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Abstract. We study the projection π :Md → Bd which sends an affine conjugacy

class of polynomial f : C → C to the holomorphic conjugacy class of the restric-

tion of f to its basin of infinity. When Bd is equipped with a dynamically natural

Gromov-Hausdorff topology, the map π becomes continuous and a homeomorphism

on the shift locus. Our main result is that all fibers of π are connected. Conse-

quently, quasiconformal and topological basin-of-infinity conjugacy classes are also

connected. The key ingredient in the proof is an analysis of model surfaces and

model maps, branched covers between translation surfaces which model the local

behavior of a polynomial.

1. Introduction

Let f : C → C be a complex polynomial of degree d ≥ 2. Iterating f yields a

dynamical system. The plane then decomposes into the disjoint union of its open,

connected basin of infinity defined by

X(f) = {z ∈ C : fn(z)→∞ as n→∞}
and its complement, the compact filled Julia set K(f).

Many naturally defined loci in parameter space (such as the connectedness locus,

the shift locus, external rays, their impressions, and parapuzzles) are defined by

constraints on the dynamics of f on X(f). Motivated by this, we study the forgetful

map sending a polynomial f : C → C to its restriction f : X(f) → X(f) on its

basin of infinity. The basin X(f) is equipped with a dynamically natural translation

surface structure. In this work and its sequels [DP1, DP2] we exploit this Euclidean

perspective to analyze the global structure of moduli spaces of complex polynomials.

1.1. Connected fibers. The moduli space Md of complex affine conjugacy classes

of degree d polynomials inherits a natural topology from the coefficients of represen-

tatives f . Let Bd denote the set of conformal conjugacy classes of maps f : X(f)→
X(f), and let

π :Md → Bd
be the map sending a polynomial f to its restriction f |X(f). For each f ∈ Md, the

basin of infinity X(f) is equipped with a canonical harmonic Green’s function Gf
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Figure 1.1. For d = 2, the moduli spaceM2 is isomorphic to the com-

plex plane, as each conjugacy class is uniquely respresented by poly-

nomial f(z) = z2 + c for c ∈ C. The connectedness locus C2 is the

much-studied Mandelbrot set. The projection π : M2 → B2 collapses

the Mandelbrot set to a point and is one-to-one elsewhere.

and hence a flat conformal metric |∂Gf | with isolated singularities. We endow the

space Bd with the Gromov-Hausdorff topology on the metric spaces (X(f), 2 |∂Gf |)
equipped with the self-map f : X(f)→ X(f); see §3. With respect to this topology,

the space Bd becomes a locally compact Hausdorff metrizable topological space. The

shift locus Sd consists of polynomials f for which all d− 1 critical points lie in X(f).

It forms an open subset of Md; its image under π is dense in Bd (Proposition 5.4).

Recall that a continuous map between topological spaces is monotone if it has

connected fibers. Our main result is

Theorem 1.1. The projection

π :Md → Bd
is continuous, proper, and monotone. Furthermore, π is a homeomorphism on the

shift locus.

The key part of Theorem 1.1 is the connectedness of fibers, which is already

well known in certain important cases. The fiber over (zd,C \ D) is precisely the

connectedness locus Cd, the set of maps f with connected filled Julia set. The set Cd
is known to be cell-like (see [DH, Thm. 8.1] for a proof in degree 2, [BH1, Cor. 11.2]

for degree 3, and [La, Ch. 9] for general degrees), thus connected. Our theorem gives

an alternate proof of its connectedness. The other extreme is also well known: for a

polynomial in the shift locus, the basin X(f) is a rigid Riemann surface, so such a

polynomial is uniquely determined by its basin dynamics. We exploit this rigidity in

the proof of Theorem 1.1. In the course of the proof we show that the shift locus is

connected (Corollary 6.2), a fact which we could not find explicitly stated elsewhere.
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1.2. Topological conjugacy. It was observed in [McS, §8] that any two polynomials

f, g which are topologically conjugate on their basins of infinity are in fact quasicon-

formally conjugate there. It follows that there is an (analytic) path of polynomials

gt, 0 ≤ t ≤ 1 such that (i) g0 = g, (ii) gt is quasiconformally conjugate on X(gt) to

g on X(g) for all 0 ≤ t ≤ 1, and (iii) g1 is conformally conjugate on X(g1) to f on

X(f), i.e. π(g1) = π(f). Since the fiber of π containing f is connected, we obtain the

following corollary to Theorem 1.1:

Corollary 1.2. Topological or quasiconformal conjugacy classes of basins (f,X(f))

are connected in Md.

1.3. Model maps and sketch proof of Theorem 1.1. Except for the proof of

monotonicity, the arguments in the proof are fairly standard. We record the data

of the holomorphic 1-form ∂Gf on a basin of infinity X(f). We use the associated

Euclidean structure on the basin to define a Gromov-Hausdorff topology on Bd. Con-

tinuity and properness of π follow from basic properties of Gf . We use the rigidity of

basins to deduce that π is a homeomorphism on the shift locus.

To treat the monotonicity, we examine the Euclidean structure on a basin of

infinity in pieces we call models: branched covers between translation surfaces which

model the restriction of f to certain subsets of X(f). We introduce spaces of models,

consisting of all branched covers between abstract Riemann surfaces of a special type,

and we study the topology of these spaces; via uniformization they may be viewed as

subsets of a space of polynomials.

The idea of the proof of monotonicity in Theorem 1.1 is the following. For each

f , the Green’s function Gf : X(f) → (0,∞) is harmonic and satisfies Gf (f(z)) =

d ·Gf (z). For t > 0, let Xt(f) = {z : Gf (z) > t}. Then f : Xt(f)→ Xd·t(f) ⊂ Xt(f),

and we may consider the restriction f |Xt(f) up to conformal conjugacy.

For each f ∈Md and t > 0, we define

B(f, t) = {g ∈Md : (g,Xt(g)) is conformally conjugate to (f,Xt(f))}.
The fiber of π containing f may be expressed as the nested intersection

⋂
t>0 B(f, t).

We shall show that B(f, t) is connected for all (suitably generic) t. The intersection

of B(f, t) with the shift locus contains a distinguished subset

S(f, t) = {g ∈ B(f, t) : Gg(c) ≥ t for all critical points c of g}.
We show that the space S(f, t) is connected by proving that it is homeomorphic to

(the finite quotient of) a product of finitely many connected spaces of models. We

construct paths from points in B(f, t) to S(f, t) by “pushing up” the critical values; to

do this formally, we define the process of gluing new models into the basin of infinity.

We deduce the connectedness of B(f, t) from that of S(f, t).

In fact, the proof of monotonicity of π begins like the known proof of connect-

edness of the locus Cd. When f has connected Julia set, the set B(f, t) coincides
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with

B(t) = {g ∈Md : Gg(c) ≤ t for all critical points c of g}
for every t > 0. It follows from [BH1, Cor. 11.2] and [La, Ch. 9] that B(t) is topo-

logically a closed ball, and its boundary S(t) = {g : maxcGg(c) = t} is a topological

sphere. The connectedness locus is the nested intersection Cd =
⋂
t B(t), showing that

Cd is cell-like. By contrast, for general f , the topology of B(f, t) depends on f and

can change as t decreases.

1.4. Rigidity and other remarks. Intuitively, one might expect that the fibers

of π : Md → Bd are identified with products of connectedness loci Cdi of degrees

di ≤ d, each of which is connected. That is, the affine conjugacy class of a polynomial

f should be determined by the conformal conjugacy class of its restriction (f,X(f))

together with a finite amount of “end-data”: the restriction of f to non-trivial periodic

components of the filled Julia set K(f). It is easily seen to hold in degree 2, and it

follows in degree 3 by the results of Branner and Hubbard in [BH1], [BH2, §9], where

every fiber of π in M3 is either a point, a copy of the Mandelbrot set C2, or the full

connectedness locus C3. However, discontinuity of straightening should imply that

this intuitive expectation fails in higher degrees; see [In].

As observed above, for maps f in the shift locus the basin of infinity is a rigid

Riemann surface: up to postcomposition with affine maps, there is a unique conformal

embedding X(f) ↪→ C. Consequently, the restricted conformal dynamical system

f : X(f) → X(f) determines the affine conjugacy class of f : C → C. So the

projection π : Md → Bd is a bijection on the shift locus. In order for X(f) to be

rigid, the filled Julia set K(f) must be a Cantor set. Following partial results in [BH2,

§5.4] and [Em], a converse has been established in [Z] and [YZ]. That is, if K(f) is a

Cantor set, then the restriction f : X(f)→ X(f) uniquely determines the conformal

conjugacy class of f . It follows that the projection π :Md → Bd is a bijection on the

full Cantor locus in Md. It is not known whether X(f) is always a rigid Riemann

surface when K(f) is a Cantor set.

The set S(f, t) (introduced in §1.3) has been studied by other authors in the

special case when all critical points of f have escape rate equal to t. In this case,

the set S(f, t) is a set G(t) independent of f ; it is the collection of polynomials

in Md where all critical points escape at the same rate t. Further, the set G(t) is

homeomorphic to a finite quotient of the compact, connected space of degree d critical

orbit portraits [Ki, Lemma 3.25]. The set G(t) is equipped with a natural measure µ

inherited from the external angles of critical points. The Branner-Hubbard stretching

operation deforms a polynomial in the escape locus along a path accumulating on

the connectedness locus. For µ-almost every point of G(t), this path has a limit, and

the measure µ pushes forward to the natural bifurcation measure supported in the

boundary of the connectedness locus [DF, Thm. 7.20].
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As described above, we use spaces of models to describe the structure of our

sets S(f, t). In a sequel to this article, we give alternative descriptions of spaces of

models in terms of branched coverings of laminations. In this way, spaces of models

may be viewed as a generalization of the space of critical portraits. Using this extra

combinatorial structure, we address in [DP2] the classification, presently unknown, of

the countable set of globally structurally stable conjugacy classes in the shift locus.

1.5. Outline. In section 2 we summarize background from polynomial dynamics.

In section 3 we define the Gromov-Hausdorff topology on Bd and prove that the

projection π is continuous and a homeomorphism on the shift locus. In section 4 we

develop the theory of model surfaces and model maps. In section 5, the connectedness

of S(f, t) is proved, and in section 6 it is applied to complete the proof of Theorem

1.1.

