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1. INTRODUCTION

Let M be a Riemannian manifold and pM(t, x, y) the (minimal)
heat kernel on M. Bismut’s formula ([2]) is a probabilistic repre-
sentation of the covariant derivative of pM(t, x, y) of the following
form:

(1.1) T∇ log pM(T, x, y) = Ex

[∫ T

0
Ms dWs

∣∣∣∣XT = y
]

.

Here the right side is the expected value of a functional of Brownian
motion {Xt} on M starting from x and conditioned to return to y
at time T, the process {Wt} is the (stochastic) anti-development of
X, which by definition is a euclidean Brownian motion, and {Ms} is
the multiplicative Feynmann-Kac functional determined by the Ricci
curvature of the manifold. The usefulness of such a formula can be
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seen more clearly from another equivalent form of the formula. Let
{Pt} be the heat semigroup defined by

Pt f (x) =
∫

M
pM(t, x, y) f (y) dy.

Since the heat kernel pM(t, x, y) is also the transition density function
of Brownian motion on M, we have also

Pt f (x) = Ex f (Xt).

It is easy to verify that Bismut’s formula (1.1) is equivalent to the
following statement: for all reasonable smooth functions f on M,

(1.2) T∇xPT f (x) = Ex

[
f (XT)

∫ T

0
Ms dWs

]
.

The significance of this representation is that the right side does not
contain the gradient of the function f . Suppose that f is harmonic on
M, i.e., it satisfies the equation ∆M f = 0, where ∆M is the Laplace-
Beltrami operator on M. Suppose also that PT f = e∆MT/2 f = f and
that we are allowed to use (1.2) for this function f . Then the left
side is simply T∇ f ; thus the gradient of a harmonic function is ex-
pressed explicitly in terms of the function itself, which potentially
opens ways of using this formula to study gradient estimates of har-
monic functions (see Thalmaier and Wang [9]). We can also see a pos-
sible use of Bismut’s formula in financial mathematics, for in many
cases, the price of a financial derivative takes the form Ex f (XT),
where f represents the payoff at the expiry (with the expiration time
T) and X0 = x represents the initial prices of the underlying assets.
Thus ∇xEx f (XT) are the rate of change (sensitivity) of the price of
the derivative with respect to the initial prices, which are called the
derivative Greeks in financial mathematics. Thus Bismut’s formula
gives a useful way of computing the Greeks in terms of the payoff
function itself (see Nualart [7]).

Bismut’s original approach to his formula (see Bismut [2]) is to
calculate the variation of Brownian paths with respect to the starting
point X0 = x. If we use Xx = {Xx

t } to denote a Brownian motion
on M starting from x, then, as a first step to calculate the covari-
ant derivative ∇xEx f (XT) = ∇xE f (Xx

T), we need to calculate the
variation of the terminal position Xx

T of the Brownian motion with
respect to the initial point x. This is to be followed by an integra-
tion by parts in the path space to remove the differentiation from the
function f . Nowadays this approach is largely abandoned in favor of
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a more streamlined approach based on heat equations and stochas-
tic calculus on manifolds. The end form of this approach is the fruit
of research by many mathematicians (including Elworthy, Stroock,
Driver and their collaborators, and myself). The first part of this pa-
per is to give an exposition of this approach to Bismut’s formula.
In the second part, we consider an extension of Bismut’s formula to
vector bundles. Norris [6] discussed such an extension by following
the original variation method of Bismut. Bismut’s formula for vector
bundles can also be treated by heat equations and stochastic calculus
on manifolds. We will illustrate this assertion by the simple case of a
trivial bundle. The proof of Bismut’s formula in this case, simple as
it is, has already contained some good indications of what one might
expect to do in a more general setting. A full version of this result
will be a part of the forthcoming work [1].

2. LAPLACE-BELETRAMI OPERATOR AND BOCHNER’S
HORIZONTAL LAPLACIAN

We start with the Laplace-Beltrami operator ∆M, which is the in-
finitesimal generator for Brownian motion on M as a diffusion pro-
cess. We assume that M is a Riemannian manifold equipped with
the Levi-Civita connection and use ∇ to denote covariant differen-
tiation on tensor fields on M. The Laplace-Beltrami operator, which
generalizes the usual Laplace operator on euclidean space, is defined
by

∆M f = div(grad f ),
where the gradient and the divergence are defined with respect to
the Riemannian metric on M. The gradient grad f is the dual of the
differential d f ; thus it is the unique vector field defined by the rela-
tion

〈grad f , X〉 = d f (X) = X f , ∀X ∈ Γ(TM).

