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Abstract. We study dynamical equivalence relations on the moduli space MPd of
complex polynomial dynamical systems. Our main result is that the critical-heights
quotient MPd → T ∗

d of [DP1] is the Hausdorffization of a relation based on the
twisting deformation of the basin of infinity. We also study relations of topological
conjugacy and the Branner-Hubbard wringing deformation.

1. Introduction

Let R be an equivalence relation on a topological space X. By definition, the

quotient space X/R is Hausdorff if every pair of equivalence classes has a pair of

saturated, disjoint open neighborhoods; we then say the relation R is Hausdorff.

This implies in particular that the relation is closed as a subset R ⊂ X × X. The

converse is not true in general, even on Hausdorff spaces X, but to every equivalence

relation R we can associate its Hausdorffization, the smallest Hausdorff equivalence

relation containing R.

In this article, we study dynamical equivalence relations on the moduli space of

polynomials MPd, the complex orbifold which parametrizes conformal conjugacy

classes of complex polynomials f : C → C. We begin with the equivalence rela-

tion determined by topological conjugacy: polynomials f and g are equivalent if

f = hgh−1 for a homeomorphism h of the complex plane. The existence of distinct

structurally stable (open) conjugacy classes implies that the topological-conjugacy

equivalence relation cannot be Hausdorff [MSS]. We first observe:

Theorem 1.1. The Hausdorffization of the topological-conjugacy equivalence relation

on MPd is trivial: all polynomials lie in the same equivalence class.
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When considering more subtle notions of equivalence, we obtain more meaningful

quotients. Consider the restricted dynamical system

f : X(f)→ X(f),

where X(f) = {z ∈ C : fn(z) → ∞} is the basin of infinity for a polynomial f .

Polynomials are basin-twist equivalent if the restrictions to their basins of infinity lie

in the same twist-deformation orbit, as defined in [McS]. Polynomials are critical-

height equivalent if they lie in the same connected component of a fiber of the critical

heights map on MPd, defined in [DP1]. Details and precise definitions are given in

Sections 3 and 4.

The basin-twist relation on MPd is not a Hausdorff relation for any degree d > 2,

nor is its restriction to the shift locus Sd ⊂ MPd where all equivalence classes are

closed (Proposition 6.2); the shift locus is the subset of polynomials f with all d− 1

critical points in the basin X(f). On the other hand, the basin-twist relation Rtwist

is contained in the critical heights relation Rcrit. The quotient T ∗d = MPd/Rcrit

introduced in [DP1] is a Hausdorff topological space with many nice properties. Our

main result is:

Theorem 1.2. The critical-heights equivalence relation is the Hausdorffization of the

basin-twist relation on MPd.

The motivation for this result stems from a study of the critical heights decompo-

sition and its relation to the global organization of topological conjugacy classes. For

example, the quotient of the shift locus Sd/Rcrit carries the structure of a product of R
with a locally-finite simplicial complex, and the top-dimensional simplices correspond

to the structurally stable classes [DP1, Theorem 1.8]. Theorem 1.2 implies that T ∗d
has an additional dynamical meaning, as an orbit space for the twisting deformation,

and the Hausdorffization is still fine enough to separate these stable conjugacy classes.

The equivalence relations Rtwist and Rcrit depend only on the restricted dynamical

systems f : X(f)→ X(f) and therefore induce relations on the space Bd of conformal

conjugacy classes of (f,X(f)). In [DP1], we proved that the basin-twist classes at

generic critical heights coincide with the critical heights equivalence classes, so the

equivalence relations Rtwist and Rcrit coincide on a dense subset of Bd. The proof of

Theorem 1.2 boils down to a general treatment of equivalence relations. In Proposition

2.1, we provide a simple criterion called local finiteness for two Hausdorff equivalence

relations on a space X to coincide if we only know that they agree on a dense subset.

We compare the equivalence relations above to the turning-curve relationRturn and

wring-equivalence Rwring, defined by the wringing motion of Branner and Hubbard

[BH1] on the quotient space Bd and pulled back to MPd. From the definitions, we

have

Rturn = Rtwist ∩Rwring.

See Section 3 for details.
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Theorem 1.3. In the product MPd × MPd the equivalence relations from turning,

twisting, wringing, critical heights, and topological conjugacy satisfy

Rturn = Rtwist = Rcrit ⊂ Rwring = Rtop = MPd ×MPd,

where R denotes the transitive-closure of R.

