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Dimension of Pluriharmonic Measure and Polynomial

Endomorphisms of C
n

I. Binder and L. DeMarco

1 Introduction

The dimension of a probability measure on a metric space is defined as the minimal

Hausdorff dimension of a set of full measure. In this paper, we show that the dimen-

sion of pluriharmonic measure in C
n is bounded above by 2n − 1 when it arises as the

measure of maximal entropy for a regular polynomial endomorphism.

For a compact set K in C
n, pluriharmonic measure is defined as

µK := ddcGK ∧ · · · ∧ ddcGK, (1.1)

where GK is the pluricomplex Green’s function of K with pole at infinity, d = ∂ + ∂̄, and

dc = (i/2π)(∂̄ − ∂). The support of µK is contained in the Shilov boundary of K. When

n = 1, the measure µK is simply harmonic measure for the domain C − K evaluated at

infinity. See Section 2.

Let F : C
n → C

n be a regular polynomial endomorphism; that is, one which ex-

tends holomorphically to CP
n. The filled Julia set of F is the compact set of points with

bounded orbit,

KF =
{
z ∈ C

n : Fm(z) �−→ ∞ as m −→ ∞}
. (1.2)

Pluriharmonic measure µF on KF is ergodic for F and the unique measure of maximal

entropy [9, 14]. It is not difficult to construct examples where the Hausdorff dimension
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of the support of µF is any value up to and including 2n. In answer to a question posed in

[15], we prove the following theorem.

Theorem 1.1. The dimension of pluriharmonic measure on the filled Julia set of a regu-

lar polynomial endomorphism of C
n is at most 2n − 1. �

The theorem generalizes a well-known result when n = 1. Harmonic measure

(evaluated at infinity) on the Julia set of a polynomial in C is the unique measure of

maximal entropy [10, 16, 20]. The estimate on dimension follows from a relation to the

Lyapunov exponent and the entropy. Indeed, for any polynomial map F on C, we have

dim µF =
log(deg F)

L(F)
≤ 1, (1.3)

where µF denotes harmonic measure on the Julia set of F and L(F) =
∫

log |F ′|dµF is the

Lyapunov exponent [23, 24]. The Lyapunov exponent of a polynomial is bounded below

by log(deg F) [27], and equality holds in (1.3) if and only if the Julia set is connected.

When n = 2, a homogeneous polynomial lift of a Lattès example on CP
1 shows

that the estimate is sharp. It would be interesting to know which examples obtain the

maximal dimension.

In a general (nondynamical) setting, Oksendal first conjectured in [25] that the

dimension of harmonic measure in C would never exceed 1, though the Hausdorff dimen-

sion of its support can take values up to and including 2. Makarov [21] addressed this

question for simply connected domains showing that the dimension of harmonic mea-

sure is always equal to 1. The theorem was extended by Jones and Wolff [17] establish-

ing that the dimension is no greater than 1 for general planar domains. Moreover, Wolff

[29] proved that there is always a set of full harmonic measure with σ-finite Hausdorff

1-measure. The complex structure on the plane plays a crucial role in the proof of these

theorems. Namely, they rely heavily on the subharmonicity of the function log |∇u| for

harmonic u.

It is also possible to take a dynamical approach to the general dimension esti-

mates in C. It follows from the results of Carleson, Jones, and Makarov [12, 22] that any

planar domain can be approximated in some sense by domains invariant under hyper-

bolic dynamical systems (the fractal approximation). In the special case of conformal

Cantor sets, Carleson [11] obtained dimension estimates using the dynamics. Recently,

it was shown that it suffices to consider polynomial Julia sets in the fractal approxima-

tion [6].

For harmonic measure in R
n, however, the methods applied to the study of di-

mension in C fail dramatically. The logarithm of the gradient of a harmonic function in
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R
n, n > 2, is not subharmonic, and there is no dynamical interpretation of harmonic

measure. Furthermore, in [30], Wolff showed that for each n > 2 there exists a domain

in R
n with the dimension of harmonic measure strictly greater than n − 1. A result of

Bourgain, however, gives an upper bound on the dimension of harmonic measure in the

form n − ε(n) [7]. Because of the harmonicity of |∇u|(n−2)/(n−1) for a harmonic function u

in R
n (see [28]), it is conjectured that the dimension of harmonic measure in R

n does not

exceed n − 1 + (n − 2)/(n − 1).