In local coordinates x =
{

xi}, let Xi = ∂/∂xi be the partial differen-
tiations along the coordinate variables. The Riemannian metric can
be written as

ds2 = gijdxidxj, gij = 〈Xi, Xj〉.
In terms of local coordinates, the Riemannian metric is given by

∇ f = gij ∂ f
∂xi

∂

∂xj .

The divergence divX of a vector field X is defined to be the contrac-

tion of the (1,1)-tensor ∇X. If X = ai ∂

∂xi in local coordinates, then it
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is easy to verify that

divX =
1√
G

∂ (
√

G ai)
∂xi .

Combining the local expressions the gradient and divergence, we
obtain the familiar local formula for the Laplace-Beltrami operator:

∆M f =
1√
G

∂

∂xi

(√
Ggij ∂ f

∂xj

)
.

Thus ∆M is a nondegenerate second order elliptic operator on M.
For our purpose, the following description is more important. For
any orthonormal basis {Xi} of Tx M, we have

∆M f = trace∇2 f =
d

∑
i=1
∇2 f (Xi, Xi).

Let O(M) be the orthonormal frame bundle of M and π : O(M)→
M the canonical projection. Recall that the fundamental horizontal
vector fields Hi (with respect to the Levi-Civita connection) are the
unique horizontal vector fields on O(M) such that π∗Hi(u) = uei,
where {ei} is the canonical basis for Rd (see Kobayashi and No-
mizu [5]). Bochner’s horizontal Laplacian is the second order elliptic
operator on O(M) defined by

∆O(M) =
d

∑
i=1

H2
i .

Bochner’s horizontal Laplacian ∆O(M) is the lift of the Laplace-Beltrami
operator ∆M to the orthonormal frame bundle O(M). More pre-
cisely, let f ∈ C∞(M), and f̃ = f ◦ π its lift to O(M). Then for
any u ∈ O(M),

(2.1) ∆M f (x) = ∆O(M) f̃ (u),

where x = πu. The obvious advantage of ∆O(M) over ∆M is that it
is (intrinsically) in the form of the sum of n = dim M canonically
defined vector fields. As a consequence, the diffusion process gener-
ated by ∆O(M)/2 is the solution of a standard Stratonovich stochastic
differential equation on O(M). This allows us to take the full advan-
tage of stochastic calculus (stochastic differential equations) on man-
ifolds. The price to be paid is that we need to work in the orthonor-
mal frame bundle O(M), a much larger space than the manifold M
itself.
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3. BROWNIAN MOTION ON A RIEMANNIAN MANIFOLD

Let M be a Riemannian manifold. The heat kernel pM(t, x, y) is the
(minimal) fundamental solution of the parabolic operator

L =
∂

∂t
− 1

2
∆M,

where ∆M is the Laplace-Beltrami operator on M. The heat ker-
nel can be constructed geometrically by the method of parametrix
starting from an approximate heat kernel in local coordinates (see
Chavel [3]). The heat kernel is also the transition density function of
Brownian motion on M, i.e.,

Px {Xt ∈ A} =
∫

A
pM(t, x, y) dy.

Once pM(t, x, y) is given, the process X can be constructed by the
standard method in the theory of Markov processes (see Chung [4]).
This construction of Brownian motion on a Riemannian manifold, al-
though simple and direct, will not show explicitly how the geometry
of the manifold affects the behavior of Brownian motion.

We now briefly discuss the well-known Eells-Elworthy-Malliavin
construction of Brownian motion on a Riemannian manifold. In-
stead of starting from the heat kernel pM(t, x, y), which shows the
averaged behavior of the process to be constructed, this approach
goes directly to the path level. The approach is geometric and the
heat kernel (or the transition density function) is obtained as a prod-
uct rather than a building block of the construction. The extra flexi-
bility we gain from the manifold to the path space over the manifold
will be crucial to making effective use Itô’s formula for Brownian
motion on a Riemannian manifold.