The triviality of the transitive-closure Rtop of the topological-conjugacy relation on

the moduli space of polynomials follows from the characterization of the bifurcation

locus as the activity locus for the critical points, and the fact that the infinitely-many

conjugacy classes in the shift locus collapse into a single Hausdorffized equivalence

class. The analogous statement in the moduli space of rational functions is not known.

We finish with a question:

Question 1.4. What is the Hausdorffization of the topological-conjugacy equivalence

relation on the moduli space Md of rational functions f : Ĉ→ Ĉ?

2. Hausdorffization

In this section, we give the definition of Hausdorffization and provide a few ele-

mentary examples. We also define the notion of local finiteness for an equivalence

relation and prove Proposition 2.1 which states that locally finite Hausdorff equiva-

lence relations which agree on a dense subset must coincide.

2.1. The Hausdorffization of an equivalence relation. Let R be an equivalence

relation on a metrizable topological space X. We say R is Hausdorff if the quotient

space X/R is a Hausdorff topological space. It follows that the relation forms a

closed subset of the product X×X. See [B, Ch.1 §8.3]. In particular, the equivalence

classes themselves are closed and satisfy an upper semi-continuity condition: if a

sequence xn converges to a point x ∈ X, then the limit superior of classes [xn] must

be contained in the equivalence class [x]. See also [Da] for a general treatment of

upper-semi-continuous decompositions.

The converse is not true, as there exist equivalence relations on Hausdorff spaces

X with R ⊂ X ×X closed, while the quotient space X/R is not Hausdorff. Exercise

10 of [B, Ch.1 §8] provides the following example: let

X = R \ {±1/2, ±1/3, ±1/4, . . .}

and let the equivalence classes be {0}, the set of integers Z \ {0}, and {x, 1/x} for

all non-integers |x| > 1. Any saturated open set containing a positive integer will

intersect a neighborhood of the origin. Saturated means that the set is a union of

equivalence classes. On the other hand, the graph of the relation is closed in X ×X.

For any equivalence relation R on X, we define its Hausdorffization to be the

smallest Hausdorff equivalence relation containing R. It is easy to see that it exists:

simply enlarge an equivalence class to include the classes from which it cannot be
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Figure 1. The graph of the equivalence relation from §2.2 and its

transitive-closure.

separated by saturated open sets. Alternatively, note that the trivial equivalence

relation X ×X is Hausdorff, and the collection of Hausdorff equivalence relations is

closed under intersections.

2.2. Transitive-closure and a simple example. Suppose R is an equivalence

relation on X which does not form a closed subset of X×X. Passing to the closure of

R does not generally produce an equivalence relation, due to the failure of transitivity.

The transitive-closure R of R is the smallest closed equivalence relation containing

the closure of R in X×X. The Hausdorffization of R always contains the transitive-

closure.

For example, consider the equivalence relation R on X = [0, 1] with equivalence

classes {0}, (0, 1/2), {1/2}, (1/2, 1), and {1}. The graph of R is shown in Figure

1. The closure of R does not define an equivalence relation, and the transitive-

closure of R is the full space X ×X. In this example, the transitive-closure R is the

Hausdorffization of R.

2.3. A Cantor quotient. For the topological-conjugacy equivalence we consider in

Theorem 1.1, the stable conjugacy classes form a dense open subset of MPd [MSS].

It is not always the case that a dense set of open classes leads to trivial Hausdorffiza-

tions, as it can happen that the closures of these open classes do not intersect. This

phenomenon is illustrated by the following well-known construction.

Let X = [0, 1] and let C be the standard middle-thirds Cantor set in X. Form an

equivalence relation R on X by declaring each point c ∈ C to be in its own unique

equivalence class, while the connected components of X \C, the gaps of C, constitute

open equivalence classes. Because of the open classes, the equivalence relation cannot

be Hausdorff. The Hausdorffization turns out to be the transitive-closure R. In fact,

the Cantor staircase function provides a homeomorphism from the quotient space

X/R back to the interval [0, 1].

2.4. Locally finite equivalence relations. A key strategy in proving Theorem 1.2

is to apply the following general principle. Let R be an equivalence relation which
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is closed in X ×X. An impression of the relation R is the lim sup of a sequence of

equivalence classes for which a sequence of elements converges. Specifically, for any

sequence of classes {Cn}, if we assume that a sequence of points cn ∈ Cn converges

in X to a point c, then the impression of {Cn} is the set

I{Cn} =
⋂
N

⋃
n>N

Cn

Because R is closed, the impression I{Cn} will be contained in the equivalence class

of c.