1.6. Acknowledgement. We would like to thank Curt McMullen for his helpful

suggestions, and Hiroyuki Inou, Chris Judge, and Yin Yongcheng for useful conversa-

tions. We are especially grateful to the anonymous referee for numerous and detailed

comments.

2. Spaces of polynomials

In this section we introduce the moduli spaces Md and give some background

on polynomial dynamics.

2.1. Polynomial dynamics. Let f be a complex polynomial of degree d ≥ 2. The

filled Julia set

K(f) = {z : the sequence fn(z) is bounded}
is compact, and its complement X(f) = C \ K(f) is open and connected. For

t ∈ [0,∞) define log+(t) = max{0, log t}. The function

Gf : C→ [0,∞)

given by

Gf (z) = lim
n→∞

1

dn
log+ |fn(z)|

measures the rate at which the point z escapes to infinity under iteration of f . It

vanishes exactly on K(f), is harmonic on X(f), and on all of C it is continuous,

subharmonic, and satisfies the functional equation Gf (f(z)) = d ·Gf (z) (see e.g. [Mi,

§18]).

For t > 0, we define

Xt(f) = {z : Gf (z) > t}, Yt(f) = {z : t ≤ Gf (z) ≤ 1/t},
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and we set

M(f) = max{Gf (c) : f ′(c) = 0}, m(f) = min{Gf (c) : f ′(c) = 0}.
2.2. Monic and centered polynomials. Every polynomial

f(z) = adz
d + ad−1z

d−1 + · · ·+ a0,

with ai ∈ C and ad 6= 0, is conjugate by an affine transformation A(z) = az + b

to a polynomial which is monic (ad = 1) and centered (ad−1 = 0). The monic and

centered representative is not unique, as the space of such polynomials is invariant

under conjugation by A(z) = ζz where ζd−1 = 1. In this way, we obtain a finite

branched covering

Pd →Md

from the space Pd ' Cd−1 of monic and centered polynomials to the moduli space

Md of conformal conjugacy classes of polynomials. Thus, Md has the structure of a

complex orbifold of dimension d − 1. The functions M(f) and m(f) are continuous

and invariant under affine conjugation, and M(f) is proper [BH1, Prop. 3.6]. As a

function of f and of z, Gf (z) can be expressed as a locally uniform limit of the pluri-

harmonic functions log |fn(z)| where Gf (z) > 0; therefore, Gf (z) is pluriharmonic on

the locus in Pd where Gf (z) > 0; see the proof of [BH1, Prop. 1.2].

It is sometimes convenient to work in a space with marked critical points. Let

H ⊂ Cd−1 denote the hyperplane given by {(c1, . . . , cd−1) : c1 + . . .+ cd−1 = 0}. Then

the map

ρ : H× C→ Pd
given by

(2.1) ρ(c1, . . . , cd−1; a)(z) =

∫ z

0

d ·
d−1∏
i=1

(ζ − ci) dζ + a

gives a polynomial parameterization of Pd by the location of the critical points and

the image of the origin. Setting

P×d = H× C,

we refer to P×d as the space of critically marked polynomials.

2.3. External rays and angles. Fix a monic and centered polynomial f of degree

d > 1. Near infinity, there is a conformal change of coordinates which conjugates

f to z 7→ zd. The local conjugating isomorphism is unique up to multiplication by

a (d − 1)st root of unity and is therefore uniquely determined if required to have

derivative 1 at infinity (see e.g. [BH1, Prop. 1.4]). It extends to an isomorphism

ϕf : {Gf > M(f)} → {z ∈ C : |z| > eM(f)}
called the Böttcher map, satisfying Gf = log |ϕf |. For each fixed θ ∈ R/2πZ, the

preimage under ϕf of the ray {reiθ : r > eM(f)} is called the external ray of angle
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θ for f . There are exactly d − 1 fixed external rays mapped to themselves under f ;

their arguments are asymptotic to 2πk/(d− 1) near infinity for k = 0, . . . , d− 2.

On {|z| > eM(f)}, for each angle θ, the external ray of angle θ coincides with a

gradient flow line of Gf . This ray can be extended uniquely to all radii r > 1 provided

that when flowing downward, the trajectory does not meet any of the critical points

of Gf , i.e. critical points of f or any of their iterated inverse images. It follows that

for all but countably many θ, the external ray of angle θ admits such an extension,

i.e. is nonsingular. We see then that the external rays of f define a singular vertical

foliation on X(f) which is orthogonal to the singular horizontal foliation defined

by the level sets of Gf . These foliations coincide with the vertical and horizontal

foliations associated to the holomorphic 1-form

ωf = 2i ∂Gf

on X(f). We will exploit this point of view further in the next section.

We emphasize that, by definition,Md is a quotient of Pd by the cyclic group of

order d − 1 acting by conjugation via rotations of the plane centered at the origin.

Therefore, given an element ofMd, it defines a conjugacy class of a dynamical system

on a Riemann surface isomorphic to the plane, and it defines an identification of this

surface with the plane, up to this rotational ambiguity. Thus, given an element of

Md, together with a choice of fixed external ray, there is a unique such identification

sending this chosen fixed external ray to the external ray whose asymptotic argument

is zero.

2.4. Critical values. Throughout this work, we will make implicit use of the follow-

ing fact, which is easily proved using the Riemann-Hurwitz formula. If f : C→ C is a

nonconstant polynomial and D ⊂ C is a bounded Jordan domain whose boundary is

disjoint from the critical values of f , then f−1(D) is a finite union of Jordan domains,

the restriction f : f−1(D) → D is a proper branched covering of degree deg(f), and

f−1(D) consists of a single component if and only if D contains all critical values of

f .

The following two lemmas have nothing to do with dynamics and will be used in

the proof of the connectedness and compactness of the space of local models (§4.8).

The proof of Lemma 2.1 is a non-dynamical version of the proof in [BH1, Prop. 3.6]

showing properness of f 7→M(f).

Lemma 2.1. Let ν̃ : P×d → Cd−1 be the map sending a critically marked polynomial

to its ordered list of critical values and ν : Pd → Cd−1/Sd−1 ' Cd−1 the map sending a

polynomial to its unordered set of critical values. Then ν̃ and ν are proper. Moreover,

ν̃ is a polynomial map, and has the property that any path in the codomain can be

lifted (not necessarily uniquely) to a path in the domain.
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Proof. Equation (2.1) shows the map ν̃ is polynomial. Fix R > 0. Suppose f(z) =

zd + ad−2z
d−2 + . . . + a1z + a0 belongs to P×d and the critical values of f lie in

DR. There is a unique univalent analytic map ψf : C \ DR1/d → C tangent to

the identity at infinity and satisfying f ◦ ψf (w) = wd. By the Koebe 1/4-theorem,

ψf (C \ DR1/d) ⊃ C \ D4R1/d , so the critical points of f are contained in D4R1/d . It

follows that the coefficients ad−2, . . . , a1 are bounded in modulus by a constant C1(R).

Since in addition f is assumed monic, the map f is Lipschitz on D4R1/d with constant

C2(R), so the image f(D4R1/d) has diameter less than a constant C3(R). Since the

critical values of f lie in DR, the image f(D4R1/d) meets DR, and so |a0| = |f(0)| is

bounded by a constant C4(R) as well. Hence ν̃ and ν are proper. The final assertion

about path lifting is well-known; see [GR, §III.B]. �

Lemma 2.2. Let C be any compact and path-connected subset of C. The subset of

Pd with all critical values in C is compact and path-connected.

Proof. Consider the diagram

P×d
ρ

��

ν̃ // Cd−1

��
Pd ν // Cd−1/Sd−1

The right-hand vertical map is proper, and Lemma 2.1 implies the horizontal maps

are proper, so the compactness conclusion holds.

Fix now v ∈ C. There is a unique monic and centered polynomial with a single

critical value at v of multiplicity d − 1. It is f1(z) = zd + v. For any other f with

all critical values in C, we can construct a path to f1. Let (v1, . . . , vd−1) ∈ Cd−1 be

a labelling of the critical values of f (listed with multiplicity). Choose a continuous

deformation of these points vi(t) ∈ C for t ∈ [0, 1] so that

(i) vi(0) = vi for all i,

(ii) vi(1) = v for all i.

By Lemma 2.1 the motion of labelled critical values can be lifted under ν̃; it can then

projected under ρ to obtain a path from f to f1 for which the corresponding maps all

have critical values lying in C. Hence this set of polynomials is path-connected. �

3. Restricting to the basin of infinity

Recall that Bd denotes the space of conformal conjugacy classes of (f,X(f)).

Here we introduce the Gromov-Hausdorff topology on Bd and begin the analysis of

the restriction map

π :Md → Bd.
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We prove the continuity of π and show that it is a homeomorphism on the shift locus

in Md.

3.1. The conformal metric |ω| on the basin of infinity. Fix a polynomial f of

degree d ≥ 2. On its basin of infinity X(f), recall that Gf denotes the harmonic

escape rate function and

ωf = 2i ∂Gf

the corresponding holomorphic 1-form, so that |ωf | is the associated singular flat

conformal metric. In this way, the pair (X(f), ωf ) becomes a horizontal translation

surface with height function Gf . Note that the height Gf (z) of any point z ∈ X(f)

coincides with its |ωf |-distance to the lower ends of X(f). Recall that

M(f) = max{Gf (c) : f ′(c) = 0}

denotes the maximal critical height of f and

m(f) = min{Gf (c) : f ′(c) = 0}

the minimal critical height.

The zeros of ωf coincide with the critical points of f in X(f) and all of their

preimages by the iterates fn. The neighborhood {z : Gf (z) > M(f)} of infinity is

isometric to a half-infinite Euclidean cylinder of radius 1. In fact, if L is any horizontal

leaf of ωf at height c, and if the level of L is defined as the integer

(3.1) l(L) = min{n ≥ 0 : dnc ≥M(f)},

then the length of L is ∫
L

|ωf | =
deg(f l(L)|L)

dl(L)
2π.

Further, if A is a connected component of {a < Gf < b} which is topologically an

annulus, then it is isometric to a cylinder of height b − a and circumference
∫
L
|ωf |

for any horizontal leaf L in A.