Let {Wt} be a standard Brownian motion on Rd (starting from
zero) and consider the following Stratonovich stochastic differential
equation on O(M):

dUt = Hi(Ut) ◦ dWt.
By general theory of stochastic differential equations, it has a unique
solution, which is a diffusion process generated by Bochner’s hori-
zontal Laplacian ∆O(M)/2. This process is called a horizontal Brow-
nian motion. Using the relation of ∆O(M) and ∆M in (2.1) it is easy to
verify that the projection Xt = πUt is a diffusion process generated
by ∆M/2, namely, a Brownian motion on M. One immediately con-
sequence of this statement is that for any f ∈ C∞(M), the function

f (x, t) = Ex f (Xt)
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is the solution of the initial value problem

(3.1)
∂ f
∂t

=
1
2

∆M f , f (x, 0) = f (x).

Equivalently, f (x, t) = Pt f (x), where Pt = e∆Mt/2 is the heat kernel
semigroup, and

Ex f (Xt) = Pt f (x) =
∫

M
pM(t, x, y) f (y) dy.

The above identity can be regarded as a probabilistic identification
of the heat kernel.

4. HODGE-DE RHAM LAPLACIAN AND WEITZENBÖCK FORMULA

Recall that the Laplace-Beltrami operator ∆M is the trace of the
Hessian ∇2 f :

∆M f (x) =
d

∑
i=1
∇2 f (Xi, Xi),

where {Xi} is any orthonormal basis of Tx M. The Laplace-Beltrami
operator ∆M on functions can be extended to tensor fields on M by
the same relation:

∆Mθ =
d

∑
i=1
∇2θ(Xi, Xi).

This is the so-called rough Laplacian on tensor fields. We will con-
centrate on the case where θ is a 1-form, or a vector field (by duality).

A 1-form θ on M can be lifted to its scalarization θ̃ on the orthonor-
mal frame bundle O(M) defined by

θ̃(u) = u−1θ(πu).

Thus θ̃ is an Rd-valued function on O(M) and is O(d)-invariant in
the sense that θ̃(ug) = gθ̃(u) for g ∈ O(d). The horizontal deriva-
tives Hi θ̃ and Bochner’s horizontal Laplacian ∆O(M)θ̃ are well de-
fined, and we have a relation for 1-forms similar to (2.1):

(4.1) ∆O(M)θ̃(u) = u−1∆Mθ(x), πu = x.

We now turn to the Hodge-de Rham Laplacian on 1-forms. Al-
though the covariant (rough) Laplacian ∆M is naturally associated
with Brownian motion on a manifold, it does not commute with
the exterior differentiation, a natural operation on differential forms.
Geometrically more significant is the Hodge-de Rham Laplacian

�M = −(dδ + δd).
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Here δ is the (formal) adjoint of the exterior differentiation d with
respect to the canonical inner product on the space of differential
forms on M:

(dα, β) = (α, δβ).

Note that with the sign convention we have chosen �M coincides
with ∆M on functions. Using the fact that d2 = 0 (and hence also
δ2 = 0) we verify easily that d �M = �Md. Thus we have two
natural Laplacians on the space of differential forms: �M is asso-
ciated closely with geometry because it commutes with d (and hence
also ∇), and ∆M is the direct descendant from Bochner’s Laplacian
∆O(M), which is the generator of horizontal Brownian motion. The
difference between �M and ∆M on differential forms is given by the
Weitzenböck formula (see de Rham [8]). It takes particular simple
form in the case of 1-forms:

�Mθ = ∆M − RicMθ,

where RicM : Tx M → Tx M is the Ricci curvature transform. Note
that the last term is a matrix multiplication (zeroth order operator),
which opens a way of using Feynman-Kac functionals to pass from
∆M to �M.

For our purpose it is more convenient to lift the Weitzenböck for-
mula from the manifold M to the orthonormal frame bundle O(M).
Let

Ricu := u−1Ricπuu : Rd → Rd

be the scalarized Ricci transform at a frame u ∈ O(M). Let

�O(M) = ∆O(M) − Ric.

Then �O(M) is a lift of the Hodge-de Rham Laplacian in the sense
that

�O(M)θ̃(u) = u−1�Mθ(x), πu = x.

5. HEAT EQUATIONS FOR FUNCTIONS AND 1-FORMS

We now consider the following initial-value problem for a 1-form
θ = θ(t, x):

(5.1)


∂θ

∂t
=

1
2
�Mθ, (t, x) ∈ (0, ∞)×M;

θ(0, x) = θ(x), x ∈ M.
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We can rewrite the above equation on O(M). Let θ̃ be the scalariza-
tion of θ. Then the above equation is equivalent to

(5.2)


∂θ̃

∂t
=

1
2
�O(M)θ̃, (t, u) ∈ (0, ∞)×O(M);

θ̃(0, u) = θ̃0(u), u ∈ O(M).

