ci, cj) is said to be

coincident if we have

(2.1) ci(t) is preperiodic for ft ⇐⇒ cj(t) is preperiodic for ft

for all but finitely many t ∈ X; see [De2, Section 6]. If the relation (2.1) holds for

every pair of non-persistently-preperiodic critical points, then the bifurcation locus

of the family ft – in the sense of [MSS], [Ly] – is determined by the orbit of a single

critical point. That is, choosing any i ∈ {1, . . . , 2d−2} for which ci is not persistently

preperiodic, the sequence of holomorphic maps

{t 7→ fnt (ci(t)) : n ≥ 1}

forms a normal family on an open set U ⊂ X if and only if the family {ft} is J-stable

on U . (See [Mc2, Chapter 4], [DF1, Lemma 2.3].)

Definition 2.1 (One independent critical orbit: weak notion). We say that an al-

gebraic family ft has at most one independent critical orbit if every pair of non-

persistently-preperiodic critical points is coincident.
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The relation (2.1) is implied by a more traditional notion of critical orbit relation,

namely that there exist integers n,m ≥ 0, so that

(2.2) fnt (ci(t)) = fmt (cj(t))

for all t. Because of the possibility of symmetries of ft, we cannot expect (2.1) to

be equivalent to (2.2). Examples are given in [BD2]. In that article, we formulated

a more general notion of orbit relation that accounts for these symmetries and still

implies coincidence. To define this, we let X be a smooth compactification of X, and

consider the family ft as one rational map defined over the function field k = C(X);

it acts on P1
k̄
. A pair a, b ∈ P1(k) is dynamically related if the point (a, b) ∈ P1

k̄
× P1

k̄

lies on an algebraic curve

(2.3) V ⊂ P1
k̄ × P1

k̄

which is forward invariant for the product map

(f, f) : (P1
k̄)

2 → (P1
k̄)

2.

For example, if the point a is persistently preperiodic, then it is dynamically related

to any other point b, taking V = {(x, y) : fn(x) = fm(x)} to depend only on one

coordinate. The relation (2.2) implies that (ci, cj) are dynamically related, taking

V = {(x, y) : fn(x) = fm(y)}. But also, if f commutes with a rational function A

of degree ≥ 1, then points a and b = A(a) are dynamically related by the invariant

curve V = {(x, y) : y = A(x)}.

Definition 2.2 (One independent critical orbit: strong notion). We say that an

algebraic family ft has at most one independent critical orbit if every pair of critical

points is dynamically related.

I expect the two notions of “one independent critical orbit” to be equivalent [De2,

Conjecture 6.1], but we can easily show:

Lemma 2.3. The strong notion implies the weak notion.

Proof. Let ft be a nontrivial algebraic family of rational maps, for t ∈ X, and assume

that it has at most one independent critical orbit, in the strong sense. Let Ft = (ft, ft)

on P1
C × P1

C for all t ∈ X. Assume that neither ci nor cj is persistently preperiodic.

Then there exists an algebraic curve V ⊂ P1
k̄
×P1

k̄
(defined over k = C(X), or perhaps

a finite extension) so that the specializations satisfy

F n
t (ci(t), cj(t)) ∈ Vt

for all n and all but finitely many t. Note that Vt cannot contain the vertical com-

ponent {ci(t)} × P1 for infinitely many t: indeed, the bi-degree of the specialization

Vt within P1
C × P1

C is equal to the bi-degree (k, `) of V in P1
k̄
× P1

k̄
for all but finitely

many t, the curve Vt is invariant under (ft, ft) so a vertical component through ci(t)
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implies a vertical component through fnt (ci(t)) for all n, and there are only finitely

many t where the orbit of ci has length ≤ `. Thus, for all but finitely many t, if ci(t)

is preperiodic, then the orbit of cj(t) is confined to lie in a finite subset, and so cj(t)

will also be preperiodic. By symmetry, the same holds when cj(t) is preperiodic, and

the proof is complete. �

One might ask why we only consider dynamical relations between pairs of critical

points and not arbitrary tuples of critical points (as was first formulated in [BD2]

and [De2]). In fact, the model-theoretic approach of Medvedev [Me] and Medvedev-

Scanlon [MS] implies that it is sufficient to consider only the relations between two

points.