On the basin of infinity, conformal and isometric conjugacies are the same thing.

Lemma 3.1. Two polynomials f and g are conformally conjugate on their basins of

infinity if and only if they are isometrically conjugate with respect to the conformal

metrics |ωf | and |ωg|. In particular, the escape rates of the critical points are isometric

conjugacy invariants.

Proof. If f and g are conformally conjugate, then the conjugacy sends ωf to ωg, and

therefore their basins are isometrically conjugate. Conversely, the conformal metric

|ωf | determines the complex structure on X(f), so an isometry must be a conformal

isomorphism. �
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3.2. The topology of Bd. We define here the Gromov-Hausdorff topology on the

space of triples (f,X(f), |ωf |) in Bd. We will see that this topology is fine enough

to guarantee that Bd contains a homeomorphic copy of the shift locus Sd, but is

also coarse enough to guarantee that many natural maps and operations on Bd are

continuous.

Given a point of Bd represented by (X(f), f, |ωf |), a neighborhood basis consists

of the collection of open sets Ut,ε(f) ⊂ Bd, where ε > 0 and 1/t > M(f), defined as

follows. Recall that

Yt(f) = {t ≤ Gf (z) ≤ 1/t}.
Let ρf (·, ·) denote the distance function on Yt(f) induced by the conformal metric

|ωf | (since Yt(f) is convex, ρf coincides with the restriction of the length metric to

Yt(f)). Now suppose g is a polynomial with 1/t > M(g). An ε-conjugacy between

f |Yt(f) and g|Yt(g) is a relation which is nearly the graph of an isometric conjugacy.

That is, as a relation, it is a subset Γ ⊂ Yt(f)× Yt(g) such that

(1) nearly surjective:

(a) for every a ∈ Yt(f), there exists a pair (x, y) ∈ Γ such that ρf (a, x) < ε,

(b) for every b ∈ Yt(g), there exists a pair (x, y) ∈ Γ such that ρg(b, y) < ε,

(2) nearly isometric: if (x, y) and (x′, y′) are in Γ, then

|ρf (x, x′)− ρg(y, y′)| < ε,

and

(3) nearly conjugacy: for each (x, y) ∈ Γ such that (f(x), g(y)) lies in Yt(f)×
Yt(g), there exists (x′, y′) ∈ Γ such that ρf (x

′, f(x)) < ε and ρg(y
′, g(y)) < ε.

The set Ut,ε(f) consists of all triples (g,X(g), |ωg|) for which 1/t > M(g) and for

which there is an ε-conjugacy between f |Yt(f) and g|Yt(g).

Remark: If 1/t > M(f) then by Böttcher’s theorem the restriction f |{Gf>1/t} is

holomorphically conjugate to the restriction of z 7→ zd acting on {log |z| > 1/t}.
Hence if f, g are any two polynomials of degree d and 1/t > max{M(f),M(g)}, then

the restrictions f |{Gf>1/t} and g|{Gg>1/t} are holomorphically conjugate. The set of

such conjugacies is naturally identified with the group of isometric automorphisms of

f |{Gf>1/t}, which is the group generated by the rigid rotation of order d−1. It follows

that if in addition f, g are ε-conjugate via a relation Γ ⊂ Yt(f)× Yt(g), then there is

an extension of Γ to a relation on Xt(f) ×Xt(g) which gives an ε-conjugacy from f

to g: an ε-conjugacy must send a point on {Gf = 1/t} with external angle θ that is

fixed under t 7→ d · t mod 2π to a point which is ε-close to a point θ′ whose external

angle is also so fixed; the extension is given by the unique rotation sending θ to θ′.

For t > 0 let

Bd,t = {(Xt(f), f, |ωf |) : f ∈Md}/ ∼
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where f ∼ g if there is a holomorphic isomorphism h : Xt(f) → Xt(g) such that

h ◦ f = g ◦ h; we denote by πt :Md → Bd,t the corresponding projection.

We equip Bd,t with the analogous Gromov-Hausdorff topology: given f , a neigh-

borhood basis is given by sets Vs,ε, where ε > 0 and 1/s > max{1/t,M(f)}; the

set Vs,ε consists of all triples (g,Xt(g), |ωg|) for which there is an ε-conjugacy from

f |Xt(f) to g|Xt(g). By construction, the projection πt factors as a composition of π

with the natural projection B → Bd,t.
Lemma 3.2. The projection π is continuous, surjective, and proper; the projection

Bd → Bd,t induced by πt is continuous and surjective.

Proof. Surjectivity holds by definition. If fk → f in Md, then there are polynomial

representatives which converge uniformly on compact subsets of C, and the escape-

rate functions Gfk converge to Gf by [BH1, Proposition 1.2]. Fix t > 0 with 1/t >

M(f), so that 1/t > M(fk) for all sufficiently large k. The compact sets Yt(fk)

converge to Yt(f) in the Hausdorff topology on compact subsets of C, and the action

of fk on Yt(fk) converges to that of f on Yt(f) (with respect to the Euclidean metric

on C). Moreover, the escape-rate functions Gfk and Gf are harmonic near the sets

Yt(f), Yt(fk), so uniform convergence implies also the convergence of their derivatives.

Therefore, the 1-forms ωfk on Yt(fk) converge to ωf on Yt(f) and so the conformal

metrics |ωfk | on Yt(fk) converge to the conformal metric |ωf | on Yt(f). More precisely:

let Γk be the graph of the identity map on Yt(fk) ∩ Yt(f), regarded as a relation on

Yt(fk)× Yt(f). For all large enough k, the graph Γk defines an ε-conjugacy between

fk|Yt(fk) and f |Yt(f), and as remarked above it extends to an ε-conjugacy between

fk|Xt(fk) and f |Xt(f). Therefore π and πt are continuous. Properness of the map π

follows from the known fact that f 7→M(f) is proper [BH1, Prop. 3.6]. �

Lemma 3.3. The spaces Bd and Bd,t equipped with the Gromov-Hausdorff topology

are Hausdorff, locally compact, second-countable, and metrizable. Moreover, Bd is

homeomorphic to the quotient space of Md obtained by identifying the fibers of π to

points.

Proof. A standard application of the definitions and a diagonalization argument shows

that Bd is Hausdorff. By definition, the topology is first-countable. By [Da, Thm. 5,

p. 16] it follows that the Gromov-Hausdorff and quotient topologies coincide. Local

compactness follows from continuity and properness of the projection π. Metrizability

follows from [Da, Prop. 2, p. 13] and second-countability follows. �

3.3. The shift locus and rigid Riemann surfaces. Recall that the shift locus Sd
is the collection of polynomials in Md where all critical points escape to ∞ under

iteration.

A planar Riemann surface X is rigid if a holomorphic embedding X ↪→ Ĉ is

unique up to postcomposition with conformal automorphisms of Ĉ. Equivalently, the
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complement of X in Ĉ has absolute area zero; that is, the spherical area of Ĉ \ X
is 0 under any holomorphic embedding. Further, an absolute area zero subset of the

plane is removable for locally bounded holomorphic functions with finite Dirichlet

integral [AS, §IV.4]. In particular, if the complement of X ⊂ C has absolute area

zero, then any proper holomorphic degree d self-map X → X extends uniquely to

a degree d rational function Ĉ → Ĉ. In [Mc, §2.8], McMullen showed that an open

subset X ⊂ C is rigid if it satisfies the infinite-modulus condition: for each n ∈ N,

there is a finite union of disjoint unnested annuli En ⊂ X, contained in the bounded

components of C\En−1, such that for each nested sequence of connected components

{An ⊂ En}n, we have
∑

n modAn = ∞, and the nested intersection of the bounded

components of Ĉ \ En is precisely C \X.

Though it has not previously been stated in quite this way, the proof of the

following lemma is well-known (see e.g. [BDK, Lemma 3.2], [BH2, §5.4], [Br, Remark,

p. 423], [Mc, §2.8]).

Lemma 3.4. The projection π is a homeomorphism on the shift locus Sd.

Proof. When f is in the shift locus, it is easy to see that the basin X(f) satisfies

the infinite-modulus condition. Consider an annulus A = {a < Gf (z) < b} with

M(f) < a < b < d ·M(f) and disjoint from the critical orbits. Since f is in the shift

locus, the iterated preimages of this annulus map with uniformly bounded degree

onto A. Hence each such preimage has modulus at least m > 0. It follows that

there is a unique embedding of X(f) into Ĉ, up to an affine transformation, sending

infinity to infinity. Furthermore, the complement Ĉ \ X(f) is removable for f , so

f : X(f) → X(f) extends uniquely to a rational map f : Ĉ → Ĉ which is totally

ramified at infinity. In other words, up to affine conjugacy, we can reconstruct the

polynomial f : C→ C from its restriction f : X(f)→ X(f).

Lemma 3.2 implies that π is a continuous bijection on the shift locus. The image

is Hausdorff, and the domain is locally compact. It follows that the map π is a local

homeomorphism and therefore a global homeomorphism since π is proper. �

4. Models of a polynomial branched cover

In this section, we depart from the setting of polynomial dynamics and work in

the context of branched coverings. We introduce model surfaces and model maps,

designed to represent restrictions of a polynomial to its basin of infinity.

4.1. Translation surfaces and horizontal surfaces. Let X be a Riemann surface,

possibly with boundary, and ω a holomorphic 1-form on X. Away from the zeros of

ω, the collection of locally defined functions of the form ψ(z) =
∫ z
z0
ω provide a

compatible atlas of charts into C. The ambiguity in the definition of these charts is
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a complex translation. It follows that away from the zeros of ω, the length element

|ω| defines a flat Riemannian conformal metric, and this metric extends to a length

metric on X with conical singularities at the zeros of ω. Conversely, given an atlas

{(U, ψU)} on a Riemann surface where the overlap maps between charts differ by

translations, the 1-form ω on X defined by ω = ψ∗U(dz) is globally well-defined. We

call such a pair (X,ω) a translation surface.

A translation surface has natural horizontal and vertical foliations given by the

inverse images of horizontal and vertical lines under the above defined local charts.

These foliations have singularities at the zeros of ω. At a zero of multiplicity k, the

metrical has a conical singularity with total angle 2π(k + 1).