Recall that the horizontal Brownian motion is generated by Bochner’s
Laplacian

∆O(M) =
n

∑
i=1

H2
i .

Let θ̃ be the scalarization of θ and

θ̃(t, u) = Euθ̃(Ut).

Then it satisfies the heat equation

∂θ̃

∂t
=

1
2

∆O(M)θ̃.

Furthermore, θ̃(t, u) is the scalarization of a 1-form θ(t, x) on M,
which satisfies the heat equation

∂θ

∂t
=

1
2

∆Mθ.

However, what we want is the solution of the heat equation with
the covariant (rough) Laplacian ∆M replaced by the Hodge-de Rham
Laplacian �M. By the Weitzenböck formula

�O(M) = ∆O(M) − RicM.

The solution of the heat equation (5.1) can be obtained by using a
matrix version of the well-known Feynman-Kac formula. Let Mt be
the matrix-valued multiplicative functional determined by

(5.3)
dMt

dt
+

1
2

Mt R̃icUt = 0, M0 = In.

Then an easy application of Itô’s formula gives

d
{

Msθ̃(t− s, Us)
}

= Ms

n

∑
i=1

Hi θ̃(t− s, Us) dW i
s,

which shows that
{

Msθ̃(t− s, Us), 0 ≤ s ≤ t
}

is a martingale. Equat-
ing the expected values at s = 0 and s = t, we obtain a probabilistic
representation of the solution of the heat equation in the form

θ̃(t, u) = Eu
{

Mtθ̃(Ut)
}

.
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Correspondingly, the solution of (5.1) is given by

θ(t, x) = Ex

{
MtU−1

t θ(Xt)
}

,

where U is the horizontal lift of a Brownian motion X.

6. BISMUT’S FORMULA FOR THE HEAT KERNEL ON FUNCTIONS

With the preparations of the previous two sections, the proof of
Bismut’s formula for the functional heat kernel becomes plain sail-
ing. Let

f (x, t) = Ex f (Xt) = Pt f (x).

It is the solution of the initial value problem

∂ f
∂t

=
1
2

∆M f , f (x, 0) = f (x).

We now use the same notation Pt = e�Mt/2 to denote the heat semi-
group (acting on functions and 1-forms) generated by the Hodge-de
Rham Laplacian �M. Let

θ(x, t) = ∇ f (x, t) = ∇Ex f (Xt).

Since the exterior differentiation d (hence also the gradient ∇ by the
canonical identification) commutes with �M, it also commutes with
the semigroup Pt and we have

θ(x, t) = ∇Pt f (x) = Pt(∇ f )(x).

This equality simply means that θ(x, t) solves the equation

∂θ

∂t
=

1
2
�Mθ.

On the other hand, the discussion in the last section shows that the
process Mtθ̃(Ut, T − t) is a martingale, hence for any 0 ≤ t ≤ T,

∇Ex f (XT) = Eu

[
Mtθ̃(Ut, T − t)

]
.

Integrating with respect to t from 0 to T, we obtain

T∇Ex f (XT) = Eu

[∫ T

0
Mtθ̃(Ut, T − t) dt

]
= Eu

[∫ T

0
Mt dWt

∫ T

0
〈θ̃(Ut, T − t), dWt〉

]
.
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Finally, applying Itô’s formula to f (Xt, T − t) = f̃ (Ut, T − t) and
using the fact that f (x, t) solves the heat equation we obtain imme-
diately that

f (XT)−Ex f (XT) =
∫ T

0
〈θ̃(Ut, T − t), dWt〉.

It follows that

∇Ex f (XT) = Ex

[
f (XT)

∫ T

0
Ms dWs

]
.

This is exactly Bismut’s formula we wanted to prove.

7. EXTENSION OF BISMUT’S FORMULA TO VECTOR BUNDLES

The same line of thought can be applied to prove extensions of
Bismut’s formula for heat kernels for vector bundles. In this section
we discuss the simplest case of a trivial line bundle F = R2 over
M = R. It illustrates some extra steps one must take beyond what
have already appeared in the functional case.