Theorem 2.4. [Me, Theorem 10], [MS, Fact 2.25] Suppose that f is a rational map

of degree > 1, defined over a field k of characteristic 0, and assume that it is not

conjugate to a monomial map, ± a Chebyshev polynomial, or a Lattès map. Let

V ⊂ P1
k̄ × · · · × P1

k̄

be forward-invariant by the action of (f, . . . , f). Then each component of V is a

component of the intersection ⋂
1≤i≤j≤n

π−1
i,j πi,j(V ),

where πi,j is the projection to the product of the i-th and j-th factors in (P1
k̄
)n.

In the setting of non-trivial algebraic families ft, as in Conjecture 1.1, the mono-

mials and Chebyshev polynomials do not arise because they would be trivial, and

the flexible Lattès maps have all their critical points persistently preperiodic. Thus,

we may apply Theorem 2.4 and restrict our attention to dynamical relations among

critical points that depend only on two of the critical points at a time.

Even having narrowed our concept of dynamical relation to (2.3), depending on only

two points, we still do not have an explicit description of all possible relations. The

article [MS] provides a careful and complete treatment of the case of polynomials

f , building on the work of Ritt [Ri1]. Their classification of invariant curves for

polynomial maps of the form (f, f) appears as a key step in the proof of the main

theorem of my work with Baker [BD2], where we prove special cases of Conjecture

1.1.

The classifcation of invariant curves in P1 × P1 for a product of rational maps is

still an open problem. Works by Pakovich and Zieve (see, e.g., [Pa, Zi]) take steps

towards such a classification. I posed the following question in [De3, Conjecture 4.8],

as this represents the form of all relations I know (including for pairs of points that

are not necessarily critical):
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Question 2.5. Let ft be a non-trivial algebraic family of rational maps of degree

> 1, parameterized by t ∈ X, and suppose that a, b ∈ P1(k) are two non-persistently-

preperiodic points, for k = C(X). If a and b are dynamically related in the sense of

(2.3), then do there exist rational functions A,B of degrees ≥ 1 defined over k̄ and

and an integer ` ≥ 1 so that

f ` ◦ A = A ◦ f `, f ` ◦B = B ◦ f `, and A(a) = B(b)?

Note that A and B might themselves be iterates of f . It is known that if two

rational maps of degree > 1 commute, and if they aren’t monomial, Chebyshev, or

Lattès, then they must share an iterate [Ri2].

3. Proof strategy: heights and equidistribution

In this section, I present the sketch of a proof of a closely related result from [BD1],

one which initially inspired the formulation of Conjecture 1.1 and its generalizations.

The ideas in the proof given here have gone into the proofs of all of the succes-

sive results related to Conjecture 1.1, though of course distinct technical issues and

complications arise in each new setting.

Before getting started, I need to introduce one important tool, the canonical height

of a rational function [CS]. If f : P1 → P1 is a rational map of degree d > 1, defined

over a number field, then its canonical height function

ĥf : P1(Q)→ R≥0

is defined by

ĥf (α) = lim
n→∞

1

dn
h(fn(α))

where h is the usual logarithmic Weil height on P1(Q). It is characterized by the

following two important properties: (1) there exists a constant C = C(f) so that

|h − ĥf | < C and (2) ĥf (f(α)) = d ĥf (α) for all α ∈ P1(Q). As a consequence, we

have ĥf (α) = 0 if and only if α has finite forward orbit for f [CS, Corollary 1.1.1].

Theorem 3.1. [BD1] Fix points a1, a2 ∈ C. Let ft(z) = z2 + t be the family of

quadratic polynomials, for t ∈ C, and define

S(ai) := {t ∈ C : ai is preperiodic for ft}.

Then the intersection S(a1) ∩ S(a2) is infinite if and only if a1 = ±a2.

Sketch of Proof. Step 1 is to treat the easy implication: assume that a1 = ±a2 and

deduce that S(a1) ∩ S(a2) is an infinite set. This uses a standard argument from

complex dynamics. For any given point a, we first observe that the family of functions

{t 7→ fnt (a)} cannot be normal on all of C. Indeed, for all t large, we find that

fnt (a) → ∞ as n → ∞, while for t = a − a2, the point a is fixed by ft. In fact, via
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Montel’s Theorem on normal families, there must be infinitely many values of t for

which a is preperiodic, and therefore S(a) is infinite. If a1 = ±a2, then ft(a1) = ft(a2)

for all t, and therefore S(a1) = S(a2).