A horizontal translation surface is a translation surface (X,ω) for which the

overlap maps between charts are translations of the form z 7→ z + c, c ∈ R. On

such a surface, there is a globally defined harmonic height function GX : X → R,

well-defined up to an additive constant, given by

GX(x) =

∫ x

x0

Imω.

The connected components of its level sets are the leaves of the horizontal foliation.

4.2. Model surfaces and local model surfaces. In our applications, we will

only encounter horizontal translation surfaces with additional properties. We sin-

gle them out as follows. A model surface is a connected horizontal translation surface

(X,ω,CX) with a distinguished core CX ⊂ X satisfying the following properties:

• X is planar (genus 0);

• the image of the height function GX : X → R is an interval (a, b) with

∞ ≤ a < b ≤ ∞, and for all c ∈ (a, b) the level sets of the height function GX

are compact and have constant length
∫
{GX=c} |ω| = 2π;

• the core CX is of the form G−1X [c0, c1] where a < c0 ≤ c1 < b, and it contains

all of the singular leaves of the horizontal foliation on X;

• for all c ≥ c1, the level set {GX = c} is connected.

It follows (see §4.3) that X \ CX is a disjoint union of annuli, the outer annulus

G−1X (c1, b) and the finitely many inner annuli with union equal to G−1X (a, c0).

A local model surface is a model surface (X,ω,CX) such that CX consists of a

single leaf of the horizontal foliation.

Two model surfaces (X,ω,CX) and (Y, η, CY ) are isomorphic if there is a con-

formal isomorphism f : X → Y such that ω = f ∗(η) and f−1(CY ) = CX .

4.3. Example: local model surfaces without singular leaves. Suppose (X,ω, LX)

is a local model surface, and the core LX is a single leaf without singularities. Then

X is foliated by horizontal leaves of constant length 2π, so the metric space (X, |ω|)
is a Euclidean cylinder of circumference 2π and height h ∈ (0,∞]. For a suitable
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GX

(a) (b)

Figure 4.1. (a) A model surface and (b) a local model surface.

choice of positive real constant c, the map ϕ : X → C given by x 7→ c · exp(−i
∫ x
x0
ω)

defines an isomorphism of horizontal translation surfaces (X,ω) → (Y, idz
z

) where Y

is exactly one of the following subsets of the plane:

(1) {0 < |z| <∞},
(2) (a) {0 < |z| < 1} or (b) {1 < |z| <∞}, or

(3) {1 < |z| < eh} if h <∞;

In case (1), any two choices of core leaf LX yield isomorphic local model surfaces.

In case (2), let c denote the height of LX . The distance of the central leaf to the

boundary (equivalently, the modulus of the annulus {GX > c} and {GX < c}, for

cases (a) and (b) respectively) provides a complete invariant for the isomorphism type

of (X,ω, LX). In case (3), the modulus of the annulus is h/2π. The modulus and

the distance from the central leaf to the outer boundary component together provide

such an invariant.

4.4. Example: polynomial pull-back. Fix k ≥ 1, and real numbers 0 < r ≤ R <

∞. Let A = {z ∈ C : r ≤ |z| ≤ R}. Let f be a polynomial of degree k such that

all critical values lie in A ∪ {0}. Let X = f−1(C \ {0}), ω = i k−1f ∗(dz/z), and

CX = f−1(A). Then (X,ω,CX) is a model surface. Writing

f(z) = a
∏
j

(z − qj)mj ,

we have

ω = i k−1d(log f(z)) =
i

k

∑
j

mj

z − qj
dz.
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In particular, ω is a meromorphic 1-form with only simple poles; it has residue imj/k

at each finite pole qj ∈ C; note
∑

jmj/k = 1. When r = R, (X,ω,CX) is a local

model surface; the leaf CX is singular if and only if f has a nonzero critical value.

4.5. Uniformizing the model surfaces. Fix a model surface (X,ω,CX) and a

point x0 ∈ X lying on a nonsingular vertical leaf. Suppose the height function GX

has image the interval (a, b), where−∞ ≤ a < b ≤ ∞. Delete the vertical leaf through

x0, and delete also the set of points in any singular vertical leaves at and below the

heights of zeros of ω. The resulting subset of X is a connected and simply-connected

domain W . The map ψ : W → C given by ψ(x) =
∫ x
x0
ω, when post-composed with

a real translation, defines an isomorphism from W onto a slit rectangular domain

R = {θ + ih : 0 < θ < 2π, a < h < b} − Σ

where Σ is a (possibly empty) finite collection of vertical segments

Σ =
⋃
k

{θk} × {a < h ≤ ck}

where each ck < b. It follows that every model surface can be formed from such a

slit rectangular domain R, identifying the left side of a slit with real part θk with the

right side of slit with real part θσ(k) for some permutation σ on the set of slits. (The

identification of vertical edges in R must satisfy some obvious planarity conditions

which will be treated in more detail in a sequel to this paper.) Then ω = ψ∗(dz), so

the conformal metric defined by ω is simply the pullback of the flat Euclidean metric

under ψ.

Next, we describe how a model surface has another Euclidean incarnation, gen-

eralizing the polynomial pull-back examples of §4.4.

Lemma 4.1. Every model surface (X,ω,CX) embeds uniquely into a maximal local

model surface whose underlying Riemann surface is isomorphic to a finitely punctured

plane. By uniformization, the surface and 1-form is represented by(
C \ {q1, . . . , qn}, i

∑
j

rj
z − qj

dz

)
for some finite set {q1, . . . , qn} in C and real numbers rj > 0 such that

∑
rj = +1.

Such a representation is unique up to an affine transformation A ∈ AutC.

Proof. The inner and outer annuli of (X,ω,CX) can be extended to half-infinite cylin-

ders, so that the height function takes all values in (−∞,∞) and the 1-form extends

uniquely to form a new model surface (X̂, ω, CX) which is complete as a metric space.

The ends of X̂ are isomorphic to punctured disks. The complex structure extends over

the punctures to yield a compact Riemann surface X. Since X is assumed planar, X

is homeomorphic to the sphere, hence by the Uniformization Theorem is isomorphic
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to the Riemann sphere Ĉ via an isomorphism ϕ : Ĉ→ X taking infinity to the point

at height +∞. The isomorphism is unique up to precomposition with automorphisms

of Ĉ that fix ∞.

The 1-form ϕ∗ω = M(z) dz is holomorphic on the complement in C of a finite

set {q1, . . . , qm} of points corresponding to the images of the ends of X̂. The inner

and outer annuli of X̂ are each isometric to a half-infinite Euclidean cylinder of some

circumference rj. The map ψj(x) = exp(−2πi/rj
∫ x

ω) then provides an isomorphism

(of horizontal translation surfaces) from this annulus to one of the types given in

§4.3. It follows that M(z) dz is meromorphic on Ĉ, the point at infinity is a simple

pole with residue −i, and the points qj are simple poles with residues irj satisfying∑
j rj = 1. �

4.6. External angles. Suppose (X,ω,CX) is a model surface, and let e : X̂ ↪→ C be

an embedding of the canonical extension given by Lemma 4.1. On the outer annulus

of X̂, each vertical leaf is nonsingular. For z large we have, since
∑

j rj = 1, that

e∗(ω) = i
(
1 +O(z−1)

) dz
z
.

Hence each vertical leaf has a limiting asymptotic argument, θ ∈ R/2πZ, at infinity.

Thus, once the embedding e has been chosen, one may speak meaningfully of the

external ray of angle θ of a model surface (X,ω,CX). These angles coincide with the

θ-coordinate of a suitable rectangular representation of (X,ω,CX) as in §4.5.

4.7. Model maps. A branched cover of model surfaces

f : (Y, η, CY )→ (X,ω,CX)

is a holomorphic branched cover f : Y → X such that

η =
1

deg f
f ∗ω

and f−1(CX) = CY . It follows that any critical values of f must lie in the core CX
and that the outer annulus of Y is mapped by a degree deg f covering map onto the

outer annulus of X.

Two model maps f : (Y, η, CY ) → (X,ω,CX) and g : (Z, ν, CZ) → (X,ω,CX)

over the same base (X,ω,CX) are equivalent if there exists an isomorphism of model

surfaces i such that

(Y, η, CY )

f ''NNNNNNNNNNN

i // (Z, ν, CZ)

gwwppppppppppp

(X,ω,CX)

commutes.
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The proof of the following lemma is a straightforward application of the ideas in

the proof of Lemma 4.1.

Lemma 4.2. Via the embedding of Lemma 4.1 applied to both domain and range,

every model map is the restriction of a polynomial which is unique up to affine changes

of coordinates in domain and range.

Note in particular that the number of critical values in X of a model map

f : (Y, η, CY )→ (X,ω,CX) is at most (deg f)− 1.

4.8. Spaces of model maps. Fix a model surface (X,ω,CX) and an embedding into

C, as in Lemma 4.1; thus X and CX are regarded as subsets of C. By Lemma 4.2,

every model map over (X,ω,CX) is the restriction of a polynomial; by precomposing

with an automorphism of C, we can assume that the polynomial is monic and centered.

Via this representation, the set of equivalence classes of model maps over (X,ω,CX)

inherits a topology from the space of monic and centered polynomials.

In detail, let MMk(X,ω,CX) be the set of equivalence classes of model maps of

degree k over (X,ω,CX). Fix an embedding

e : (X,ω)→
(
C \ {q1, . . . , qn}, i

∑
j

rj
z − qj

dz

)
as given by Lemma 4.1. Recall that e is uniquely determined up to postcomposition

by an affine transformation. Let CX ⊂ C denote as well the image of the set CX
under the embedding e. Let Pk(X,ω,CX) be the collection of monic and centered

polynomials of degree k with all critical values contained in the set

CX ∪ {q1, . . . , qn}.
Note that the restriction on the location of the critical values implies that the preimage

p−1(e(X)) is connected for any p in Pk(X,ω,CX).

Lemma 4.3. Restriction of polynomials defines a bijection

Pk(X,ω,CX)/〈ζ : ζk = 1〉 → MMk(X,ω,CX)

where the k-th roots of unity act on polynomials by precomposition: ζ · p(z) = p(ζz).