We say the relation R is locally finite if for every equivalence class C, every covering

C =
⋃
I∈I

I

by a collection I of impressions has a subcover by finitely many impressions. For

example, the equivalence relation on X = [0, 1]2 where every point lies in its own

equivalence class is clearly locally finite. The equivalence relation on X given by

(x, 0) ∼ (y, 0) for all x and y in [0, 1], and otherwise trivial, is not locally finite. Note

that these two Hausdorff equivalence relations coincide on a saturated dense subset

of X.

Proposition 2.1. Suppose R1 ⊂ R2 ⊂ X ×X are equivalence relations with closed

graphs. Suppose that R2 is locally finite with connected equivalence classes. If R1 and

R2 coincide on a saturated dense subset, then R1 = R2.

Proof. Let S ⊂ X be the dense saturated subset on which R1 and R2 coincide.

Because both R1 and R2 are closed, and because S is dense, every equivalence class

for R1 and R2 can be expressed as a union of impressions from sequences lying in S.

This collection of impressions coincides for R1 and R2. Fix a point x 6∈ S and let Ci
be its equivalence class for Ri, so that C1 ⊂ C2. By local finiteness of R2, we have

C2 ⊂ I1 ∪ . . . ∪ In where the Ij are impressions from S. Since each Ij is contained in

an R1-equivalence class Ej, we have C2 ⊂ E1 ∪ . . . ∪ En. But R1 is closed, so each

Ej is closed, and the Ej either coincide or are disjoint. Because C2 is connected, it

follows that C2 ⊂ C1 = Ej for some j. �

Corollary 2.2. Suppose R1 and R2 are locally finite Hausdorff equivalence relations

with connected classes. If R1 and R2 coincide on a saturated dense subset, then

R1 = R2.

Proof. Hausdorff relations have closed graphs, so the relationsR1∩R2 ⊂ R2 ⊂ X×X
satisfy the hypotheses of Proposition 2.1. Therefore R1 ∩R2 = R2 and so R2 ⊂ R1.

By symmetry, we also have R1 ⊂ R2, and the two relations are equal. �
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3. Polynomial deformations

For any polynomial f : C → C of degree d ≥ 2 with complex coefficients, recall

that the basin of infinity is the open subset

X(f) = {z ∈ C : fn(z)→∞}.

The escape-rate function for f is defined by

Gf (z) = lim
n→∞

1

dn
log+ |fn(z)|;

it is a continuous function on C which is positive on X(f) and identically zero on the

filled Julia set C \X(f). In fact, the function Gf coincides with the Green’s function

for X(f), with logarithmic pole at infinity. See for example [DH].

In this section, we discuss quasiconformal deformations of polynomials supported

on the basin of infinity. We define the basin-twist equivalence relation Rtwist, the

wringing equivalence Rwring, and the turning equivalence Rturn.

3.1. The Branner-Hubbard wring. The upper half-plane H = {τ = t+is : s > 0}
may be identified with the subgroup{(

1 t

0 s

)
: t ∈ R, s > 0

}
of GL2(R), regarded as real linear maps τ of the complex plane to itself via τ ·(x+iy) =

(x + ty) + i(sy). Note that the parabolic one-parameter subgroup {s = 1} acts by

horizontal shears, while the hyperbolic subgroup {t = 0} acts by vertical stretches.

The Branner-Hubbard wring motion of [BH1] is an action H×MPd → MPd.

Explicitly, for each polynomial f of degree d with disconnected Julia set, we consider

the holomorphic 1-form ω = 2 ∂Gf on the basin X(f). In the natural Euclidean

coordinates of (X(f), ω), the fundamental annulus

A(f) =

{
z : max

f ′(c)=0
Gf (c) < Gf (z) < d max

f ′(c)=0
Gf (c)

}
may be viewed as a rectangle in the plane, of width 2π and height (d−1) maxcGf (c),

with vertical edges identified. The wringing action is by the linear transformation τ

on this rectangle, transported throughout X(f) by the dynamics of f . When f has

connected Julia set, the wringing action is trivial.

Put differently, if µ is the f -invariant Beltrami differential ω̄/ω on X(f) and 0

elsewhere, we solve the Beltrami equation

∂̄ϕτ
∂ϕτ

=
−iτ − 1

−iτ + 1
µ

for homeomorphism ϕτ : C → C and set fτ = ϕτ ◦ f ◦ ϕ−1
τ . The map τ 7→ fτ is

analytic in τ , and the escape-rate function of fτ satisfies

(3.1) Gfτ (ϕτ (z)) = sGf (z)
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where s = Im τ .