The goal of Step 2 is to show that S(a1) ∩ S(a2) being infinite implies that a1 and

a2 are coincident: we will see that S(a1) = S(a2). First assume that a1 and a2 are

algebraic numbers, and suppose K is a number field containing both a1 and a2. We

define a height function on P1(K) associated to each ai. Indeed, for each t ∈ K, we

set

hi(t) := ĥft(ai)

where ĥft is the canonical height function of ft. In particular, we see that

hi(t) = 0 ⇐⇒ t ∈ S(ai).

It turns out that hi is the height associated to a continuous adelic metric of non-

negative curvature on the line bundle O(1) on P1 (in the sense of [Zh4]) and an adelic

measure (in the sense of [BR1, FRL]). Therefore, we may apply the equidistribution

theorems of [BR2, FRL, CL] to see that the elements of S(ai) are uniformly distributed

with respect to a natural measure µi on P1(C). More precisely, given any sequence

of finite subsets Sn ⊂ S(ai) which are Gal(K/K)-invariant and with |Sn| → ∞, the

discrete probablity measures

µSn =
1

|Sn|
∑
s∈Sn

δs

on P1(C) will converge weakly to µi. In particular, when S(a1) ∩ S(a2) is infinite,

this set – because it is Gal(K/K) invariant – will be uniformly distributed with

respect to both µ1 and µ2, allowing us to deduce that µ1 = µ2. Even more, by the

nondegeneracy of a pairing between heights of this form, we can also conclude that

h1 = h2. Therefore S(a1) = S(a2).

Step 2 will be complete if we can also treat the case where at least one of the

ai is not algebraic. In this setting, the smallest field K containing the ai and Q
will have a nonzero transcendence degree over Q, so we treat K as a function field.

The arithmetic equidistribution theorems ([BR2, FRL, CL]) work just as well in this

setting. However, the equidistribution in question – of Galois-invariant subsets of

S(ai) becoming uniformly distributed with respect to a natural measure µi – is no

longer taking place on the Riemann sphere P1(C). Instead, we obtain a geometric

convergence statement on a family of Berkovich projective lines P1
v, one for each place

v of the function field K. Nevertheless, one concludes from equidistribution that if

S(a1) ∩ S(a2) is infinite, then the heights h1 and h2 on P1(K) must coincide, and

therefore

a1(t) is preperiodic for ft ⇐⇒ a2(t) is preperiodic for ft
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for all t ∈ K. But if there is some element t of C where a1(t) is preperiodic, then

that t can be identified with an element of K, so in fact

a1(t) is preperiodic for ft ⇐⇒ a2(t) is preperiodic for ft

for all t ∈ C.

Step 3 is to show that coincidence implies an explicit relation between the two

points a1 and a2. When a1 and a2 are both algebraic, a closer look at the definitions

of the heights hi reveals that the measure µi on P1(C) is the equilibrium measure

on the boundary of a “Mandelbrot-like” set associated to the point ai. That is, we

consider the sets

Mi = {t ∈ C : sup
n
|fnt (ai)| <∞},

and µi is the harmonic measure for the domain Ĉ \Mi centered at ∞. (Note that

if ai = 0, then Mi is the usual Mandelbrot set M , and µi is the bifurcation measure

for the family ft.) But even for non-algebraic points ai, having concluded from Step

2 that S(a1) = S(a2), we see that M1 = M2; this is because the set Mi is obtained

from the closure S(ai) by filling in the bounded complementary components. Now,

just as in the original proof that the Mandelbrot set M is connected, which uses a

dynamical construction of the Riemann map to Ĉ\M , we investigate the uniformizing

map near ∞ for the sets M1 = M2. The injectivity of that map – built out of the

Böttcher coordinates near ∞ for the maps ft with t large – allows us to deduce that

ft(a1) = ft(a2) for all t large. Therefore, we have a1 = ±a2. �

It is worth observing at this point, as was observed in [BD1], that the proof of

Theorem 3.1 gives a stronger statement. The arithmetic equidistribution theorems

allow us to treat intersections of points of small height and not only those of height

0 (for the heights hi introduced in the proof). For example, the proof provides:

Theorem 3.2. [BD1] Fix points a1, a2 ∈ Q. Let ft(z) = z2 + t be the family of

quadratic polynomials, for t ∈ C, and define

S(ai) := {t ∈ C : ai is preperiodic for ft}.

