
ON THE POISSON KERNEL FOR THE NEUMANN
PROBLEM OF SCHRODINGER OPERATORS

PEI HSU

ABSTRACT

Let D be a bounded domain in W (d ̂  3) and let b{t,x,y) be the kernel of the Feynamn-Kac semigroup
associated with the reflecting Brownian motion {Xt: t ^ 0} and potential V, namely

: [expM' K ( ^ W ) j = J b(t,x,y)Ay)m{dy).

I]. The Poisson k

t,y)= b(t,x,:
Jo

We assume that V is in the Kato class Kd [1]. The Poisson kernel studied in this paper is

Nv{x,y)= \ b{t,x,y)dt.

In general Nv may be infinite. We show that if Nv(x, y) is finite for one pair of points then it is finite for
all x =£ y and there exist two constants cv c2 (depending on D and V) such that

c^\\x-y\\d-2Nv{x,y)^cv

This happens precisely when the spectrum of Hv = A/2+ V under the Neumann boundary condition lies
in the negative half-axis. This result is used to discuss the Neumann boundary value problem of Hv. We
prove that for any boundary function/eL^SD), a ^ 1, the problem has a unique weak solution

«/*) = ; f
1 h

Nv(x,y)J[y)a(dy)eC(D)
3D

and its growth rate near the boundary can be estimated by

1. Introduction

We assume throughout the paper that D is a bounded domain in Ud with a C3

boundary. We denote the Lebesgue measure of Ud by m and the (d— l)-dimensional
volume measure of 9Z> by a. The outward normal derivative at dD will be denoted by
d/dn. The Neumann boundary value problem of the Schrodinger operator
Hv = A/2 + Kis concerned with the existence and uniqueness of a function u such that
Hv u = 0 and du/dn = / , a function defined on the boundary dD. For brevity, we denote
this problem by N(D; V,f). We work with potentials V in the Kato class Kd. This
class of functions was studied in detail in [1]. A condition equivalent to VIDeKd is the
following:

lim ait): = Urn sup P s~dl*ds \ \V\(y)«-*I*-""1/*m(dy) = 0. (1.1)
t-»0 t-*0 xeD JO J D

It is this form of the condition which we shall use in this paper. The connection
between the Neumann problem and reflecting Brownian motion is well known. In [5],
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we discussed a probabilistic approach to the problem with bounded measurable
boundary functions. Let X = {Xt: t ^ 0} be the standard reflecting Brownian motion
on D, namely the diffusion process on D generated by Ho = A/2 with the reflecting
boundary condition [6, pp. 293-295]. The transition density function of X is denoted
by p(t,x,y) and the expectation operator by W. We know that p(t,x,y) is the
fundamental solution of the heat equation on D with the Neumann boundary
condition. We use 0 to denote the boundary local time of the reflecting Brownian
motion X. By definition, it is the unique continuous additive function of X such
that

= ds p(s,x,y)a(dy). (1.2)
Jo Jaao

(For properties about reflecting Brownian motion see [8].) We introduce the
Feynman-Kac functional

In terms of these objects, the solution to N(D; V,f) is given by

uf(x) = \E> \ P ev(t)f{Xt) <f>(dt)). (1.3)
LJo J

Since we do not assume that V and / are smooth, the term ' solution' is to be
understood in the following sense. Let

Cl(D) = {/eO(D) U C\D): df/dn = 0 on 6Z>}.

DEFINITION. A function u is called a weak solution of N(D, V;f)ifue L\D) and
UVELX{D), and for any veCl(D) the following equality holds:

I u(x)Hvv(x)m(dx) = -]- \ f[x)v(x)a(dx). (1.4)

The main result in [5] can now be stated as follows.

THEOREM 1.1. Suppose that (a) VID e Kd; (b) / is bounded and measurable on dD;
(c) the gauge function

is finite for some x in D. Then uf in (1.3) is continuous on D and is the unique weak
solution of the Neumann problem N(D; V,f).

Now (1.3) can be written as

Nv{xty)f{y)a{dy) (1.5)= 5

for some kernel defined on D x 3D. This kernel will be called the Poisson kernel of the
Neumann problem.