The action of the parabolic subgroup {s = 1} is known as turning, while the action

of the hyperbolic subgroup {t = 0} is known as stretching.

3.2. The McMullen-Sullivan twist and multistretch. Given f ∈ MPd, there is

a canonical space of marked quasiconformal deformations of f supported on the basin

of infinity. The general theory, developed in [McS], shows that this space admits the

following description.

Fix a polynomial representative f : C → C of its conjugacy class. The foliated

equivalence class of a point z in the basin X(f) is the closure of its grand orbit {w ∈
X(f) : ∃ n,m ∈ Z, fn(w) = fm(z)} within X(f). Let N be the number of distinct

foliated equivalence classes containing critical points of f . Note that N = 0 if and only

if the Julia set of f is connected. For N > 0, these critical foliated equivalence classes

subdivide the fundamental annulus A(f) into N fundamental subannuli A1, . . . , AN
linearly ordered by increasing escape rate. It turns out one can define wring motions

via affine maps on each of the subannuli Aj independently so that the resulting

deformation of the basin X(f) is continuous and well-defined. The deformations of

each subannulus are parameterized by H, so we obtain an analytic map HN → MPd.

By varying the map f as well, we get an action

HN ×MPN
d → MPN

d

where now MPN
d is the locus of maps with exactly N critical foliated equivalence

classes.

The action of RN by the parabolic subgroup in each factor is called twisting. By

construction, the twisting deformations preserve critical heights. The action by the

hyperbolic subgroup in each factor is called the multistretch.

The Branner-Hubbard wring by τ = t + is ∈ H applied to f ∈ MPN
d is the twist

and multistretch by

(3.2)

(
2πm1 t

(d− 1)M(f)
+ is , . . . ,

2πmN t

(d− 1)M(f)
+ is

)
∈ HN

where mj is the modulus of the j-th subannulus of A(f) and M(f) =

maxf ′(c)=0Gf (c), so that ∑
j

mj = (d− 1)M(f)/2π.

3.3. The equivalence relations Rwring, Rturn, and Rtwist. In [DP2], we studied

the projection

π : MPd → Bd
that sends the affine conjugacy class of a polynomial f : C → C to the conformal

conjugacy class of its restriction f : X(f) → X(f) to the basin of infinity. We

proved that π is continuous and proper (with respect to a natural Gromov-Hausdorff
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topology on the space Bd) and that all fibers are connected. Furthermore, π is a

homeomorphism on the shift locus. It is convenient to define the wringing, turning,

and twisting equivalence relations in terms of the projection π.

Fix any element f in MPd, and let Wr(f) be its orbit under the wringing action

described above (and Tu(f) the turning orbit and Tw(f) the twisting orbit). The

equivalence class of the relation Rwring (respectively, Rturn or Rtwist) containing f is

defined to be the set

π−1π(Wr(f))
(
respectively, π−1π(Tu(f)) or π−1π(Tw(f))

)
.

In other words, the equivalence class of f consists of all polynomials with basin of in-

finity obtained from (f,X(f)) via the wring (respectively, turn or twist) deformation.

By the monotonicity of π, these equivalence classes are connected. It is immediate

from the definitions that

Rturn = Rwring ∩Rtwist

in the product MPd ×MPd.

Lemma 3.1. The connectedness locus Cd ⊂ MPd is an equivalence class for each

of the relations Rturn, Rwring, and Rtwist. Furthermore, every equivalence class for

Rwring accumulates on Cd.

Proof. The connectedness locus Cd consists of all polynomials with connected Julia

set. The connectedness locus is also characterized by the property that all elements

are conformally conjugate to f(z) = zd on their basins of infinity, so Cd is a fiber of

the projection π : MPd → Bd. It is well-known that the deformations of wringing and

twisting act trivially on elements in Cd (see [BH1, McS]). Therefore, the set Cd is an

equivalence class for each of the relations Rturn, Rwring, and Rtwist.

For the final statement, we need only observe that the stretching component of the

wring action contracts escape rates to 0. In particular, the escape rates of critical

points tend to 0 under the stretching operation. The properness of the critical heights

map implies that the closure of every wring-orbit must intersect Cd; see §4.1. �

4. Critical heights

In this section, we define the critical heights equivalence relation Rcrit on MPd,

and we show that it is locally finite in the shift locus. Recall that the shift locus

Sd ⊂ MPd is the open subset of polynomials f for which all critical points lie in the

basin of infinity X(f).