Then S(ai) ⊂ Q, and the following are equivalent:

(1) there exists an infinite sequence tn ∈ Q for which h1(tn)→ 0 and h2(tn)→ 0;

(2) the intersection S(a1) ∩ S(a2) is infinite;

(3) S(a1) = S(a2);

(4) µ1 = µ2; and

(5) a1 = ±a2.

The original motivation for statements like Theorem 3.2, and specifically the inclu-

sion of condition (1), includes the Bogomolov Conjecture, proved by Ullmo and Zhang
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[Ul, Zh2], building on the equidistribution theorem of Szpiro-Ullmo-Zhang [SUZ]. I

will return to this theme in §5.

4. What is known

A good deal of work has gone into proving Conjecture 1.1 and its generalizations

in various settings. Here, I mention some of the key recent developments. Most

progress has been made in the context of polynomial dynamics. One important

advantage of working with polynomials is that the conjecture itself is easier to state

in a more precise form: the critical orbit relations, in the sense of (2.3), have been

classified, as discussed in Section 2. But also, we have the advantage of extra tools:

the uniformizing Böttcher coordinates of a complex polynomial near ∞ have proved

immensely useful (as in Step 3 of the proof of Theorem 3.1), and the height functions

(as defined in Step 2 of Theorem 3.1) are easier to work with. For example, the main

theorem of [FG3] addresses an important property of the dynamically-defined local

height functions, used in their proof of Conjecture 1.1 for families of polynomials; the

analogous result fails for general families of rational maps [DO].

Conjecture 1.1 is trivially satisfied for polynomials in degree 2, where the moduli

space has dimension 1 and can be parameterized by the family ft(z) = z2 + t with

t ∈ C with exactly one independent critical point at z = 0. There are infinitely

many postcritically finite polynomials in this family. Furthermore, it is known that

the postcritically finite maps are uniformly distributed with respect to the bifurcation

measure in this family (which is equal to the equilibrium measure µM on the boundary

of Mandelbrot set) [Le]. In addition, Baker and Hsia proved an arithmetic version

of the equidistribution theorem, deducing that any sequence of Gal(Q/Q)-invariant

subsets of the postcritically finite parameters is also uniformly distributed with respect

to µM [BH].

In my work with Baker [BD2], we proved Conjecture 1.1 for families ft of polynomi-

als of arbitrary degree, parametrized by t ∈ C with coefficients that were polynomial

in t. In degree 3, but for arbitrary algebraic families, the following result was obtained

a few years ago, independently by Favre-Gauthier and Ghioca-Ye.

Theorem 4.1. [FG2, GY] Let X be an irreducible complex algebraic curve in the

space P3 ' C2 of polynomials of the form

fa,b(z) = z3 − 3a2z + b,

with critical points at ±a. There are infinitely many t ∈ X for which ft is postcritically

finite if and only if one of the following holds:

(1) either a or −a is persistently preperiodic on X;



CRITICAL ORBITS AND ARITHMETIC EQUIDISTRIBUTION 11

(2) there is a symmetry of the form

ft(−z) = −ft(z)

for all t ∈ X and all z ∈ C, and X = {(a, b) ∈ C2 : b = 0}; or

(3) there exist non-negative integers n and m so that

fnt (a(t)) = fmt (−a(t))

for all t ∈ X.

Furthermore, in each of these cases, the postcritically finite maps will be (arithmeti-

cally) equidistributed with respect to the bifurcation measure on X.

Remark 4.2. Favre and Gauthier have recently announced a proof of Conjecture 1.1

for families ft of polynomials in arbitrary degree, extending Theorem 4.1.

The proof of Theorem 4.1 has the same outline as the proof of Theorem 3.1. The

idea is to consider the two points at and −at for t ∈ X and follow the same three

steps. Step 1, the “easy” implication, follows as before, with the additional input that

any non-persistently-preperiodic critical point along the curve X must be undergoing

bifurcations [DF1, Theorem 2.5].