At this point, in order to extend (1.3) to a larger class of boundary functions, we
need to study the analytic behavior of the Poisson kernel. More specifically, we want
to know for what kind of V this kernel can be defined and finite, whether the kernel
is continuous and how it behaves when x and y are close. These problems correspond
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roughly to the types of problems recently studied for the Poisson kernel of the
Dirichlet problem of Hv, namely the validity of the so-called gauge theorem [3,4,9]
and the smoothness of the Poisson kernel [2]. In a way, the kernel Nv(x,y) behaves
like the conditional gauge for the Dirichlet case studied by these authors.

The purpose of this paper is to study the kernel Nv(x,y) along these lines. Our
results can be briefly described as follows. We first define the kernel Nv(x, y) on DxD
for any potential V in the Kato class. This kernel could be infinite everywhere. It
becomes useful only when it is finite. We show that if Nv(x,y) is finite at one pair
{x, y), then it is finite and continuous on D x D minus the diagonal and blows up at
the diagonal like ||JC—>>||~<d~2). This situation happens precisely when the upper bound
of the spectrum of Hv under the Neumann condition is strictly negative. Using this
result, we improve Theorem 1.1 above by showing that the Neumann boundary value
problem for Hv can be solved uniquely for any boundary function in Z/(9Z>) and we
shall be able to control the growth of the solution near the boundary by the jLa-norm
of the boundary function (a ^ 1).

To start with, we define the Poisson kernel Nv(x,y) probabilistically as follows.
Let ev(t) be the Feynman-Kac functional as before. By (1.1) and (2.10) proved below,
the condition VIDeKA implies that ev(t) is a well-defined, almost surely finite random
variable. The Feynman-Kac semigroup is

(1.6)

(In the following we may omit the super- or subscript if it is meant to be V.) Now the
operator Tt is given by a kernel b(t, x, y)

In fact, from (1.6), we have

b(t,x,y) = E>[ev(t)\Xt = y]p(t,x,y). (1.7)

It is immediate from this expression that b(t, x,y) is strictly positive. By the semigroup
property, we have

b(t + s,x,y)=\ b(t,x,z)b{s,z,y)m(dz). (1.8)
JD

Formula (1.6) implies that b(t,x,y) has the following expansion:

b(t,x,y)= t^,x,y), (1.9)
n-0

where bo(t, x, y) = p(t, x, y) and

bn(t,x,y) = E*[^ bn_x{t-s,Xs,y)

= P ds \ p{s,x,z) V(z)bn_1(t-s,z,y)m(dz). (1.10)
JO J D

The following properties of the semigroup Tt will be used repeatedly: for all
t>0' Tt:L\Dy >C(D) and \\Tt\\1<ai < oo. (1.11a)

For any t0 > 0 there exists a constant K = K(t0) such that

sup H f l L . ^ * . (1.11b)
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These properties follow from Kash'minski's lemma and the Markov property
[1, P- 213].

We define the Poisson kernel of the Neumann problem by
Too

c,y)= b(t,x,
Jo

Nv(x,y) = b(t,x,y)dt. (1.6)

Since b(t,x,y) ^ 0 by definition, Nv(x,y) is well defined for all VIDeKd, is positive
and may be infinite somewhere or everywhere.

Next we come to Spec^ Hv, the spectrum of Hv under the Neumann condition.
Since \\Tt\\x )00 < oo, we know {7 :̂ t ^ 0} is a semigroup of bounded integral operators
on L\D). We can verify that this semigroup is continuous at s > 0:

lim | | 7 ; - : r j 2 i 2 = o.
t-»«>0

Using the continuity one shows easily that there is a sequence of eigenpairs {Xn, 0n},
n = 1,2,..., such that (1) An decreases to - o o ; (2) {(f>n\n^ 1} form a complete
orthornormal basis of L\D)\ and (3) Tt<f>n = eXnt<j)n for all n ^ 1 (cf. the argument in
[7, pp. 121-122]). Let

0 = Z ^
n l

Define
D{HV) = UeL*{D): £ A2X(0)|2 < oo

I n - l

and

n- l

2/Then {HV,D(HV)} is a realization of A/2+ V as a self-adjoint operator on L\D).
Set

Thus Xx = sup Spec^ (Hv).
In §2 we prove the following theorem (compare with [5, Theorem 2.3]).