For pluriharmonic measure in C
n, both of the observations which led to proofs of

the Oksendal conjecture in C are valid: the measure depends on the complex structure of

C
n and is the measure of maximal entropy for polynomial dynamics. Theorem 1.1 should

be the first step in the proof of the following conjecture.

Conjecture 1.2. The dimension of pluriharmonic measure of domains in C
n is at most

2n − 1. �

The maximal dimension is obtained, for example, for the unit sphere in C
n. In this case,

pluriharmonic measure agrees with the area measure.

We also believe that a precise formula for the dimension of pluriharmonic mea-

sure can be obtained in the dynamical case, just as in dimension one (see (1.3)). For dif-

feomorphisms of compact manifolds with a hyperbolic ergodic measure µ, Ledrappier

and Young [19] proved that

dimu
µ =

∑ hi(µ)
λi(µ)

, (1.4)

where dimu refers to local dimension in the direction of the unstable manifold, the λi are

the positive Lyapunov exponents, and the hi are the corresponding directional entropies

(as defined in [19]). It was established in [1] that, in fact, dim µ = dimu
µ+dims

µ, the sum

of the dimensions in the directions of stable and unstable manifolds when all Lyapunov

exponents are non-zero. In [4], the formulas were applied to polynomial diffeomorphisms

of C
2, a setting in which the directional entropies can be computed explicitly. We make

the following conjecture which would imply Theorem 1.1.

Conjecture 1.3. For any holomorphic F : CP
n → CP

n of (algebraic) degree d > 1,

dim µF = log d

n∑
i=1

1

λi
, (1.5)

where λi, i = 1, . . . , n, are the Lyapunov exponents of F with respect to µF repeated with

multiplicities. �
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Sketch proof of Theorem 1.1. We rely on estimates on the Lyapunov exponents of F with

respect to µF. In particular, Briend and Duval [8] showed that the minimal Lyapunov ex-

ponent λmin is bounded below by (1/2) log d (where d is the degree of F). Bedford and Jon-

sson [3] proved that the sum Λ of the Lyapunov exponents satisfies Λ ≥ ((n + 1)/2) log d.

Combining these, we have Λ ≥ λ0 + ((n − 1)/2) log d, where λ0 = max{λmax, log d}.

We define an invariant set Y of full measure so that preimages of small balls cen-

tered at points in Y scale in a way governed by the Lyapunov exponents. Namely, for each

point y ∈ Y, there exists an infinite set My ⊂ Z such that if m ∈ My, then the mth preim-

age of a ball of radius r centered at Fm(y) should contain a ball of radius ≈ re−mλmax

around y. In addition, the component of the preimage containing y will have volume

≈ r2ne−2mΛ. The details of the construction are very similar to the methods of [8].

Let Am = {y ∈ Y : m ∈ My}. Note that Y =
⋂

k

⋃
m≥k Am. If we cover Y by N balls of

radius r, then the “good” (as described above) mth preimages define a cover of Am by at

most Ndmn regions of controlled shape. Their union contains an re−mλmax-neighborhood

of Am and has volume less than or equal to Nr2ndme2m(n−1)λ0 by the estimates above.

Finally, a standard connection between the rate of decay of volume of a neighbor-

hood of Y and its dimension allows to conclude that dim Y ≤ 2n − 1. �

2 Pluriharmonic measure in C
n and dynamics

In this section, we give some of the necessary background on pluripotential theory in C
n

and its relation to polynomial dynamics. More details on pluriharmonic measure can be

found in [2, 5, 18].

Let PSH(Cn) denote the class of plurisubharmonic functions in C
n. For a compact

set K in C
n, the pluricomplex Green’s function with pole at infinity is defined as

GK(z) = sup
{
v(z) : v ∈ PSH

(
C

n
)
, v ≤ 0 on K, v(z) ≤ log ‖z‖ + O(1) near ∞}

. (2.1)

If GK is continuous, the set K is said to be regular.