For Step 2, we assume that neither critical point is persistently preperiodic and

that there are infinitely many postcritically finite maps on X, and we aim to show

coincidence of the two points. There is one simplifying condition in the setting of

Theorem 4.1: the postcritically finite maps are algebraic points in P3, so X must itself

be defined over Q. Thus we can avoid the arguments needed for the transcendental

case of Theorem 3.1. Nevertheless, there are new difficulties that arise; for example,

it is not obvious that the height functions

h±a(t) := ĥft(±at)

defined on X(Q) will satisfy the hypotheses of the existing arithmetic equidistribution

theorems. This is checked with some careful estimates near the cusps of X. Then one

can apply the equidistribution theorems of [Yu, Th, CL] and conclude that ha = h−a
on X. In particular, we then have that a(t) is preperiodic if and only if −a(t) is

preperiodic, for all t ∈ X.

Finally, one needs to deduce the explicit algebraic relations on the critical points, as

in Step 3 of Theorem 3.1. One strategy is provided in my work with Baker [BD2], to

first produce an analytic relation between the critical points a and −a via the Böttcher

coordinates at infinity (similar to what was done for Theorem 3.1 but in a more

general setting). From there, we used iteration to promote the analytic relation to

an algebraic relation which is invariant under the dynamics. This strategy is followed

in [GY]; an alternative approach is given in [FG2]. To obtain the explicit form of

the relation, Baker and I used results of Medvedev and Scanlon [MS], classifying the

invariant curves for (f, f) acting on P1 × P1 (over the function field C(X)). The
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results of Favre-Gauthier and Ghioca-Ye for cubic polynomials simplify the relations

further to give the possibilities appearing in Theorem 4.1.

One can also formulate a version of Conjecture 1.1 for tuples of polynomials or

rational maps, rather than a single family of rational maps. The following result

answered a question posed by Patrick Ingram, inspired by the result of André about

complex-multiplication pairs in the moduli space M1 ×M1 ' C2 of pairs of elliptic

curves [An].

Theorem 4.3. [GKNY] Let X be an irreducible complex algebraic curve in the space

P2×P2 ' C2 of pairs of quadratic polynomials of the form ft(z) = z2+t. If X contains

infinitely many pairs (t1, t2) for which both ft1 and ft2 are postcritically finite, then

X is

(1) a vertical line {t1} × C where ft1 is postcritically finite;

(2) a horizontal line C× {t2} where ft2 is postcritically finite; or

(3) the diagonal {(t, t) : c ∈ C}.

By contrast, in the case of pairs of elliptic curves, there is an infinite collection

of modular curves in M1 × M1, all of which contain infinitely many CM pairs.

Thus, Theorem 4.3 tells us that there is no analogue of these modular curves in the

quadratic family. To see this, the authors prove an important rigidity property of

the Mandelbrot set M : it is not invariant under nontrivial algebraic correspondences.

This rigidity was recently extended to a local, analytic rigidity statement in [Lu]: Luo

proved that any conformal isomorphism between domains U, V ⊂ C intersecting the

boundary ∂M , sending U ∩ ∂M to V ∩ ∂M , must be the identity.

For non-polynomial rational maps, Conjecture 1.1 is only known for some particular

families. For example, in the moduli space of quadratic rational maps M2 ' C2, for

each λ ∈ C, one may consider the dynamically-defined subvariety

Per1(λ) = {f in M2 with a fixed point of multiplier λ},

where the multiplier of a fixed point is simply the derivative of f at that point [Mi].

(Similarly, one can define the algebraic curves Pern(λ) for maps with a cycle of period

n and multiplier λ, but one should take care in the definition when λ = 1.) Observe

that the curve Per1(0) is defined by a critical orbit relation, the existence of a fixed

critical point. Thus, the curve Per1(0) coincides with the family of polynomials within

M2; in particular, it contains infinitely many postcritically finite maps.

Theorem 4.4. [DWY1] Fix λ ∈ C. The curve Per1(λ) in the moduli space of qua-

dratic rational maps contains infinitely many postcritically finite maps if and only if

λ = 0.