THEOREM 1.2. Assume that VIDeKd and define the Poisson kernel Nv(x,y) as in
(1.12).

(1) The following two conditions are equivalent:
(a) Spec^(i/K) = A 1 < 0 ;
(b) there exists a pair x, y such that Nv(x, y) is finite.

(2) If either (a) or (b) holds then Nv(x,y) is finite and continuous on DxD minus
the diagonal. In this case, if we define

Mv(x,y) = Nv(x,y)/cd ||x-.y||-<d-2>,

where cd = Y{d/2-\)/2ndl2, then Mv(x,y) is bounded and the limiting set of Mv{x,y)
as \\x-y\\ -•() is the interval [1,2].

The assertion about the behavior of the Poisson kernel near the diagonal enables
us to improve Theorem 1.1 by the following Theorem 1.3, which we shall prove in §3.
Let us introduce a norm || • || * to describe the rate of growth of a function on D near
the boundary: ,,,,„,

J i M i ;
Here d(x) = d(x, 9D) is the distance from x to the boundary.
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THEOREM 1.3. Assume that VIDeKd and the Poisson kernel Nv(x,y) is finite.
Assume also that a ̂  1. For any fe La(dD), the weak solution to the Neumann problem
N(D, V;f) exists, is unique and is given by (1.3) or (1.5). Moreover,

(i) if 1 ̂  a < d-1, then ufeC(D) and there exists a constant C = C(D, V,p,<x)
such that

IM5-1-*
(ii) if<x = d-\, then ufe C(D) n L^D). Ifa>d-\, then ufe C{D). In both cases

there exists a constant C — C(D, V,p,a) such that

Klloo ̂  di/L_l i 8 D.

2. The Poisson kernel

As a first step towards Theorem 1.2, we prove the following property of the
transition density function.

PROPOSITION 2.1. Under our assumptions on the domain, for any fixed t0 > 0, the
function „

M(t0; x,y) = tfWx-yir* ° p{t,x,y)dt (2.1)
Jo

is bounded on DxD and has as limiting set the interval [1,2] as || JC—y\\ -> 0.

To prove this result, we need to sketch the construction of the fundamental
solution p(t,x,y) by the method of parametrix. The reader is referred to [8, Appendix]
for details.

Let XE Ud; let xa denote any point on the boundary such that Hx-xJ = d(x, 9Z>).
Let x* be the point symmetric to x with respect to xd, namely, x* = 2JC3—JC.
Notice that since the boundary is C3, xa and x* are uniquely determined by x provided
that x is sufficiently close to the boundary. Let now (f> be a C00 function on Ud,
0 ^ 4> ^ 1, with <j)(x) = 1 if d{x, W) ^ |e0 and <j)(x) = 0 if d(x, dD) ̂  £0, where e0 is a
fixed small constant. Finally, let

r(t, x, y) = (2ntydl2 e^x-^lu.

As a first approximation of p(t, x, y), we take

po(t, x, y) = T(t, x, y) + <p(x) T{t, x*,y).

This function is defined so that it satisfies the initial condition \imt^Qp(t, x,y) = Sv(x)
and the boundary condition dp(t, x,y)/dnx = 0, and almost satisfies the heat equation
dp/dt = Axp/2. Now p{t,x,y) can be written as

p(t, x, y) = pQ(t, x, y) +px(t, x, y), (2.2)

where px(t,x,y) has the form

Pi(t,x,y)= ds po(s,x,z)J{s,z,y)m(dz). (2.3)
Jo J D

Putting (2.2) in the heat equation, we see that /has to satisfy a differential equation
which can be solved by the iteration method. We then obtain the following
relations: «,

At,x,y)= Zfn(t,x,y), (2.4)
n-0
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,j0, (2-5)

fn(t,x,y) =\ds\ fo(t-s,x,z)fn_1(s,z,y)m(dz). (2.6)
Jo JD

We shall see below that the series converges absolutely. Now we come to the
proof.