In contrast to the one-dimensional setting, GK is not necessarily pluriharmonic

(or even harmonic) outside K. It is, however, maximal plurisubharmonic; that is, if v is

any plurisubharmonic function on a domain Ω compactly contained in C
n − K with v ≤

GK on ∂Ω, then v ≤ GK on Ω. Equivalently, the Monge-Ampere mass of GK,

µK =
(
ddcGK

)n
, (2.2)

vanishes in C
n − K. We call the measure µK the pluriharmonic measure on K and note
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that it is supported in the Shilov boundary of K. In fact, if K is regular, then its support is

equal to the Shilov boundary [5].

Pluriharmonic measure arises in the study of dynamics just as in the one-

dimensional setting. A polynomial endomorphism F : C
n → C

n is called regular if it

can be extended holomorphically to CP
n. The degree of F is the degree of its polynomial

coordinate functions. We consider only those F of degree greater than 1. The escape rate

function of F is defined by

GF(z) = lim
m→∞

1

dm
log+

∥∥Fm(z)
∥∥, (2.3)

where d is the degree of F and log+ = max{log, 0}. The function GF is continuous and

agrees with the pluricomplex Green’s function for the filled Julia set KF = {z ∈ C
n :

Fm(z) � ∞}. Fornaess and Sibony [14] showed that the pluriharmonic measure µF on KF

is ergodic for F and a measure of maximal entropy.

By the Oseledec ergodic theorem [26], F has n Lyapunov exponents λmin ≤ · · · ≤
λmax almost everywhere with respect to µF. We will only need the existence of the mini-

mal, maximal, and the sum Λ of the Lyapunov exponents, which we can define as follows:

λmin = − lim
m→∞

1

m

∫
log

∥∥(DFm
)−1∥∥dµF,

λmax = lim
m→∞

1

m

∫
log

∥∥DFm
∥∥dµF,

Λ =

∫
log

∣∣det DF
∣∣dµF.

(2.4)

Briend and Duval [8] proved that the Lyapunov exponents are all positive; they showed

λmin ≥ 1

2
log d, (2.5)

where d is the degree of F. Bedford and Jonsson [3] studied the sum of the Lyapunov

exponents and demonstrated that

Λ ≥ n + 1

2
log d. (2.6)

For the proof of Theorem 1.1, it is convenient to work in the natural extension

(X̂, F) where F is invertible (see [8, 13]). Let P(F) =
⋃

m≥0 Fm(C(F)) be the postcritical set of

F and set X = C
n −

⋃
m≥0 F−m(P(F)). The space (X̂, F) is the set of all bi-infinite sequences

{
x̂ =

( · · · x−1x0x1 · · ·
) ∈ ∞∏

−∞
X : F

(
xi

)
= xi+1

}
. (2.7)
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The map F acts on (X̂, F) by the left shift. We define projections πi : (X̂, F) → X for all i by

πi(x̂) = xi. Since µF does not charge the critical locus of F,we have µF(X) = 1. The measure

µF lifts to a unique F-invariant probability measure µ̂ on (X̂, F) so that π0∗µ̂ = µF.

3 Proof of the main theorem

In this section, we give a proof of the following theorem which clearly implies Theorem

1.1.

Theorem 3.1. Pluriharmonic measure µF on the filled Julia set of a degree d regular poly-

nomial endomorphism F : C
n → C

n satisfies

dim µF ≤ 2n − 2 +
log d

max{log d, λmax}
, (3.1)

where λmax is the largest Lyapunov exponent of F with respect to µF. �

We begin with a classical lemma (Lemma 3.2). Statements (a) and (c) are exactly

as in [8, Lemma 2]. We first observe that there exists a constant C(n) so that for any n×n

matrix A with ‖A − I ‖ < 1, we have

| det A − 1| ≤ C(n)
2

‖A − I ‖. (3.2)