Proof. For each polynomial p in Pk(X,ω,CX), its restriction to the connected subset

p−1(e(X)) defines a model map

p :

(
p−1(e(X)),

1

k
p∗ω, p−1(CX)

)
→ (X,ω,CX)

of degree k. Precomposing p by a rotation of order k produces another element of

Pk(X,ω,CX) which is clearly an equivalent local model. Surjectivity follows from

Lemma 4.2, and injectivity follows from the uniqueness (up to conformal automor-

phism) of the extension in Lemma 4.2. �
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The bijection of Lemma 4.3 induces a topology on MMk(X,ω,CX), as a quotient

space of the subset Pk(X,ω,CX) of Pk, the space of all monic and centered polyno-

mials of degree k. While the set Pk(X,ω,CX) depends on the choice of embedding

e, the quotient sets MMk(X,ω,CX) are canonically homeomorphic for any two such

choices. Indeed, suppose e1 and e2 are two embeddings and let P(1)
k (X,ω,CX) and

P(2)
k (X,ω,CX) be the corresponding sets of polynomials. The composition e2◦e−11 ex-

tends to an affine automorphism z 7→ az+b of C. It follows that p(z) ∈ P(1)
k (X,ω,CX)

if and only if e2 ◦ e−11 ◦ p(a−1/kz) ∈ P(2)
k (X,ω,CX) for any choice of root a−1/k.

Lemma 4.4. Fix a model surface (X,ω,CX). The subset

MMk−1
k (X,ω,CX) ⊂ MMk(X,ω,CX),

consisting of model maps represented by polynomials with all k − 1 critical values in

CX , is compact and path-connected. Any model map in MMk−1
k (X,ω,CX) sends an

inner annulus by degree one onto its image.

Proof. Let S be the subset of Pk(X,ω,CX) consisting of polynomials with all k −
1 critical values in the compact and path-connected set CX . By Lemma 2.2, S

is compact and path-connected. By Lemma 4.3, the subset MMk−1
k (X,ω,CX) is

homeomorphic to the quotient S/〈ζ : ζk = 1〉, hence is also compact and path-

connected. The complement X \CX is a disjoint union of annuli which neither meet

nor surround critical values of the representing polynomial, so the final statement of

the Lemma follows. �

4.9. Pointed model surfaces and maps. Let (X,ω,CX) be a model surface. A

pointed model surface is a quadruple (X, x, ω, CX), where x is any point in the outer

annulus of X. We consider pointed model maps

f : (Y, y, η, CY )→ (X, x, ω, CX),

i.e. model maps f : (Y, η, CX)→ (X,ω,CX) such that f(y) = x. Two pointed model

maps f, g with the same image are equivalent if there exists an isomorphism i of

pointed local model surfaces such that

(Y, y, η, CY )

f ((PPPPPPPPPPPP

i // (Z, z, ν, CZ)

gvvnnnnnnnnnnnn

(X, x, ω, CX)

commutes. We let MMk(X, x, ω, CX) denote the set of equivalence classes of these

pointed model maps. As in the non-pointed case, the set can be topologized via

an identification with monic and centered polynomials. Let Pk(X,ω,CX) be the set

of monic and centered polynomials defined in §4.8. Compare the statement of the

following lemma to that of Lemma 4.3.
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Lemma 4.5. Let (X, x, ω, CX) be a pointed model surface. The canonical projec-

tion MMk(X, x, ω, CX)→ MMk(X,ω,CX) factors through a bijection b such that the

diagram

MMk(X, x, ω, CX)

��

b // Pk(X,ω,CX)

��
MMk(X,ω,CX) Pk(X,ω,CX)/〈ζ : ζk = 1〉roo

commutes, where r is the restriction map of Lemma 4.3.

Proof. Fix an embedding

e : (X,ω)→
(
C \ {q1, . . . , qn}, i

∑
j

rj
z − qj

dz

)
so that the marked point x lies on a vertical leaf with external angle 0. For each

element f : (Y, y, η, CY ) → (X, x, ω, CX) of MMk(X, x, ω, CX), choose an extension

of the domain so that the marked point y lies on a vertical leaf of external angle

0. This uniquely determines an element of Pk(X,ω,CX); denote this element by

b(f). If two pointed local model maps extend to the same polynomial, then they

are clearly isomorphic, via an isomorphism which preserves the marked points; this

proves injectivity of b. For surjectivity of b, note that the restriction of any element

p ∈ Pk(X,ω,CX) to p−1(e(X)) determines an element of MMk(X, x, ω, CX) with

marked point chosen as the unique preimage of x on the external ray of angle 0.

Consequently b is a bijection. The diagram commutes by construction. �

The bijection b of Lemma 4.5 induces a topology on the set MMk(X, x, ω, CX),

making the projection MMk(X, x, ω, CX)→ MMk(X,ω,CX) continuous. The follow-

ing is then an immediate consequence of Lemma 2.2:

Lemma 4.6. Fix a pointed model surface (X, x, ω, CX). The subset

MMk−1
k (X, x, ω, CX) ⊂ MMk(X, x, ω, CX),

consisting of pointed model maps with all k − 1 critical values CX , is compact and

path-connected. Any such model map sends an inner annulus by degree one onto its

image.

In section 5, pointed models are used to keep track of external angles; a point

in the outer annulus of X marks a unique vertical leaf in the foliation of ω.

4.10. Gromov-Hausdorff topology on a space of model maps. Let (X, x, ω, CX)

be a pointed model surface. In addition to the algebraic topology inherited as a sub-

set of Pk (see Lemma 4.5), the space of model maps MMk(X, x, ω, CX) also admits

a natural Gromov-Hausdorff topology, as for polynomials on their basins of infinity;

see §3.2. Two maps fj : (Yj, yj, ηj, Cj) → (X, x, ω, CX), j = 1, 2 are called ε-close
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if there is a relation Γ ⊂ Y1 × Y2 containing (y1, y2) which is nearly surjective and

nearly isometric on a neighborhood of the core C1 ×C2 (as in §3.2, with the obvious

modifications) and with the condition of nearly conjugate replaced with the follow-

ing. If (y, y′) ∈ Γ, then ρX(f1(y), f2(y
′)) < ε, where ρX is the distance function on X

determined by |ω|.

Lemma 4.7. Let (X, x, ω, CX) be a pointed model surface. The Gromov-Hausdorff

and algebraic topologies on MMk(X, x, ω, CX) coincide.

Proof. The arguments are similar to those used to prove continuity of π :Md → Bd.
If two polynomials f1, f2 ∈ MMk(X, x, ω, CX) are close in the algebraic topology,

then when uniformized they are close as elements of Pk. The topology on Pk is

by coefficients; or equivalently, locally uniform convergence. Consequently, for any

compact set K in X ⊂ C, the subsets f−1i (K) will be close as subsets of the plane.

The fi and their derivatives are uniformly close on K, so the 1-forms f ∗i (ω) will also

be close. Consequently, f1 and f2 are Gromov-Hausdorff close.

By compactness of MMk(X, x, ω, CX) in the algebraic topology, it suffices to ob-

serve that f1 and f2 are equivalent as model maps if and only if they are isometrically

conjugate on a neighborhood of their cores. This is clear because the 1-forms on the

inner and outer annuli are determined by the core and local degree of the covering. �

5. Model maps in the basin of infinity

Let f ∈ Md. In this section we construct model surfaces and model maps in

the basin of infinity of f . We define the gluing operation, where a piece of f |X(f) is

replaced by a new model map. We prove the continuity of the gluing operation, and

we show that the set S(f, t) ⊂Md is path-connected for every f and every t > 0.

5.1. Forming model surfaces from the basin of infinity. For any pair of real

numbers 0 < a < b <∞, a connected component X of {a < Gf < b} forms a model

surface in the following way. There are only finitely many singular leaves in X. Let

L be the highest singular leaf in X (or choose any leaf if there are no singular leaves).

Let c1 = Gf (L) be the height of the leaf L and let l be the level of L, as defined in

§3.1. Define

(5.1) ωX =
dl

deg(f l|L)
ωf =

2π∫
L
|ω| ωf .

Let c0 be the smallest height of a singular leaf in X (or equal to the height of L if

there are no singular leaves), and set CX = {z ∈ X : c0 ≤ Gf (z) ≤ c1}. Then the

triple (X,ωX , CX) is a model surface.
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d · c1

c0

d · c0

Figure 5.1. Model of f at height [c0, c1].

5.2. Gluing in new model maps. Fix a polynomial f ∈ Md. Choose any pair of

real numbers 0 < c0 ≤ c1 < d · c0. Here we specify a collection of pointed model maps

which model the restriction of f to G−1f [c0, c1] ⊂ X(f). Our goal is to define a process

of extracting these models from the basin of f and gluing in new model maps.

Given 0 < c0 ≤ c1 < d · c0, there exist 0 < a < c0 ≤ c1 < b so that each

component Z1, . . . , Zr of the locus {a < Gf < b} forms a model surface with core at

height [c0, c1]. Let ωZi
be defined by equation (5.1) and let CZi

be the component of

G−1f [c0, c1] in Zi; the model surface is (Zi, ωZi
, CZi

).

Label the images Xi = f(Zi); note that we may have Xi = Xj for i 6= j. For

each i, form the model surface (Xi, ωXi
, CXi

) where ωXi
is defined by equation (5.1)

and CXi
= f(CZi

). The restriction of f defines a model map

f |Zi
: (Zi, ωZi

, CZi
)→ (Xi, ωXi

, CXi
)

For each i, choose a point xi in the outer annulus of Xi and let zi be any preimage of

xi in Zi. We thus obtain a family of pointed model maps

f |Zi
: (Zi, zi, ωZi

, CZi
)→ (Xi, xi, ωXi

, CXi
)

See Figure 5.1. Let ki = deg(f |Zi
).