Proof of Proposition 2.1. It is elementary to verify that the proposition holds if
in (2.1) we replacep(t, x,y) by po(t, x,y). Thus, in view of (2.2), we need only show that
there is a constant c such that

p1{t,x,y)dt c
\\x-y\\ d - 3 (2.7)

for all x 7̂  y. To this end, we first prove by induction that

KII*-VIIV ( 2 . 8 )

where K, Kv K2 are some constants. For n = 0, (2.8) follows directly from (2.5) with
suitably chosen K and Kx. By the iteration formula (2.6), we have

\fn(t,x,y)\

x I e-
J D

( -.\d /1\-1 /MX"1

K) {2) rUJ
x (* (t-s)-ll2slu-2)l2ds

JO

= KX K% r f ^ t l j f < » - 1 - " ) / 2
 e-«ii*-v»2/t (2 9)

by taking K2 = K1{n/K)d. Thus (2.8) is proved.
Now by (2.3), (2.4), (2.8) and the same reasoning as in (2.9), we conclude that for

any /0 > 0, there exists a constant Kx such that

\Pi(t,x,y)\ < j^rw-"'8*?-*"*-""!1"

for all 0 < t ^ t0. This implies (2.7) by integrating out t. The proof is complete.

The following inequalities follow directly from the above proof. First of all, (2.2)
and the last inequality imply that

p{t,x,y) ^ Kx/-*/«g-Ki*-voV« (2.10)

for t < /0 and some constant K depending on t0. Let
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Now (2.10) implies there exist positive e0 and K2 such that for any e ̂  e0,

; 4 - (2-Ha)

Taking the limit as e -> 0, we obtain

r v\ n(/iv\ < —- .P(t,x,.

Hence we have, by (1.2),

E*<f>(t)3:K3Vt, (2.11c)

and by the Markov property of the process X and the additivity of 0, we see that

E? <f>(tY = IE" I f Ex> <f>(t - s) <j>(ds)\ ^ KA t. (2.11 d)

LEMMA 2.2. The function b(t,x,y) is strictly positive and continuous on
(0, oo) x D x D.

Proof. The strict positivity is clear from (1.7). By the semigroup property, it
suffices to show continuity for small /. Using (1.10), we can obtain the following
estimates by induction:

\bn\(t,x,y) ^ K»+1 rd'2M(t)n (2.12a)

for some constant K, and

M
JO JD

\V\(x)\bn\(s,x,y)m(dx) ^ M{t)\ (2.12b)
./0 J D

where r p -,
W\(Xs)ds .

JxeO

By (1.1) and (2.10), limt_oM(0 = 0. Thus (2.12a) implies that there exists a constant
/x such that the series in (1.4) converges uniformly and absolutely for any 0 < t < tv

It remains to show that each bn(t,x,y) is continuous. Clearly bo(t,x,y) = p(t,x,y)
is continuous. Let us assume inductively that bn_x{t,x,y) is continuous on
(0, oo) x D x D. Split the integral (1.5) into three parts 715 72, 73, namely from 0 to e,
from e to / —£, and from /—e to /. Now 72 is continuous by the induction hypothesis
(note that VID eKdcz L]OC(D)). As £ tends to zero, 7X tends to zero uniformly by
limt^oM(0 = 0; so does 73 by (2.12b). Therefore bn(t,x,y) is continuous. The lemma
is proved.

For the proof of Theorem 1.2 we also need the following estimate.

LEMMA 2.3. For any e > 0, there exists t0 > 0 such that for all (x,y)eDxD,x # y,
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Proof. From the iteration formula (1.5), we have

K(t,x,y) = dtx...dtn f[/>('(,*<-i,xt) V(x()

* P ' - L '<>*«> *«+i rn{dxx)... m{dxn). (2.13)

Here we have set xo = x and xn+l = y. Now one of ||x<—x<+1||, i = 0,...,«, has to be
greater than or equal to ||JC—y\\/(n+ 1). Recall the definition of a(0 in (1.1). We
have p. c c

\bn(t,xty)\dt^Ki+1\ dto...dtn\ n^^111"11"1'"'
Jo J[O,to]

n+1 JDx...xDi-0

f°° rd / 2
e -K [ l x -»^n + 1 ) tdt• a(/0)n

Jo

A ,

Summing from n = 1 to oo, we obtain

t f° \bn(t,x,y)\dt ^ f 2 ^ 3 ^ ||*-^||-<-».
n-l Jo l—Ji-3<X(to)

Since <x(f0) -»0 as f0 4 0, the lemma follows.