4.1. Critical escape rates. Fix a polynomial f : C → C of degree d ≥ 2 with

complex coefficients. The critical heights of f are the escape rates of the critical

points {Gf (c) : f ′(c) = 0}. The critical heights are conformal conjugacy invariants;

thus they induce a well-defined map on the moduli space of polynomials,

G : MPd → Rd−1
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given by

G(f) = (Gf (c1), . . . , Gf (cd−1)) ∈ Rd−1,

where the critical points {c1, . . . , cd−1} are ordered so that Gf (c1) ≥ Gf (c2) ≥ · · · ≥
Gf (cd−1) ≥ 0. In [DP1], we proved that G is continuous, proper, and surjective onto

Hd = {(h1, . . . , hd−1) ∈ Rd−1 : h1 ≥ h2 ≥ · · · ≥ hd−1 ≥ 0}.

4.2. Escape rates in the shift locus. It is often convenient to work in the space

P×d of critically marked polynomials f , parameterized by a set of critical points

{c1, . . . , cd−1} satisfying the relation c1 + · · · + cd−1 = 0 and the value a = f(0).

See [BH1] or [DP1]. On the open subset of P×d where the critical point ci lies in the

basin of infinity, the function

f 7→ Gf (ci)

is a locally uniform limit of pluriharmonic functions d−n log |fn(ci)|, thus itself pluri-

harmonic. Consequently, the critical heights map G lifts to define a pluriharmonic

map

G×(f) = (Gf (c1), . . . , Gf (cd−1))

on the marked shift locus S×d = {f ∈ P×d : Gf (ci) > 0 for all i}.

4.3. The equivalence relation Rcrit. The equivalence classes of Rcrit on MPd are,

by definition, the connected components of the fibers of G. The critical heights

map G : MPd → Hd factors as a composition of a monotone quotient map MPd →
T ∗d , where all fibers are connected, followed by a map T ∗d → Hd whose fibers are

totally disconnected [DP1, Theorem 1.3]; indeed, this is the canonical monotone-light

decomposition of G; cf. [Da]. The quotient space T ∗d is metrizable [DP1, Prop. 3.1].

We also showed that a natural projectivization PT ∗d can be formed by scaling critical

heights: the Branner-Hubbard stretch operation (see §3.1) descends to a continuous

action of R+ on T ∗d , and the image of the connectedness locus is the unique fixed

point of the action.

The shift locus within PT ∗d carries a canonical locally finite simplicial structure

[DP1, Theorem 1.8]. The open simplices of dimension k = 0, 1, . . . , d− 2 are param-

eterized by multistretch orbits, as described above in §3.2, associated to polynomials

with exactly k distinct critical foliated equivalence classes.

Recall the definition of a locally finite equivalence relation from §2.4. The locally

finite simplicial structure on PT ∗d implies:

Lemma 4.1. The critical heights relation Rcrit is locally finite on the shift locus Sd
in MPd.

Proof. The Lemma will follow if we can show that for any Rcrit-equivalence class C

in the shift locus, the impressions on C depend only on the simplices adjacent to the
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image of C in PT ∗d . The fact that the simplicial structure on the shift locus in PT ∗d
is locally finite will then imply that the equivalence relation is locally finite. We let

p : MPd → PT ∗d

denote the natural projection. Assume that σk is an open simplex in PT ∗d of dimension

k containing the image p(C) in its closure σk.

Let {fn} and {gn} be sequences of polynomials in the shift locus of MPd such that

fn → f ∈ C and gn → g ∈ C, and assume that the projections p(fn) and p(gn) lie in

σk for all n. We aim to show that the impression of the sequence fn coincides with

the impression of the sequence gn. By symmetry, it suffices to show that g ∈ I{Cn}
where Cn is the Rcrit-equivalence class of fn.

Let M : MPd → R denote the maximal critical escape rate, so M(f) = maxf ′(c)=0

Gf (c). Since stretching is continuous and the projection p is equivariant with respect

to stretching, we may assume M(f) = M(g) = M(fn) = M(gn) = 1 for all n. The

fibers of the restriction

p : p−1(σk) ∩ {M = 1} → σk

are precisely the Rcrit-equivalence classes, and multistretching defines a family of

sections of this projection.

It follows that for every n there is a polynomial hn such that (1) hn is Rcrit equiv-

alent to fn, and (2) hn is in the multistretch orbit of gn. The closure σ is a closed

simplex containing p(hn) and p(gn), so the heights of hn and gn are uniformly bounded

away from zero; the maximal height is 1 by construction. By compactness, we may

assume hn → h for some polynomial h. In the next paragraph, we show h = g.