We now define a sort of inverse procedure, which we call gluing. For each i =

1, . . . , r, choose any pointed model map

pi : (Yi, yi, ηi, CYi)→ (Xi, xi, ωXi
, CXi

)
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of degree ki over the given base (Xi, xi, ωXi
, CXi

). The restrictions of pi and of fi to

the outer annuli of Yi and of Zi, respectively, are covering maps of degree ki onto

the outer annulus of Xi. There is a unique conformal isomorphism identifying these

annuli which sends yi to zi and pulls ωZi
back to ηi on the outer annulus. Via these

identifications, we form a new Riemann surface

Xa := Xc1(f) ∪
r⋃
i=1

Yi

The 1-form and height function extend to the surface Xa to yield a one-form ω̃ and a

height function G̃ : Xa → R with image equal to (a,∞). The map f |Xc1(f) extends

holomorphically to a new self-map

f̃ : Xa → Xa

which agrees with pi on Yi and satisfies G̃(f̃(z)) = d · G̃(z). We say that f̃ is obtained

from f by gluing in the model maps pi at height [c0, c1].

Note that different choices of the constants a, b (chosen in the second paragraph

of this section) yield, after suitable extensions, isometrically conjugate maps. If e.g.

a′ < a, the locus {a′ < Gf < a} consists of annuli. The map f̃ : Xa → Xa is affine

near the lower boundary, and therefore extends canonically over these annuli to yield

the map f̃ ′ : Xa′ → Xa′ .

5.3. Continuity of gluing. In the gluing construction of §5.2, we are particularly

interested in the case where each pi has exactly ki − 1 critical values in the core CXi
,

counted with multiplicity. We show that f̃ extends uniquely to a polynomial in the

shift locus of Md. Recall the notation πt : Md → Bd,t from §3.2; in the space Bd,t,
two polynomials fi, i = 1, 2 are equivalent if their restrictions to Xt(fi) = {Gfi > t}
are conformally conjugate.

Proposition 5.1. For each f ∈Md and any pair of real numbers 0 < c0 ≤ c1 < d·c0,
let

(fi) ∈
∏
i

MMki(Xi, xi, ωXi
, CXi

)

be a pointed model representation of the restriction f |G−1f [c0, c1] as constructed above.

Then gluing at height [c0, c1] defines a continuous map

glue :
∏
i

MMki−1
ki

(Xi, xi, ωi, CXi
)→ Sd ∩ {g : m(g) ≥ c0}

such that πc1 ◦ glue(p1, . . . , pr) = πc1(f) for any choice of p1, . . . , pr.

If f ∈ Sd and m(f) > c1, then the domain of glue is the single point (f1, . . . , fr),

and glue(f1, . . . , fr) = f . That is, f is determined by its restriction f |Xc1(f).
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Proof. We adopt the notation as in the definition of gluing in §5.2. We first claim

that gluing defines a polynomial in the shift locus. Choose model maps (pi) to glue

to f at height [c0, c1]. Let f̃ : Xa → Xa be the extended self-map of the surface

Xa as in the definition of gluing. We argue inductively that f̃ extends to a proper,

holomorphic self-map of a rigid planar Riemann surface to itself.

Let {Wj} denote the collection of inner annuli for the model surfaces (Yi, yi, ηi, CYi),

so the {Wj} are the connected components in Xa of {a < G̃ < c0}. Let Vj = f̃(Wj)

denote the images of Wj. Thus, each Vj is an annulus whose height function has

image (d · a, d · c0). By our choices of pi ∈ MMki−1
ki

(Xi, xi, ωXi
, CXi

), all of the inner

annuli Wj map with degree 1 to their images. Each Vj is an annulus with height in

the interval (da, d · c0).
For each j, construct a model surface with outer annulus Vj. Namely, we may

take the connected components of {a < G̃ < dc0} in Xa as our model surface

(V ′j , ωV ′j , CV ′j ), with core at height [c0, da]. We now redo the gluing procedure with this

collection of model surfaces as the base. Indeed, there is a unique model surface with

outer annulus Wj which is isomorphic to (V ′j , ωV ′j , CV ′j ), and the degree 1 restriction

f̃ : Wj → Vj extends uniquely to the new model surface. In this way, we extend f̃

holomorphically to a new surface

f̃ : Xa/d → Xa/d

with a height function G̃ : Xa/d → (a/d,∞) satisfying G̃(f̃(z)) = d · G̃(z). We now

repeat the extension procedure by setting the new annular components Wj to be the

connected components of {a/d < G̃ < c0/d}. By induction, f̃ extends to a proper,

degree d, holomorphic self-map

f̃ : X → X

of a planar Riemann surface X to itself.

At every step of the induction, the annuli {Wj} map by degree 1 to their images,

so we see easily that the Riemann surface X satisfies the infinite-modulus condition

(see §3.3). It is therefore rigid, and there exists a conformal embedding X ↪→ C,

sending∞ to∞, unique up to postcomposition by an affine transformation. We may

conclude that f̃ extends to a polynomial g : C→ C, unique up to affine conjugation.

We set

g = glue(p1, . . . , pr).

By construction, every critical point of g lies in the basin of infinity X(g), so g ∈ Sd.
The height function G̃ coincides with the escape-rate function Gg on X(g), and the

restrictions g|Xc1(g) and f |Xc1(f) are holomorphically conjugate. As each pi has all

ki − 1 critical points in the core of Xi, we may also conclude that Gg(c) ≥ c0 for all

critical points c of g.

If m(f) > c1, then there is a unique choice for (pi) at the first stage of gluing,

as each pi defines an isomorphism to its image. The uniqueness of the extension to a
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polynomial implies that the restriction f |Xc1(f) determines the conformal conjugacy

class of f .

We now prove continuity of the map glue. Fix ε, s > 0 such that s < c0, and fix

g in the image of glue, so g ∈ Sd with m(g) ≥ c0. We aim to show that the preimage

of the Gromov-Hausdorff neighborhood Us,ε(g) is open in
∏

i MMki−1
ki

(Xi, xi, ωXi
, CXi

).

By Lemma 4.7, we may work with the Gromov-Hausdorff topology on the space of

model maps.

Let p = (p1, . . . , pr) ∈
∏

i MMki−1
ki

(Xi, xi, ωXi
, CXi

) be any point sent to g. Let

Vε =
∏

i Vε(pi) be the Gromov-Hausdorff neighborhood of (p1, . . . , pr) consisting of

all model maps that are ε-close to pi for each i. From the definition of the topology,

for any q ∈ Vε, there is a relation Γq between the domain of q and that of p which

shows the model maps are ε-close. Let ∆ be the identity relation (the diagonal) in

Xc1(f)×Xc1(f). Recalling that a denotes the minimal height of the domains of the

model maps q, we see that then Γq and ∆ together form a relation in Xa(glue(q))×
Xa(g) which shows that

glue(q) ∈ Ua,ε(g)

for all q ∈ Vε.
In fact, we will see that Vε is sent by glue into the neighborhood Us,ε(g) for any

s < a. The extension to level {G̃ > a/d} is uniquely determined, by gluing in degree

1 model maps. The relation Γq between the domain of q and that of p determines a

relation on the domains of the model maps at this lower height; the distance ε is the

same. As glued maps, the distance between the glued images can only decrease, as

the metric on a basin of infinity is scaled by 1/d with every preimage. Continuing

inductively, we see that

glue(q) ∈ Ua/dn, ε(g)

for all positive integers n and all q ∈ Vε. We conclude that the map glue is contin-

uous. �

5.4. Consequences of the gluing construction. Proposition 5.1 implies the fol-

lowing facts about the projections Sd → Bd,t; precise statements appear in the fol-

lowing theorem. Suppose f ∈ Sd. If t > 0 is sufficiently small, then the restriction of

f to Xt(f) determines f uniquely. Second, any map g satisfying m(g) ≥ t and such

that g|Xt(g) is holomorphically conjugate to f |Xt(f) is obtained by such gluings, and

the totality of such maps is connected. Lastly, as long as the combinatorial data (the

number of components of {Gf = t}) remains constant, gluings can be transported

continuously along one-parameter families fs.

Theorem 5.2. Let t > 0.

(1) The restriction πt|Sd ∩ {g : m(g) > t} → Bd,t is a homeomorphism onto its

image.
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(2) The restriction πt|Sd ∩ {g : m(g) ≥ t} → Bd,t is surjective, and the fibers are

path-connected.

(3) Suppose fs, s ∈ [0, 1] is a continuous path in Md, and t > 0 has the following

stability property: there exist r ∈ N and real numbers a < t < b such that

for all s ∈ [0, 1], the locus {a < Gfs < b} consists of r annular components.

Suppose g0 ∈ Sd ∩ {g : m(g) ≥ t} is given, and πt(g0) = πt(f0). Then there

exists a continuous path s 7→ gs ∈ Sd ∩ {g : m(g) ≥ t} starting at g0 such that

πt(gs) = πt(fs) for all s ∈ [0, 1].

The stability hypothesis in (3) implies that the indicated components, in the associ-

ated conformal metrics, form a family of Euclidean annuli whose isometry types are

constant as s varies.

Given f in the shift locus, we define

S(f, t) = Sd ∩ {g : m(g) ≥ t} ∩ π−1t (πt(f)),

the fiber of the restriction in (2) containing f . In words, the set S(f, t) consists of all

maps g holomorphically conjugate to f above height t and satisfying m(g) ≥ t. The

structure of S(f, t) will play a role in the proof of Theorem 1.1. For later reference,

we state the following corollary explicitly:

Corollary 5.3. For any f and any t > 0, the set S(f, t) is path-connected.

Another important immediate consequence is:

Proposition 5.4. The shift locus is dense in Bd.
Proof. Suppose the polynomial f represents an element of Bd, let ε > 0 and suppose

t > 0 satisfies 1/t > M(f). By Theorem 5.2(2), there is a polynomial g ∈ Sd for

which g|Xt(g) is holomorphically, hence isometrically, conjugate to f |Xt(f). Thus

g ∈ Ut,ε(f). �

5.5. Proof of Theorem 5.2. For the proof, it will be more convenient to work with

the space Pd of monic and centered polynomials, so that each basin of infinity has

well-defined external angles. In particular, any f ∈ Pd fixes exactly d − 1 distinct

external rays. Let B̃d be the set of conformal conjugacy classes of monic, centered

polynomials restricted to their basins of infinity, where now the conjugacy is required

to have derivative 1 at infinity. As a set, B̃d is the set of equivalence class of triples

(f,X(f), θf ), where θf is one of the d − 1 external rays that are fixed under f , and

where two triples (f,X(f), θf ), (g,X(g), θg) are equivalent if there is a holomorphic

conjugacy from f on X(f) to g on X(g) sending θf to θg. We equip B̃d with the

smallest topology such that the natural projection B̃d → Bd is continuous. More

concretely: an ε-conjugacy in this setting has the same definition as for the Gromov-

Hausdorff topology in §3.2, with the following additional requirement. Observe that

if 1/t > M(f) then the set {Gf = 1/t} ∩ θf is a singleton xf . We require that
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an ε-conjugacy Γ send xf to xg, i.e. (xf , xg) ∈ Γ. We refer to this topology as

the Gromov-Hausdorff topology on B̃d. The arguments showing that the projection

π :Md → Bd is a homeomorphism on the shift locus (Lemma 3.4) immediately show

that the projection π̃ : Pd → B̃d is also a homeomorphism on the corresponding shift

locus S̃d ⊂ Pd equipped with its algebraic topology inherited from the polynomial

coefficients. Finally, we define B̃d,t analogously.