Lemma 3.2. Let g : Ω → C
n be a function with bounded C2-norm on a domain Ω ⊂ C

n

and set M = C(n)(‖g‖C2 + 1). Let x ∈ Ω be a noncritical point of g. Given ε > 0, let

r(x) = (1 − e−ε/3)/2M‖(Dxg)−1‖2, set B0 = B(g(x), r(x)), and let B1 be the preimage of B0

under g containing x. Then,

(a) g−1 is well defined in B0,

(b) Lip(g|B1) ≤ ‖(Dxg)‖eε/3,

(c) Lip(g−1|B0) ≤ ‖(Dxg)−1‖eε/3,

(d) infy∈B1
| det(Dyg)| ≥ | det(Dxg)|e−ε/3. �

Proof. Consider a ball B2 = B(x, ρ), where

ρ =
eε/3 − 1

M
∥∥(Dxg

)−1∥∥ . (3.3)

For each y ∈ B2, we have

∥∥∥ I −
(
Dxg

)−1(
Dyg

)∥∥∥ ≤ (‖g‖C2 + 1
)∥∥∥(Dxg

)−1
∥∥∥ρ ≤ eε/3 − 1

C(n)
, (3.4)
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and in particular, Lip(I −(Dxg)−1 ◦ g) < 1. If g(y1) = g(y2) for some y1 �= y2 ∈ B2, then

∥∥y1 − y2

∥∥ =
∥∥∥(y1 −

(
Dxg

)−1
g
(
y1

))
−
(
y2 −

(
Dxg

)−1
g
(
y2

))∥∥∥ <
∥∥y1 − y2

∥∥, (3.5)

which is a contradiction, and therefore g is injective on B2.

To establish (a), we need to know that B0 ⊂ g(B2). The map g is open on B2, so it

is enough to check that if |y1 − x| = ρ, then |g(y1) − g(x)| > r(x). But this is again a direct

consequence of (3.4).

Now, since B1 ⊂ B2, we have for all y ∈ B1,

∥∥Dxg − Dyg
∥∥ ≤ ∥∥Dxg

∥∥∥∥∥ I −
(
Dxg

)−1(
Dyg

)∥∥∥ ≤ ∥∥Dxg
∥∥eε/3 − 1

C(n)
, (3.6)

and we conclude that

∥∥Dyg
∥∥ ≤ ∥∥Dxg

∥∥+
eε/3 − 1

C(n)

∥∥Dxg
∥∥ ≤ eε/3

∥∥Dxg
∥∥, (3.7)

establishing (b).

To prove (c), observe that by (3.4) for y ∈ B2,

∥∥∥(Dyg
)−1
∥∥∥ ≤

∥∥∥(Dxg
)−1
∥∥∥∥∥∥( I −

(
I −
(
Dxg

)−1
Dyg

))−1∥∥∥
≤

∥∥∥(Dxg
)−1
∥∥∥

1 −
∥∥∥ I −

(
Dxg

)−1
Dyg

∥∥∥
≤
∥∥∥(Dxg

)−1
∥∥∥eε/3.

(3.8)

For (d), we compute for all y ∈ B1 (using (3.2)),

∣∣det Dyg − det Dxg
∣∣ = ∣∣det Dxg

∣∣∣∣∣1 − det
(
Dxg

)−1
Dyg

∣∣∣
≤ ∣∣det Dxg

∣∣C(n)
2

∥∥∥ I −
(
Dxg

)−1
Dyg

∥∥∥
≤ ∣∣det Dxg

∣∣1
2

(
eε/3 − 1

)
≤ ∣∣det Dxg

∣∣(1 − e−ε/3
)
,

(3.9)

and therefore,

inf
y∈B1

∣∣det Dyg
∣∣ ≥ ∣∣det Dxg

∣∣e−ε/3. (3.10)
�
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Let F be a regular polynomial endomorphism of C
n and µF the pluriharmonic

measure on the boundary of the filled Julia set of F. Denote by λmin, λmax, and Λ the min-

imal, maximal, and sum of the n Lyapunov exponents of F with respect to µF. The space

(X̂, F) denotes the natural extension of F. See Section 2.