Remark 4.5. The analogous result for Per1(λ) in the space of cubic polynomials

was obtained in [BD2]. The theorem is proved for curves Pern(λ), for every n, in the

space of cubic polynomials in [FG2].
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All of these theorems are closely related to questions about the geometry of the

bifurcation locus the family ft of rational maps, as seen in Step 3 in the proof of

Theorem 3.1, or the statement about the rigidity of the Mandelbrot set used to prove

Theorem 4.3. In the case of Per1(λ), we should first pass to a double cover P̂er1(λ)

where the two critical points can be holomorphically and independently parameterized

by c1 and c2. The bifurcation measure µλi of the critical point ci reflects the failure

of the family {t 7→ fnt (ci(t))} to be normal on P̂er1(λ). Let S(ci) denote the set

of parameters t where the critical point ci is preperiodic. It is known that S(ci) is

uniformly distributed with respect to this measure µλi for all λ ∈ C [DF1, DF2]. The

proof of Theorem 4.4 uses the following two strengthenings of this equidistribution

statement:

Theorem 4.6. [DWY1] For each λ ∈ C \ {0}, we have µλ1 6= µλ2 on P̂er1(λ).

Theorem 4.7. [DWY1, MY] For each λ ∈ Q \ {0}, we have arithmetic equidistri-

bution of S(c1) and S(c2). That is, for any infinite sequence tn in S(ci), the discrete

measures
1

|Gal(Q(λ)/Q(λ)) · tn|

∑
t∈Gal(Q(λ)/Q(λ))·tn

δt

converge weakly to the bifurcation measure µλi on P̂er1(λ).

Remark 4.8. The height functions hi(t) := ĥft(ci(t)) on P̂er1(λ) provided the first

examples of this type that are not adelic – in the sense of [Zh4, BR2, FRL] – and

therefore did not satisfy the hypotheses of the existing equidistribution theorems. The

article [MY] extends the equidistribution theorems of [BR2, FRL, CL] for heights on

P1(Q) to the setting of quasi-adelic heights.

Remark 4.9. Despite Theorem 4.6, it is not yet known if suppµλ1 6= suppµλ2 for all

λ ∈ C; see [DWY1, Question 2.4]. One can ask, much more generally, about the

bifurcation loci associated to independent critical points in algebraic families ft in

every degree and if they can ever coincide; see [De3, Question 2.5].

An assortment of results is known for other families of rational functions. For

example, in [GHT2], the authors treat maps of the form

ft(z) = g(z) + t

for t ∈ C, where g ∈ Q(z) is a rational function of degree > 2 with a superattracting

fixed point at∞. They show the weaker form of the conjecture, deducing coincidence

of the critical orbits if there are infinitely many postcritically finite maps; this follows

from an equidistribution result associated to the dynamically-defined height functions

on P1(Q) (similar to Step 2 in the proofs of Theorems 3.1 and 4.1).

Almost nothing is known about Conjecture 1.1 in the context of higher-dimensional

parameter spaces X, apart from the “easy” implication of the conjecture, as in Step
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1 of Theorem 3.1; see [De2]. A general form of the arithmetic equidistribution theo-

rem exists for higher-dimensional arithmetic varieties [Yu], but the challenge lies in

understanding when a dynamically-defined height will satisfy the stated hypotheses;

see, e.g., [FG1] and Remark 4.8 above.

5. Arbitrary points

In this final section, I present some results about a generalization of Conjecture

1.1 that connects with interesting results and questions about elliptic curves (or more

general families of abelian varieties). As in Theorem 3.1, one can study the orbits of

arbitrary points, not only the critical orbits. This may seem less motivated in the

context of studying complex dynamical systems, as the critical points are the ones

that induce bifurcations (in the traditional dynamical sense), but the problem is quite

natural from another point of view.

As an example, the following result was proved by Masser and Zannier, motivated

by a conjecture of Pink [Pin]:

Theorem 5.1. [MZ1, MZ2] Let Et be a non-isotrivial family of elliptic curves over

a quasiprojective curve B, so defining an elliptic curve E over the function field

k = C(B). Suppose that P and Q are non-torsion elements of E(k). There are

infinitely many t ∈ B(C) for which Pt and Qt are both torsion on Et if and only if

there exist nonzero integers n and m so that nP +mQ = 0 on E.

Because the multiplication-by-m maps on an elliptic curve descend to rational maps

on P1, and because the torsion points on the elliptic curve project to the preperiodic

points on P1, Theorem 5.1 has a direct translation into a dynamical statement:

Theorem 5.2. Let ft be a family of flexible Lattès maps on P1 parameterized by t ∈ B,

induced from an endomorphism of a non-isotrivial elliptic curve E over k = C(B).