The trivial bundle F = R2 is covered by a coordinate system of
two variables z = (x, y), where x is the base variable and y the fibre
variable. We will take the base motion to be a standard one dimen-
sional Brownian motion Xt = Wt. The fibre motion typically should
be driven by both W and t, but we will take the simple case where
the fibre motion is determined by an ordinary differential equation

dYt = V(Xt, Yt) dt.

The total process is given by Zt = (Xt, Yt).
Now consider a smooth function f : F = R2 → R and f (z, t) =

Ez f (Zt). What we need is a probabilistic representation of∇x f (z, T).
The generator for the diffusion process {Zt} is easily identified:

L =
1
2

∂2
x + V(x, y)∂y.

Hence f (z, t) is the solution of

(7.1)
∂ f
∂t

= L f .

This means that the process f (Zt, T − t) is a martingale and

(7.2) f (ZT) = Ez f (ZT) +
∫ T

0
fx(Zt, T − t) dWt.

This identity will be needed later.
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Next, differentiating (7.1) with respect to x we see that derivative
fx = ∂ f (x, y, t)/∂x solves satisfies

∂ fx

∂t
= L fx + [∂x, L] f .

The commutator [∂x, L] can be computed easily:

[∂x, L] f = Vx(x, y) fy.

Therefore the equation for fx is

∂ fx

∂t
= L fx + Vx fy.

Here we see that the fibre derivative fy = ∂ f (x, y, t)/∂y appears on
the right side. This means that we cannot directly use the Feynman-
Kac technique to deal with this equation. However, a probabilistic
representation of the solution is still possible. In fact, we can verify
by Itô’s formula that

fx(Zt, T − t) +
∫ t

0
Vx(Zs) fy(Zs, T − s) ds, 0 ≤ t ≤ T,

is a martingale, hence for 0 ≤ t ≤ T,

fx(z, T) = Ez fx(Zt, T − t) +
∫ t

0
Vx(Zs) fy(Zs, T − s) ds.

Integrating with respect to t, we have

T∇xEz f (ZT) = Ez

[∫ T

0
fx(Zt, T − t) dt

]
(7.3)

+ Ez

∫ T

0
Vx(Zt) fy(Zt, T − t)(T − t) dt.

The first term can be treated in the same way as we have done in the
last section, namely, we write it as

Ez

[∫ T

0
fx(Zt, T − t) dt

]
= Ez

[∫ T

0
fx(Zt, T − t) dWt

∫ T

0
I dWt

]
= Ez

[
f (ZT)

∫ T

0
I dWt

]
.

Here we have used (7.2) in the second step. The question now is how
to deal with the second term in (7.3) involving fy(Zt, T − t). It turns
out that this term can be treated by the Feynman-Kac technique. To
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see this, we first derive the heat equation for fy(z, t). Differentiating
the equation (7.1) for f (z, t) with respect to y we have

∂ fy

∂t
= L fy + [∂y, L] f .

Recall that L = (1/2)∂2
x + V∂y, hence [∂y, L] f = Vy(z) fy and

∂ fy

∂t
= L fy + Vy(z) fy.

This is an equation satisfied by fy itself, not involving fx. Introduce
the Feynman-Kac functional

et = exp
[∫ t

0
Vy(Zs) ds

]
.

Then a straightforward application of Itô’s formula shows that the
process

Nt = fy(Zt, T − t) et

is a martingale. Let

gt =
∫ t

0
e−1

s Vx(Zs)(T − s) ds.

Then the second term on the right side of (7.3) involving fy becomes∫ T

0
Vx(Zt) fy(zt, T − t)(T − t) dt

=
∫ T

0
Ntdgt

= NTgT − N0g0 −
∫ T

0
gt dNt.

The expected value of the last term vanishes because it is a martin-
gale. We also have NT = fy(ZT)eT and g0 = 0, we have

Ez

∫ T

0
Vx(Zt) fy(Zt, T − t)(T − t) dt = Ez

[
fy(ZT)YT

]
,

where

Yt = et

∫ t

0
e−1

s Vx(Zs)(T − s) ds.

Putting things together, we obtain a Bismut’s formula (for the trivial
bundle) in the following form

T∇xEz f (zT) = Ex

[
f (ZT)

∫ T

0
I dWt + fy(ZT)YT

]
.
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Note that Yt is Norris’ derived process (see Norris [6]) satisfying the
equation

dYt = Vy(Zt)Yt dt + Vx(Zt)(T − t) dt.
In a more general setting, the derived equation is a stochastic differ-
ential equation which in general cannot be solved explicitly.
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