Given an element f in Pd, consider its restriction to Xt(f). Define S̃(f, t) in

Pd to be the set of polynomials g ∈ Pd with g|Xt(g) conjugate to f |Xt(f) via a

conformal isomorphism with derivative 1 at infinity, and such that m(g) ≥ t. Then,

for each polynomial g ∈ S̃(f, t), there is a unique isomorphism ϕg : Xt(g) → Xt(f)

conjugating g to f and sending the ray of angle 0 for g to that of f .

We now establish (1). The indicated restriction is continuous by Lemma 3.2,

and injective by Proposition 5.1. By invariance of domain, the conclusion follows.

Next, we prove (2). The surjectivity conclusion follows immediately from Propo-

sition 5.1. The path-connectivity of the fibers in (2) will follow once we establish that

the corresponding set S̃(f, t) in Pd is path-connected. This is what we prove below.

Fix f ∈ Pd and let t > 0 be arbitrary. Suppose {Gf = t} has r components, and

let Xf
i , Z

f
i be local model surfaces as constructed in §5.2, where c0 = c1 = t. That is,

the leaves {Gf = t} form the core LXi
of the Zf

i . For each i = 1, . . . , r, fix a choice

of points xi in the outer annuli of the local model surfaces Xf
i , and fix a choice zi of

their preimages under f in the outer annuli of the local model surfaces Zf
i .

Suppose g ∈ S̃d, m(g) ≥ t and πt(g) = πt(f), so that g lies in the fiber over

(Xt(f), f, |ωf |) ∈ Bd,t. Let ϕg : Xt(g)→ Xt(f) be the unique holomorphic conjugacy

as in the discussion above. For each i, let Zg
i be the component of {a < Gg < b} whose

outer annulus is the image under ϕ−1g of the outer annulus of Zf
i , let zgi = ϕ−1g (zi), let

ηgi = ϕ∗g(ωi), and let LgZi
be the component of {Gg = t} contained in Zg

i . Then the

restriction gi of g to Zi followed by the isomorphism ϕg yields a pointed model map

ϕg ◦ gi : (Zg
i , z

g
i , η

g
i , L

g
Zi

)→ (Xi, xi, ωi, LXi
);

since g ∈ S̃(f, t), all inner annuli of Zi map under gi by degree one. We obtain in

this way a well-defined map

L : S̃(f, t)→
∏
i

MMki−1
ki

(Xi, xi, ωi, LXi
).

The right-hand side is compact and path-connected by Lemma 4.6. The remainder

of the proof is devoted to establishing that L is in fact a homeomorphism.

Observe that the proof of Proposition 5.1 can be adapted so that the continuous

map glue is taking values in Pd, the space of monic and centered polynomials.

Indeed, if we begin with f ∈ Pd with its distinguished external angle θ = 0, we

require that the glued and extended map f̃ : X → X be embedded into C so that the

distinguished vertical leaf is sent to angle θ = 0. In this way Proposition 5.1 yields a
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continuous map

glue :
∏
i

MMki−1
ki

(Xi, xi, ωi, LXi
)→ S̃(f, t)

so that L◦glue is the identity. Hence L is surjective. By compactness of the domain

of glue, it suffices to prove that L is injective.

Suppose πt(g1) = πt(g2) = πt(f), m(g1) ≥ t, m(g2) ≥ t, and L(g1) = L(g2) =

(p1, . . . , pr). Let ϕgi : Xt(gi) → Xt(f) be the isomorphisms defined above. The

isomorphisms yielding equality of pointed local model maps implied by the condition

L(g1) = L(g2) glue to the isomorphism ϕ−1g2 ◦ ϕg1 from Xt(g1) to Xt(g2); therefore

above some height a with a < t the polynomials g1, g2 are conjugate via a conformal

isomorphism with derivative 1 at infinity. By part (1) of Theorem 5.2, the polynomials

g1 and g2 are then affine conjugate on C; by construction, there is an isomorphism

with derivative 1 at infinity. Thus g1 = g2 ∈ Pd and the proof of (2) is complete.

Remark. An alternative, more intrinsic proof of Theorem 5.2(2) may be given along

the following lines, using Lemma 4.7. The surgery constructions in [EMZ, Section 8]

are affinely natural. This shows that branch values of local model maps in LXi
can

be continuously pushed through zeros of ωi in Xi, and that these branch values can

also be so pushed so as to coalesce together to a single branch value, as in the proof

of Lemma 2.2.

We now prove the path-lifting claim (3) of Theorem 5.2. We will derive the

conclusion by proving the corresponding statement for monic centered polynomials.

Let πt : Pd → B̃d,t denote the corresponding projection. The path fs lifts to a path

f ]s in Pd. We will show the existence of a lift of a path g]s ∈ S̃d for which πt(f
]
s) =

πt(g
]
s), starting from an arbitrary given point g]0 ∈ S̃(f0, t). To avoid burdensome

notation, we now drop the sharp symbols ]; thus fs, gs denote elements of Pd and S̃d,
respectively.

In this paragraph, we extract from fs a continuous family of data for the def-

inition of gluing. The stability hypothesis implies that there exists a < t < b such

that the components Xfs
i of {d · a < Gfs < d · b} and Zfs

i of {a < Gfs < b} comprise

a family of r annuli of constant isometric type as s varies, that the degrees ki by

which the outer annulus of Zfs
i maps to that of Xfs

i are also constant. For each i

let LfsXi
be the leaf {Gfs = d · t} ∩ Xfs

i and similarly define LfsZi
= {Gfs = t} ∩ Zfs

i .

In the remainder of this paragraph, we show how to continuously choose the points

xsi and zsi needed to define gluing. By compactness, there exists M0 > 0 for which

M(fs) < M0 for all s. Since the fs are monic and centered, for each s, there is unique

holomorphic conjugacy ϕs : {Gfs > M0} → {Gf0 > M0} conjugating fs to f0 and

tangent to the identity at infinity. Choose an integer l so that dl · t > M0, and set

A0 = {dl · t < Gf0 < dl · b} . Let As = ϕ−1s (A0), so that As = {dl · t < Gfs < dl · b}.
Choose arbitrarily x′ ∈ A0. Note that {t < Gfs < b} ∩ Xfs

i is the outer annulus of
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Xfs
i . The hypothesis on the path fs and the height t implies that for each i, the map

id× (ϕs ◦f l−1s ) : [0, 1]×Xfs
i → [0, 1]×A0 is an unramified covering. It follows that for

each i we may choose a continuous family xfsi of preimages of x′ under this covering.

By similar reasoning, we may choose preimages zfsi of xfsi under fs in Zfs
i continu-

ously. Defining the one-forms ηfsi as in the definition of gluing, we have constructed

for each s ∈ [0, 1] and each i a local model map

fi,s : (Zfs
i , z

fs
i , η

fs
i , L

fs
Zi

)→ (Xfs
i , x

fs
i , ω

fs
i , L

fs
Xi

).

The stability assumption on t implies that for each s and each i, the central leaves

LsXi
are nonsingular. Thus, the isomorphism types of pointed local model base (im-

age) spaces (Xfs
i , x

fs
i , ω

fs
i , L

fs
Xi

) are independent of s, and so for each i, the spaces

MMki−1
ki

(Xfs
i , x

fs
i , ω

fs
i , L

fs
Xi

) is canonically identified with MMki−1
ki

(Xf0
i , x

f0
i , ω

f0
i , L

f0
Xi

).

From the proof of (2) above, gluing gives a homeomorphism

S̃(fs, t)→
∏
i

MMki−1
ki

(Xfs
i , x

fs
i , ω

fs
i , L

fs
Xi

);

composing with the isomorphism of the last paragraph, we have that for each s, we

have a homeomorphism to a fixed space

S̃(fs, t)→
∏
i

MMki−1
ki

(Xf0
i , x

f0
i , ω

f0
i , L

f0
Xi

).

For s ∈ [0, 1] let L1,s be the inverse of this homeomorphism. By assumption, g0 ∈
S̃(f0, t). Let (p1, . . . , pr) = L(g0) be the image of g0 under the homeomorphism

S(f0, t) →
∏

i MMki−1
ki

(Xf0
i , x

f0
i , ω

f0
i , L

f0
Xi

). Finally, set gs = L1,s(p1, . . . , pr). By con-

struction, πt(gs) = πt(fs). It is clear that gs varies continuously in the Gromov-

Hausdorff topology, since the restrictions πt(fs) vary continuously, the local models

(p1, . . . , pr) that are glued to the fs are constant, and points in the definition of

pointed local models that define the gluing vary continuously.

This concludes the proof of Theorem 5.2. �

6. Proof that π is monotone

In this section, we conclude the proof of Theorem 1.1. It remains to show that

the projection

π :Md → Bd
is monotone. Recall this means that its fibers are connected.
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6.1. The set B(f, t). Fix a polynomial f and a positive real number t. Recall that

M(f) = max{Gf (c) : f ′(c) = 0}, m(f) = min{Gf (c) : f ′(c) = 0},
and

Xt(f) = {z ∈ X(f) : Gf (z) > t}.
We defined

πt :Md → Bd,t
to be the projection to the space of conformal conjugacy classes of the restriction

f |Xt(f). Let B(f, t) be the collection of all polynomials g inMd such that g|Xt(g) is

conformally conjugate to f |Xt(f), i.e. B(f, t) is the fiber of πt containing f . Recall

that we have defined S(f, t) to be the set of all g ∈ B(f, t) for which the minimal

critical escape rate satisfies m(g) ≥ t.