Fix non-persistently-preperiodic points P,Q ∈ P1(k). Then there are infinitely many

t ∈ B for which both Pt and Qt are preperiodic for ft if and only if there exist Lattès

maps gt and ht (also induced by endomorphisms of E) for which

gt(Pt) = ht(Qt)

for all t.

In fact, it was Theorem 5.1 that inspired Theorem 3.1 in the first place: Baker and

I were answering a question posed by Umberto Zannier. And compare the conclusion

of Theorem 5.2 to that of Question 2.5: note that the Lattès maps gt and ht will

commute with ft. Conjecture 1.1 is just a special case of conjectures presented in

[GHT2] or [De2], addressing algebraic families ft and arbitrary (non-critical) pairs of

marked points, and for which Theorems 5.1 and 5.2 are also a special case:
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Conjecture 5.3. Let ft : P1 → P1 be a nontrivial algebraic family of rational maps

of degree d > 1, parametrized by t in a quasiprojective, complex algebraic curve X.

Suppose that a, b : X → P1 are meromorphic functions on a compactification X.

There are infinitely many t ∈ X for which both a(t) and b(t) are preperiodic for ft if

and only if a and b are dynamically related.

When E is the Legendre family of elliptic curves, and the points P and Q lie in

P1(C), X. Wang, H. Ye, and I gave a dynamical proof of Theorem 5.2, building on the

same ideas that went into the proof of Theorem 3.1. As in Theorem 3.2, we obtain

the stronger statement about parameters of small height, which does not follow from

the proofs given in [MZ1, MZ2]. For algebraic points, our theorem can be stated as:

Theorem 5.4. [DWY2] Let Et = {(x, y) : y2 = x(x − 1)(x − t)} be the Legendre

family of elliptic curves, with t ∈ C \ {0, 1}. Fix a, b ∈ Q \ {0, 1}. The following are

equivalent:

(1) |Tor(a) ∩ Tor(b)| =∞;

(2) Tor(a) = Tor(b);

(3) there is an infinite sequence {tn} ⊂ Q so that ĥa(tn)→ 0 and ĥb(tn)→ 0;

(4) µa = µb on P1(C); and

(5) a = b.

Here, Tor(a) = {t ∈ C : (a,
√
a(a− 1)(a− t)) is torsion on Et}. The height

ĥa(t) is the Néron-Tate canonical height of the point (a,
√
a(a− 1)(a− t)) in Et for

t ∈ Q \ {0, 1}, so that ĥa(t) = 0 if and only if t ∈ Tor(a). As in the theorems of the

previous section, the geometry of the “bifurcation locus” associated to the marked

points a and b plays a key role; the Gal(Q(a)/Q(a))-invariant subsets of Tor(a) are

uniformly distributed with respect to a natural measure µa. As in the dynamical ex-

amples, Theorems 3.2 or 4.1, the measures µa at the archimedean places (the limiting

distributions on the underlying complex curve) are sufficient to characterize the ex-

istence of a dynamical relation. It is not known if this will be the case for all families

of rational maps in Conjecture 5.3.

And this returns us, finally, to the statement of Theorem 1.3 from the Introduction.

That result proves a special case of a conjecture of Zhang [Zh1] from his ICM lecture

notes from exactly 20 years ago, which was posed as an extension of the Bogomolov

Conjecture to non-trivial families of abelian varieties. Our proof was inspired by

the combination of ideas presented here, connecting dynamical orbit relations and

equidistribution theorems with the geometry of abelian varieties. These ideas are,

in turn, closely related to the original proofs of Ullmo and Zhang of the Bogomolov

Conjecture [Ul, Zh2], relying on the (arithmetic) equidistribution of the torsion points

within an abelian variety defined over Q [SUZ]. We have not yet been able to give a

purely dynamical proof of Theorem 1.3, in the flavor of Theorems 3.1 and 5.4. Instead,
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we used the work of Silverman [Si2, Si3, Si4] to provide the technical statements

needed to show that our height functions on B(Q) satisfy all the hypotheses needed

to apply the arithmetic equidistribution theorems of Thuillier and Yuan [Th, Yu].

Via the equidistribution theorem, we were able to reduce the statement of Theorem

1.3 to a more general form of Theorem 5.1 proved by Masser and Zannier [MZ3].
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71(1983), 207–233.
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