LEMMA 2.4. If N(x, y) is finite for some (x0, y0), then for any t0 > 0, there are
positive constants K and /? such that, for all t ̂  0,

sup b(t,x,y)^Ke~pt.
(x,y)e6xD

Proof The proof is similar to that of [5, Theorem 2.2]. It is enough to prove this
for large /„. Fix tx > 0. From Lemma 2.2 it is clear that there exists a constant c
depending on /x such that for a n y / ^ 0,

e-i/ l l i < Ttiflx) = E>[e{tx)AXt)] ^ c\\f\\v (2.14)

By the semigroup property we have, for t > tv

b(t,x,y) = Tti[b(t-t0,-,y)](x).

Hence, using (2.15), we get a Harnack type inequality

b(t,x,y)^c2b(t,z,y) (2.15)

for all x,y,z in D and t ̂  /0. Now the condition N(xo,yo) = /" b(t,xQ,y0)dt < oo
implies that there exists /„ > tx such that b(to,xo,yo) ^ c"4/2. Therefore, by (2.15),

c~2
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Since b(t,x,y) is symmetric in (x,y) (the symmetry follows from that ofp(t,x,y) and
(2.13)) we have, by (2.15) again,

sup b(t0, x, y) < c2 sup b(t0, x, y0) ^ ± (2.16)
(x,y)eD*D xeD

Thus || Tto 11|„ ^ f. Now the semigroup property also implies that || Tnto 1H^ ^ || Tto 11|£.
Therefore, for any t ^ 0, letting n = [t/tQ], we have by (1.11b) that

TtKx) = Tt_ntJntol(x) < JTJT^I IU ^ ^ 2 - ^ ^ * , « • * (2.17)

for some K and p > 0. Finally, by (2.16) and (2.17), for / ^ t0,

b(t,x,y) = Tt_tob(to, -,y)(x) < - ^ - e " * .

The lemma is proved.

We can now give the main result of this section.

Proof of Theorem 1.2. Let us first prove part (2). By the foregoing two
lemmas,

fo f°° fo
\x,y)-\ p(t,x,y)dt ^ \b(t,x,y)\dt+\ \b(t,x,y)-bo(t,x,y)\dt

Jo J tn Jo

Therefore N(x, y) is finite for all x ^ y . Since e can be made arbitrarily small, the
assertion about the limiting set follows from Proposition 2.1.

Now by Lemma 2.3, the integral \l«b{t,x,y)dt converges uniformly to zero as
/ 0 ->0 on the region ||x—^|| ^ 3 > 0. This fact together with Lemmas 2.2 and 2.4
implies that N(x,y) is continuous on DxD minus the diagonal.

We now show part (1) of Theorem 1.2. Assume again that N(xQ,yQ) < oo. For the
eigenfunction <j>l we have, by Lemma 2.4,

^ l t 0 i = 7 ; 0 i = I b(t,x,y)</>1(y)m(dy)^Km(D)\\<f>1\\00e-l)t.
J D

Hence Xx ^ -ft. Conversely, if Xx < 0, then using || Tt 1 ||x ^ (m(D))» || Tt 11|2 ^ m{D) ex^,
we have

f N(x,y)m(dx)m(dy) = T Wl^dt ^ - ^ .
J DXD Jo "-1

Thus N(x,y) must be finite. Theorem 1.2 is proved.