Assuming this, the lemma follows, since h ∈ I{Cn} by construction. Since Sd → Bd
is a homeomorphism to its image, it suffices to show that hn, gn converge to the same

point in the Gromov-Hausdorff topology on Bd.
Let ϕn denote the quasiconformal multistretch conjugacy from gn to hn. Fix ε > 0.

Consider first the fundamental annulus An of gn and Bn of hn. By construction, the

heights of these annuli are all equal to d − 1, and the heights of the subannuli Aj,n
and Bj,n converge to the same values. Hence the jth fundamental annulus Aj,n of gn
has height tending to zero if and only if the same is true of the corresponding annulus

Bj,n of hn. As n increases, eventually the heights of these collapsing subannuli are less

than ε. It follows that for each subannulus, the restriction ϕj,n : Aj,n → Bj,n of ϕn is

nearly an ε-isometry when n is sufficiently large. Hence the restriction ϕn : An → Bn

is also nearly an ε-isometry when n is sufficiently large. Since ϕn is a conjugacy,

it follows that if t > 0 is fixed, and ` is chosen so that d` > t, the restriction

ϕn : {1/t < Ggn < t} → {1/t < Gfn < t} is a d`ε-isometric conjugacy for all n

sufficiently large. Since ε is arbitrary, we see that in the limit, the dynamics of g on

{1/t < Gg < t} is isometrically conjugate to that of h on {1/t < Gh < t}. Since t is

arbitrary, we conclude g = h in Bd as required. �
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5. Topological conjugacy

In this section we prove Theorem 1.1 which states that the Hausdorffization of the

topological-conjugacy equivalence Rtop is trivial: all maps lie in a single Hausdorffized

equivalence class.

Proof. For each k = 0, 1, . . . , d− 1, let E(k) ⊂ MPd be the set of polynomials with at

least k escaping critical points. In terms of the critical heights map G : MPd → Rd−1

defined in §4.1, the set E(k) is the preimage of {h ∈ Rd−1 : hi > 0 ∀i ≤ k}. In

particular E(k) is open. Note that MPd = E(0) while E(d− 1) is the shift locus Sd.
We proceed inductively on the number of escaping points, showing that all of E(k)

(and therefore also its closure) lies in a single Hausdorffized equivalence class for Rtop.

We begin with the shift locus. Recall from §4.2 that the critical heights map G lifts

to

G× : S×d → (0,∞)d−1

on the marked shift locus. The map G× is pluriharmonic, open, proper, and surjective

[DP1]. The height relations

hi = dnhj,

for all i, j ∈ {1, . . . , d − 1} and n ∈ Z, cut out a countable collection of real hy-

persurfaces H(i, j, n) in Rd−1. Pulling these hypersurfaces back to S×d via G×, the

complement of their union forms a countable collection of disjoint open “chambers”.

Projecting to Sd, these connected chambers are precisely the structurally stable topo-

logical conjugacy classes in the shift locus (see [McS] and [DP1]). Further, the closures

of these conjugacy classes overlap; in fact, any two points of Sd can be joined by a

finite chain of overlapping closures of stable classes, since the locus of stable classes

is open and dense and the image of the shift locus in PT ∗d is a locally finite simplicial

complex, with stable conjugacy classes projecting to simplices of maximal dimension.

So the transitive-closure of the relation Rtop within the shift locus must be all of

Sd × Sd.
We have shown that all of E(d − 1), and therefore also its closure, lies in one

Hausdorffized equivalence class for Rtop in MPd.

For the inductive step, suppose E(k) is contained in a single Hausdorffized equiv-

alence class C. Put X = E(k − 1) \ E(k); this is an open subset of MPd. Suppose

g ∈ X. We aim to show that g ∈ C.
By the density of structurally stable maps [McS, Theorem 7.1] and the fact that C

is closed, we may assume that g is structurally stable. Recall that by definition, this

means that all maps near g are quasiconformally conjugate to g on all of C. The map

g has exactly k − 1 escaping critical points and no critical orbit relations.