Lemma 3.3. Given ε > 0, there exist measurable functions r and κ on (X̂, F) so that r(x̂) >

0 and κ(x̂) < ∞ for almost every x̂, and for each m ≥ 0, a well-defined branch of F−m

sending x0 to x−m with

(a) F−m(B(x0, s)) ⊃ B(x−m, (s/κ(x̂))e−m(λmax+ε)) for all s ≤ r(x̂),

(b) Vol F−mB(x0, r(x̂)) ≤ κ(x̂)e−m(2Λ−ε). �

Proof. Choose N so that

0 < λmin − ε ≤ −
1

N

∫
log

∥∥∥(DFN
)−1
∥∥∥dµF ≤ λmin,

λmax ≤ 1

N

∫
log

∥∥DFN
∥∥dµF ≤ λmax + ε.

(3.11)

Observe that

Λ =
1

N

∫
log

∣∣det DFN
∣∣dµF (3.12)

for any N ≥ 0.

For notational simplicity, set g = FN. Observe that it is enough to prove the state-

ment of the lemma for g instead of F.

Fix x̂ ∈ (X̂, g). Let

r
(
x−m

)
=

1 − e−ε/3

2M
∥∥∥(Dx−mg

)−1
∥∥∥2

, (3.13)

as in Lemma 3.2 where Ω is a large ball containing the filled Julia set of F. By the ergodic

theorem applied to the function

x̂ �−→ log
∥∥∥(Dx0

g
)−1
∥∥∥, (3.14)

we have

lim
m→∞

1

m
log

∥∥∥(Dx−mg
)−1
∥∥∥ = 0, (3.15)
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and therefore there exists a measurable function η > 0 on (X̂, g) with

r
(
x−m

) ≥ η
(
x̂
)
e−mε/2 (3.16)

for all m ≥ 0 and almost every x̂.

Let Bm = B(x0, r(x−1)) ∩ · · · ∩ gmB(x−m, r(x−m−1)). Let g−m denote the inverse

branch of gm taking x0 to x−m, well defined on Bm by Lemma 3.2(a). Iterating results (b),

(c), and (d) of Lemma 3.2, we have

Lip
(
g−m

∣∣Bm

) ≤ ∥∥∥(Dx−mg
)−1
∥∥∥ · · · ∥∥∥(Dx−1

g
)−1
∥∥∥emε/3,

Lip
(
gm
∣∣g−1Bm

) ≤ ∥∥Dx−mg
∥∥ · · · ∥∥Dx−1

g
∥∥emε/3,

inf
y∈g−mBm

∣∣det Dygm
∣∣ ≥ ∣∣det Dx−mgm

∣∣e−mε/3.

(3.17)

Applying the ergodic theorem to the functions x̂ �→ log ‖(Dx0
g)−1‖, x̂ �→ log ‖Dx0

g‖,
and x̂ �→ log | det Dx0

g|, we see that there exists a measurable function 1 ≤ C(x̂) < ∞ so

that

Lip
(
g−m

∣∣Bm

) ≤ C
(
x̂
)
e−m(Nλmin−ε/2), (3.18)

Lip
(
gm
∣∣g−mBm

) ≤ C
(
x̂
)
em(Nλmax+ε/2), (3.19)

inf
y∈g−mBm

∣∣det Dygm
∣∣ ≥ 1

C
(
x̂
)em(NΛ−ε/2), (3.20)

for almost every x̂.

Let r(x̂) = min{η(x̂)/C(x̂), 1}. By induction and estimates (3.16) and (3.18), we es-

tablish that B(x0, r(x̂)) is contained in Bm for all m ≥ 0. By (3.19), we have

B
(
x0, r

(
x̂
)) ⊃ gmB

(
x−m,

r
(
x̂
)

2C
(
x̂
)e−m(Nλmax+ε/2)

)
. (3.21)

By (3.20), the volume of g−mB(x0, r(x̂)) is bounded by

Vol
(
g−mB

(
x0, r

(
x̂
))) ≤ Vol

(
B
(
x0, r

(
x̂
)))

C
(
x̂
)2

e−m(2NΛ−ε). (3.22)

The lemma is proved upon setting κ(x̂) = 2C(x̂)2 Vol B1. �

Proof of Theorem 1.1. For fixed ε > 0, let r and κ be as in Lemma 3.3. Let d be the degree of

F and let λmin, λmax, and Λ be the minimal, maximal, and sum of the Lyapunov exponents

of F.
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Choose a set Â ⊂ (X̂, F) and r0, κ0 > 0 so that