3. The Neumann problem

The aim of this section is to prove Theorem 1.3. As before, let 0 be the boundary
local time of the reflecting Brownian motion X. For any / defined on 9Z), we set

By (2.11c) and (2.1 Id),
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For g defined on D, we set

=
Jo

LEMMA 3.1. Assume that f is bounded measurable on dD. There exists a uniformly
bounded sequence {gn:n^ 1} of continuous functions on D and {en:n^ 1} tending to
zero such that

lim sup
n-»oo ^ ;

xeD

Proof. We have

f f H P{s,x,y)g{y)m{dy)-[ p(s,x,y)f{y)<j(dy)
o \ £ JDe JdD

w h e r e

I
r nc f

l=\ds\-\ p(s,x,y)g(y)m(dy)-\ p(s,x,y)g{y)o(dy)
Jo \EJDC JdD

(•••)*.

/ 2

ao

'<5At

= [ ds f
Jo Ja

By (2.11a) and (2.11b),

For fixed 3, as £ -> 0, the integral / ' (...)ds clearly tends to zero uniformly in xeD
and O^t^T. Hence we get lime_o/1 = 0. Next, by (2.10) and the Schwarz
inequality,

P f
Jo Jeo

< „ f \g(y)-Ay)\
3D

for some constants K and A^ (see the proof of (3.6) below). Since we can choose
geC(D) such that WgW^o ^ ll/lloo,ez> a n d

 I I ^ - / L - I , S D is arbitrarily small, the lemma
now is clear.

LEMMA 3.2. For any VIDeKd and non-negative measurable f defined on dD, we
have

P \ T e(s)f[X8)</>(ds)] = f N{x,y)Ay)o{dy). (3.1)
L J 0 J J 8D
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Proof. By the monotone convergence theorem and the linearity of (3.1) in / , it
is enough to show that (3.1) is true for bounded measurable/^ 0. We have

e{s)J[X8) # * ) ] =

Recall that 0 is a continuous additive functional. The second term on the right-hand
side is equal to

[ f 0/«fe) J* e(t) V(Xt) dt]=E<[ £ e(t) V(Xt) (0/D -

[f (t) V(Xt) E
x

Hence,

{ CT e(t) V(Xt)E
x<<f>f(t-t))dt\. (3.2)

Choose en and gn so that Lemma 3.1 holds and let

By the same argument, we see that (3.2) also holds if <f>f there is replaced by 0*n.
Subtracting the resulting two equations, we obtain

e(t) rfA,(o] | ^ ^|An(r) I + ̂  [ JJ «(01 V\ (Xt) Ex'\An{T-

Lemma 3.1 and the dominated convergence theorem show that the right-hand side
tends to zero. Hence,

lim E*

The left-hand side is equal to

FT ID (Xt)(Xt) 1 fT 1 f
± gn(Xt)dt \=\ dt-\ b(t,x,y)gn(y)m(dy).

e n J J 0 n J De

We now let n->ao. An argument similar to the one used in Lemma 3.1 shows
that

Now letting T-* co we have (3.1). The proof is complete.

Let

z Jao
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as before. From now on, we assume that N(x,y) is finite. The only result we need from
the last section is the estimate

»(^)<^r (3-3)

for some constant K. From (3.3) we obtain the following estimate.

PROPOSITION 3.3. (i) If \ ^a<d-\, then ufeC(D). There exists a constant
C = C(A V, a) such that „

llMH

(ii) If<x = d-\, then ufeL°°(D) D C(Z>). If<x>d-\, then ufeC(D). In both cases,
there exists a constant C = C(D, V) such that

Klloo < C||/L_l i9D. (3-5)

Proof. Let us show first that, for any / e La(9Z>),

L, "(40 < ^ll/IL.ai,(^r(-1-c0/8+1)- (3-6)

Let l / a + \/P = 1. Using Schwarz's inequality, we have

f H y ' i ^ ^ w < ^ii/ikaD ( f i^-^ir(d-2

Jao ll^~/ll VJao
By a local computation we can prove easily that, for any s ^ 0,

\\x-y\\-aidy) < J?1(d[*)*-1-+ 1),
eo

where C/(JC) = d(x,dD). The inequality (3.6) is now clear; (3.4) and (3.5) follow from
(3.6) and (3.3).

The interior continuity can be proved as follows. Let B be a ball contained in D
and let . r , _ , . _.,

TB = inf{f >0:XteBc}.
Since <j>(i) = 0 for 0 ^ / ^ rB, we have

Now applying [1, Theorem A.4.6] (see also [1, A.4.9]), we conclude that uf is
continuous in B.