If t is large enough so that t ≥ M(f), then (cf. §1.3) B(f, t) = B(t) consists of

all polynomials g with t ≥ M(g) and is known to be a closed cell. In degree 2, for

the family z2 + c, we have the following dichotomy:

• If t < M(f), then B(f, t) = S(f, t) = {f}.
• If t ≥ M(f), then S(f, t) is the equipotential curve {c : Gc(0) = t} around

the Mandelbrot set, and B(f, t) is the closed ball it bounds.

In every degree, when f is in the shift locus and t is small enough that t < G(c) for

all critical points c of f , then B(f, t) = S(f, t) = {f}.
6.2. Deforming the basin of infinity. In the next lemma, we use a “pushing

deformation” to show that B(f, t) ∩ Sd is connected. The construction is similar to

the pushing deformation of [BDK, §4.2]; in their case, they push critical values down

to smaller heights, while we push critical values up along external rays. Certain

deformations require a change in the local topology of the translation structure, like

moving through a stratum of Bd defined by prescribing the multiplicities of zeros of

the 1-form ωf ; compare [EMZ, Section 8].

Lemma 6.1. For any f ∈ Sd and any t > 0, there is a path contained in B(f, t)

joining f to a point in S(f, t). Furthermore, such a path exists with the following

properties: (i) the path may be parameterized as h 7→ fh, where m(f) ≤ h ≤ t, (ii)

fm(f) = f and ft ∈ S(f, t), and (iii) fh ∈ S(f, h) for all m(f) ≤ h ≤ t.

Proof. If all critical points of f have height at least t then already f ∈ S(f, t). So

suppose f has critical points below height t, so that m(f) < t is the height of the

lowest critical point. We will “push” the lowest critical values from the level curves

{Gf = d·m(f)} up along their external rays in a continuous fashion, without changing

the restriction f |Xt(f), until all critical values have height ≥ d · t.
Choose a finite sequence of heights m(f) = h0 < h1 < · · · < hN = t so that

hj+1/hj < d for all j. For each j we will glue in a continuous family of model maps

to glue in to f at height [hj, hj+1].
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Beginning with j = 0, choose pointed model maps

fi : (Zi, zi, ηi, CZi
)→ (Xi, xi, ωi, CXi

)

for f with core of Zi at height [h0, h1] as in §5.2. For each critical value v in Xi,

there is at least one (and possibly several) vertical leaf segment λv containing v,

parameterized by height in [h0, h1]. We aim to construct a path of pointed model

maps

phi ∈ MMki−1
ki

(Xi, xi, ωi, CXi
)

so that ph0i = fi and the critical values of phi lie on λv at heights ≥ d ·h. In particular,

via the gluing map of Proposition 5.1, the polynomial

fh = glue(ph1 , . . . , p
h
r )

will lie in S(f, h) for all h ∈ [h0, h1]. We repeat the process for each j = 0, . . . , N − 1

to complete the proof of the Lemma.

Indeed, recall that MMki−1
ki

(Xi, xi, ωi, CXi
) can be identified with a subset of

the monic and centered polynomials Pki (Lemma 4.5). Further, by Lemma 2.1, the

map from polynomials in Pki to their collections of critical values has the path-lifting

property. Therefore, we may begin with the path of critical values satisfying the

height conditions we desire, each staying on its vertical leaf segment λv, and we may

lift it to a path in MMki−1
ki

(Xi, xi, ωi, CXi
) ⊂ Pki . This produces the desired paths phi .

The results about gluing in Proposition 5.1 guarantee that the resulting polynomial

fh is in S(f, h) for all h. �

Remark. It can be seen from the proof of Lemma 6.1 that the “pushing-up” de-

formation is canonical unless the moving critical values encounter zeros of ω. That

is, the path is uniquely determined except when the lowest critical values are pushed

up through critical points of f or any of their iterated preimages. Note, however,

that if a choice is made at height t0 < t, the path-connectedness of S(f, h) by Corol-

lary 5.3 implies that different choices can themselves be connected by paths within

B(f, t) ∩ Sd.

Corollary 6.2. For any f in Md and t > 0, the intersection of B(f, t) with the shift

locus Sd is path-connected. In particular, the shift locus is connected.

Proof. Fix f . It follows immediately from the definition that B(g, t) = B(f, t) if and

only if g ∈ B(f, t). Similarly, S(f, t) = S(g, t) if and only if g ∈ B(f, t). Thus, we

may choose any element g ∈ B(f, t) ∩ Sd and apply Lemma 6.1 to find a path from

g to S(g, t) = S(f, t) contained in B(g, t) = B(f, t). As S(f, t) is path-connected by

Corollary 5.3, we conclude B(f, t) ∩ Sd is path-connected. Since the shift locus is an

increasing union of sets of the form B(f, t) ∩ Sd where t > 0 and 1/t > M(f), the

shift locus is connected. �
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Recall that a Gromov-Hausdorff basis neighborhood of a polynomial f is denoted

Ut,ε(f), where 1/t > M(f).

Lemma 6.3. For any f ∈Md and t > 0 such that 1/t > d ·M(f), we have

B(f, t) =
⋂
ε>0

π−1Ut,ε(f).

Proof. The set B(f, t) is clearly contained in the nested intersection, because a con-

formal conjugacy to f |Xt(f) is an isometry with respect to the conformal metric

|ω|. We now prove the other inclusion. Any polynomial g in ∩ε>0π
−1Ut,ε(f) is, on

{t < Gg <
1
d·t}, isometrically conjugate to f on {t < Gf <

1
d·t}. The condition on

t guarantees that higher up on the domains X 1
d·t

(f), X 1
d·t

(g), the maps f and g are

ramified only at the point at infinity. It follows that this conjugacy extends uniquely

to an isometric, hence holomorphic, conjugacy Xt(f)→ Xt(g). So g ∈ B(f, t). �

6.3. Completing the proof that π has connected fibers. Below, we say that a

value t > 0 is generic for f if the grand orbits of the critical points do not intersect

{Gf = t}.

Lemma 6.4. For every f and each generic value t such that 0 < t < 1
d·M(f)

, the set

B(f, t) is connected.

Proof. Fix f and a generic value of t with 0 < t < 1
d·M(f)

.

Fix f1 ∈ B(f, t), and let Uε ⊂ Md be the connected component of π−1Ut,ε(f)

containing f1. We will show that f1 can be connected by a path in Uε to S(f, t).

Because S(f, t) is connected (Corollary 5.3), it follows that B(f, t) is contained in the

connected set Uε. From Lemma 6.3, we have

B(f, t) =
⋂
ε>0

Uε

and therefore B(f, t) is connected.

We first recall the concept of an active critical point; see [Mc, §4.1], [DF, §2.1].

Equation (2.1) gives a map ρ : H × C → Pd parameterizing polynomials by the

locations of critical points and constant term. The jth critical point of a poly-

nomial is active at a parameter (c, a0) ∈ H × C if the sequence of analytic maps

(c1, . . . , cd−1; a) 7→ ρ(c1, . . . , cd−1; a)◦n(cj), n ∈ N, fails to be a normal family at

(c, a0). If a polynomial has an active critical point, then there exist arbitrarily small

perturbations for which this critical point escapes to ∞ under iteration. The locus

of polynomials with an active critical point is the bifurcation locus. If a polynomial

with m escaping critical points has an active critical point, then there exist arbitrarily

small perturbations with strictly greater than m escaping critical points.

In this paragraph, we prove that there is a path fs, s ∈ [0, 1] contained in Uε
joining f1 to a map f0 in the shift locus. If f1 lies in the closure of the shift locus,
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this is clear. Otherwise, by the density of structurally stable maps in the family Md

([McS, Cor. 2.8]), there exist arbitrarily small perturbations of f1 which are struc-

turally stable. Using quasiconformal deformations supported on the filled-in Julia set

of f1, one finds a path of polynomials converging to a polynomial f2 in the bifurca-

tion locus; the arguments are identical to those given in [DP3, §5]. An arbitrarily

small perturbation of this latter polynomial increases the number of escaping critical

points. By induction, we construct the desired path from f1 to a polynomial f0 in

the shift locus. The path fs so constructed is obtained via a sequence of two kinds of

modifications: (i) arbitrarily small perturbations, and (ii) quasiconformal deforma-

tions which do not affect the basin of infinity. By the continuity of the projection π,

we may assume that this path lies in Uε.

We now argue that we may assume the path above has in addition the stability

property in the hypothesis of Theorem 5.2(3). On the locus of pairs (F, z) ∈Md×C
for which {GF (z) > 0}, the map (z, F ) 7→ Gf (z) is pluriharmonic, hence smooth. The

genericity assumption on the given height t thus implies that for the given polynomial

f , the level sets {Gf = t} are nonsingular, and that they remain nonsingular as s

varies along a suitably small path.

Applying Lemma 6.1, we obtain a path in B(f0, t) joining f0 to an element g0
of S(f0, t). Since the dynamics above height t along this path is constant, this path

lies in Uε.

Applying Theorem 5.2(3), we obtain a path s 7→ gs ∈ Sd ∩ {g : m(g) ≥ t}
satisfying πt(gs) = πt(fs) for all s ∈ [0, 1]. Since the dynamics above height t along

this path is constant, this path too lies in Uε. By construction, g1 ∈ S(f, t). �

Proof of Theorem 1.1. Continuity and properness of π : Md → Bd are included in

the statement of Lemma 3.2. For each point (X(f), f) in Bd, its fiber is exactly

π−1((X(f), f)) =
⋂

generic t>0

B(f, t) =
⋂
t>0

B(f, t),

because the sets B(f, t) are nested and generic t are dense. For generic t small enough,

the set B(f, t) is connected by Lemma 6.4; therefore π−1((X(f), f)) is connected.

Finally, Lemma 3.4 states that π is a homeomorphism on the shift locus. �

Though the fibers of π are connected, our methods do not show that they are

path-connected. For example, it is not known if the Mandelbrot set is path-connected.
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