We will now show that there exists a continuous family gt, t ∈ [0, 1) of quasiconfor-

mal deformations of g supported on the filled-in Julia set of g such that g0 = g and

gt accumulates on the bifurcation locus in E(k − 1) as t→ 1. Any such deformation
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must accumulate somewhere, by compactness, and any accumulation point g1 will be

holomorphically conjugate on its basin of infinity to that of g, since the projection

MPd → Bd is continuous. In particular g1 will have exactly k − 1 escaping critical

points, so if g1 lies in the bifurcation locus inside E(k− 1), it must lie in E(k), hence

in C. Thus the closure of the topological conjugacy class of g will meet C, and so g

will lie in C as well.

Since g is structurally stable, every cycle of g is repelling or attracting. If g has

attracting cycles — which, conjecturally, is always the case for k < d — we let gt
be a so-called pinching deformation of g [HT]. The nature of pinching implies that

any accumulation point g1 of gt has a rationally indifferent cycle, therefore lies the

bifurcation locus in E(k − 1).

If g does not have attracting cycles, its filled-in Julia set has empty interior, and

there are invariant line fields on its Julia set Jg. Since g is structurally stable, the Te-

ichmüller space Teich(g) is holomorphically equivalent to a polydisk ∆l×∆k−1 where

l ≥ 1 and k+ l = d; the first factor corresponds to deformations supported on Jg, and

the latter to deformations on the foliated basin of infinity. Let η : Teich(g) → X be

the natural map and let ηJ : ∆l → X be the restriction to the first factor, i.e. given by

ηJ(τ1, . . . , τl) = η(τ1, . . . , τl, 0, . . . , 0). In the remainder of this paragraph, we prove

that the image of η cannot be compact. We lift the map ηJ to the corresponding

subspace X̃ of monic centered polynomials, so that now the coefficients become holo-

morphic functions of (τ1, . . . , τl). The map X̃ → X is finite and proper, so the image

of ηJ is compact if and only if the image of its lift η̃J is compact. Some coefficient

must vary, yielding a nonconstant holomorphic function on ∆l whose image cannot

be compact.

It follows that there is a quasiconformal deformation gt which accumulates at a

map g1 ∈ E(k− 1) which is not quasiconformally conjugate to g on all of C. Suppose

g1 6∈ E(k). Then g1 is a J-stable parameter in E(k − 1) which is not structurally

stable. The map g1 is holomorphically conjugate to g on the basin of infinity and

quasiconformally conjugate to g near its Julia set. From this it follows that since g has

no critical orbit relations, neither does g1. By [McS, Theorem 7.1], the structurally

stable and postcritically stable parameters in E(k − 1) coincide. Hence the critical

orbit relations are not locally constant at g1. It follows that there exist arbitarily small

perturbations of g1 with critical orbit relations. These relations cannot occur among

the exactly k − 1 escaping critical points, since g1 has exactly k − 1 escaping critical

points and no critical relations among them; this is an open condition. Therefore

there must exist arbitrarily small perturbations of g1 with critical orbit relations

among critical points in the Julia set. But this is impossible, since if g1 is J-stable,

all nearby maps are conjugate on their Julia sets, and g1 has no critical orbit relations.

We conclude that g1 ∈ E(k) and therefore g ∈ C. �
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6. Hausdorffized twists, turns, and wrings

In this section, we give the proofs of Theorems 1.2 and 1.3, relating all of the

equivalence relations we have defined on MPd. We will use the result of [DP1, The-

orem 1.2] that for generic values of the critical heights map G : MPd → Rd−1, the

equivalence classes of Rcrit coincide with those of Rtwist. Specifically, the equivalence

classes coincide for critical heights (h1, . . . , hd−1) which are all positive and satisfy no

relations of the form hi = dnhj.

6.1. In the shift locus. We first show that Theorem 1.2 holds in the shift locus Sd
of MPd, where all critical points have positive heights.

Lemma 6.1. On the shift locus, the equivalence relation Rcrit is the transitive-closure

of Rtwist.

Proof. The Lemma follows immediately from Proposition 2.1. Indeed, Rcrit is Haus-

dorff, therefore closed, and Rtwist ⊂ Rcrit ⊂ Sd × Sd. The relation Rcrit is locally

finite on the shift locus by Lemma 4.1, and the two relations agree on the subset of

Sd with generic heights [DP1, Theorem 1.2]. The polynomials with generic critical

heights are dense in Sd. Proposition 2.1 implies that Rtwist = Rcrit. �

The following proposition implies that the twist relation Rtwist is not Hausdorff for

any degree > 2:

Proposition 6.2. The twist-equivalence classes in the shift locus are compact, but

the graph Rtwist is not closed in Sd × Sd for any degree d > 2.