Â ⊂ {
x̂ ∈ (X̂, F

)
: r
(
x̂
) ≥ r0, κ(x̂) ≤ κ0

}
, (3.23)

π0(Â) has compact closure in C
n and µ̂(Â) > 0. Let Ŷ ⊂ (X̂, F) be the set of all points whose

forward orbit under F often lands in Â infinitely. By ergodicity, µ̂(Ŷ) = 1. Let Y = π0(Ŷ) =

{x0 : x̂ ∈ Ŷ}, so µ(Y) = 1, and let Ai = π−i(Â). Observe that

Y =
⋂
l≥0

⋃
m≥l

Am. (3.24)

We will show that the Hausdorff dimension of Y is bounded above by 2n − 2 +

log d/λ0 + 4ε/λ0, where λ0 = max{λmax, log d}. As Y has full measure and ε is arbitrary,

this will prove the theorem.

For a ball B in C
n, let (1/2)B denote a concentric ball with half the radius. Let Σ

denote a finite collection of balls B of radius r0 so that the balls (1/2)B cover A0. For each

point y ∈ Am, select ŷ ∈ Â so that y = π−m(ŷ). Choose an element B of Σ so that π0(ŷ) lies

in (1/2)B. Let By be the preimage of F−mB containing y. The collection of these By for all

y ∈ Am defines the finite cover Σm of Am.

If σ is the number of elements in Σ, then the number of elements in Σm is no

greater than σdmn. Let λ0 = max{log d, λmax}. We will establish the following two proper-

ties of the cover Σm:

(I) the union
⋃

B∈Σm
B contains an (r0/4κ0)e−m(λ0+ε)-neighborhood of Am,

(II) Vol(
⋃

B∈Σm
B) ≤ σdmκ0e−m(2λ0−ε).

Observe first that for each y ∈ Am, the set By ∈ Σm contains a ball of radius

(r0/4κ0)e−m(λmax+ε) around y by Lemma 3.3. Of course, λmax ≤ λ0, thus giving (I).

To establish (II),we observe that as FmBy ⊂ B(π0(ŷ), r0) for each By ∈ Σm, Lemma

3.3(b) implies that

Vol By ≤ κ0e−m(2Λ−ε). (3.25)

Summing over the volumes of all elements in Σm, we write

Vol

( ⋃
B∈Σm

B

)
≤ σdmnκ0e−m(2Λ−ε). (3.26)

By (2.6), Λ is bounded below by ((n + 1)/2) log d, and by (2.5), each Lyapunov exponent

is bounded below by (1/2) log d. Combining these gives Λ ≥ ((n − 1)/2) log d + λ0, and we

obtain statement (II).
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We define a covering Mm of Am to be the collection of all mesh cubes of edge

length (1/
√

2n)(r0/4κ0)e−m(λ0+ε) which intersect Am. Let c = (1/
√

2n)(r0/4κ0). By prop-

erty (I), each cube is contained in an element of Σm. The number of cubes in Mm is

bounded above by the volume Vol(
⋃

B∈Σm
B), divided by the volume of each cube. That is,

∣∣Mm

∣∣ ≤ σdmκ0e−m(2λ0−ε)

c2ne−2mn(λ0+ε) =
σκ0

c2n
dme2(n−1)mλ0e(2n+1)mε. (3.27)

We now show that Hausdorff measure of Y in dimension 2n − 2 + log d/λ0 + 4ε/λ0

is finite, thus completing the proof. Fix δ > 0. Choose l ≥ 0 so that the mesh cubes in Mm

are of diameter δm ≤ δ for each m ≥ l. The union of the elements of Mm for m ≥ l covers

Y. Therefore,

H2n−2+log d/λ0+4ε/λ0
(Y) ≤

∑
m≥l

∣∣Mm

∣∣(δm

)2n−2+log d/λ0+4ε/λ0

≤ C
∑
m≥l

dme2(n−1)mλ0e(2n+1)mεe−m(λ0+ε)(2n−2+log d/λ0+4ε/λ0)

= C
∑
m≥l

e−mε(1+log d/λ0+4ε/λ0)

≤ C

∞∑
0

e−mε < ∞.

(3.28)
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