Proof. We proved in [DP1, Lemma 5.2] that the stabilizer of a point in the shift locus

for the twist-deformation action always contains a lattice in RN . See the discussion

in §3.2 above. It follows immediately that the orbit is compact.

By Lemma 6.1, the transitive-closure of Rtwist is equal to Rcrit on the shift locus.

The fibers of G always have dimension d−1 in the shift locus, while twist-orbits within

fibers with height relations have dimension N < d − 1. Therefore Rtwist 6= Rcrit, so

the twist-equivalence relation is not closed. �

The proof of Proposition 6.2 does not explain the dynamical reasoning for the failure

of Rtwist to be Hausdorff. It is easy to see that for points with height relations, there

is an extra invariant of topological conjugacy which is allowed to vary within a fiber

of the critical heights map. Namely, there is the angle, as measured from infinity via

external rays, between points in the orbit of critical points which land on the same

connected level set of the escape-rate function Gf .

6.2. Proof of Theorem 1.2. Let π : MPd → Bd be the projection which sends an

affine conjugacy class of a polynomial f to the conformal conjugacy class of its basin
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of infinity (f,X(f)) (see §3.3 and [DP2]). By construction, the equivalence classes C

for either relation Rtwist or Rcrit satisfy

C = π−1π(C),

so it suffices to show that the projected equivalence classes π(C) coincide on Bd.
Lemma 6.1 shows that Rtwist = Rcrit on the shift locus, and in general we have

Rtwist ⊂ Rcrit in MPd ×MPd. Recall that π is a homeomorphism on Sd by [DP2,

Theorem 1.1] and the shift locus forms a dense open subset in the quotient space Bd
by [DP2, Proposition 5.4].

Suppose now that Qtwist is an equivalence class for Rtwist which is not in the shift

locus, and suppose Qcrit is the equivalence class for Rcrit which contains Qtwist. From

[DP1, Lemma 6.2], there is a canonically defined deformation {Qt : t > 0} of the class

π(Qcrit) in Bd, which satisfies

(1) the set Qt is connected and is contained in a unique equivalence class Ct of

Rcrit;

(2) the class Ct lies in the shift locus; and

(3) for any sequence tn → 0, the class π(Qcrit) is contained in the impression of

the classes Ctn .

In the language of [DP1, Lemma 6.2], point (3) follows because the set S(f, t) con-

verges to f in Bd as t → 0; see also the definition of the topology on Bd in [DP2,

§3.2].

Because the projection of Rcrit is a closed relation on Bd, (3) implies that any

impression of the classes Ct is equal to the class π(Qcrit). By (2), the classes Ct are

also classes for the closed relation Rtwist, so the impression of these classes must also

coincide with π(Qtwist). Therefore π(Qcrit) = π(Qtwist), from which we conclude that

Qcrit = Qtwist and finally that Rtwist = Rcrit on all of MPd. �

6.3. Proof of Theorem 1.3. That Rtop = MPd ×MPd is the content of Theorem

1.1. The triviality of Rwring follows from Lemma 3.1: the closure of every equivalence

class intersects the wring-equivalence class Cd. By transitivity, we obtain Rwring =

MPd×MPd. The inclusionsRturn ⊂ Rtwist ⊂ Rcrit and the fact thatRcrit is Hausdorff

imply that Rturn ⊂ Rtwist ⊂ Rcrit. Theorem 1.2 states that Rtwist = Rcrit.

It remains to show that Rturn is also equal to Rcrit. We work with the expres-

sion (3.2) with s = 1, providing a formula for the twist action associated to a

turn by amount t ∈ R. Suppose first that f is a polynomial with generic criti-

cal heights, meaning that it lies in the shift locus and has d − 1 distinct critical

foliated equivalence classes. From [DP1, Theorem 1.2], we know that the Rcrit equiv-

alence class containing f coincides with that of Rtwist, and it is a smooth torus of

dimension d − 1. As described in [BH1] for cubic polynomials, when the moduli

{m1, . . . , md−2, (d−1)M(f)/2π} from equation (3.2) are rationally independent, the
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turning curve is dense on this torus. In particular, the closure of the Rturn class con-

taining f coincides with the Rcrit class. The set of maps with rationally independent

moduli form a dense subset of Sd; following the arguments of Lemma 6.1, we can

conclude that Rturn = Rtwist = Rcrit on the shift locus. Finally, following the details

of the proof of Theorem 1.2 with Rturn in place of Rtwist, we may conclude that

Rturn = Rtwist = Rcrit

on all of MPd. �
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