It remains to prove that uf is continuous on D iffeLa(dD) for some a > d— 1. We
have by (3.1) that , , „

where r fg

/(y) = ^ [
Since UfSL^D), we have by (1.11a) that T8ufeC(D). We assert that /(J,JC) tends to
zero uniformly on D as s -> 0. To prove this assertion, let /i = a/(d— 1) > 1 and
\/li+\fl= 1. We have

\§ ^m ( [£ ])1"1. (3-7)
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By (1.11b) and (2.1 Id), the first factor raised to Ath power is bounded by

Hence it tends to zero uniformly as s -»• 0. For the second factor in (3.7), by (2.10) and
(3.6), r rs If Cs

\f\'l(xt)(^\= \f\'i(y)(J(dy) p(t,x,y)dt
'0 J JdD Jo

'I
Therefore the second factor in (3.7) is bounded and we have shown that I(s,x) tends
to zero uniformly as s ->0. Consequently ufe C(D), and the poof is complete.

REMARK. The mapping f\-> uf is continuous from L*(dD) to LP(D) for any a,/?
such that 1 ^ a < d-1 and 1 ^ fi < \+a/(d-1 - a ) . In fact, if/eLa(3Z)),

= f |M / IWI«/ - 1 W»I(^)
JD

Jaz) JD ll-*~/ll

Here y = (</— 1 — a)(y9— l)/a < 1, and we have also used the fact that for any y < 1
there is a constant K2 such that, for any y 6 dD,

J. ^ m(dx) ^ K2.
\x-y\\

Thus we obtain ufeL\D) and ||M/||AtD ^ A J / I I ^ .

Finally, we complete the following.

Proof of Theorem 1.3. First of all, we verify that the integrability condition of the
definition (given in the introduction) is satisfied by uf. By the remark above, we have
ufeL\D) n C(D) for all/eL\dD). Since Jo | V\ (y) \\x-yVd-2) m(dy) is bounded on D
(this follows from (1.1) by integrating out s), we have

\\UfV\ko ^ K f \f\{y)°{dy) f |K|(ff_,m(ifr) ^ ^ll/llx,aO. (3-8)
Jao JD II^"^11

Therefore ufVeL\D).
Next we show that uf satisfies (1.7). We shall first outline the proof of Theorem

1.1 as given in [5] and then show how to obtain Theorem 1.3 from Theorem 1.1 by
a limiting procedure. Let {3Pt: t ^ 0} be the natural filtration of a-fields associated with
the reflecting Brownian motion. Let/be a bounded measurable function defined on
the boundary dD and let u be a continuous function on D. Define

MJ(t) = u(Xt)-u(X0)+ f V{Xe)u{X8)ds+\ f ./TO
Jo z Jo
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The proof that uf satisfies (1.7) is accomplished in two steps. The first step
is to show that for uf defined by (1.3), the process {My(t)\ t ^ 0} is a continuous
(P*,#"t)-martingale for any xeD. In fact, a calculation shows that the following
equality holds: »

Mu
ff{i)= e(sY

Jo
where {Ms: s ^ 0} is the martingale defined by

The second step is to show that u is continuous on D; then u is a weak solution of the
Neumann problem N(D; V,f) as defined if and only if {M"(t): t $s 0} is a continuous
(P*, J^)-martingale for all xeD.

To derive Theorem 1.3 from Theorem 1.1, let feL\W) and let/n be a sequence
of bounded measurable functions on dD converging to/ in L\dD). By Theorem 1.1,
(1.7) holds for uf , namely,

uf Hv v(x) m{dx) = - - /„(*) v(x) a(dx).
J D Z JdD

By the remark after Proposition 3.3 and (3.8), we have uf -* uf and uf V -* uf V in
L\D). Thus we can take the limit as n -*• oo to obtain the desired equality (1.7). We
have therefore shown that for any fe L\dD), uf is a weak solution of the Neumann
problem N(D, V;f). The estimates claimed in the theorem follow from Proposition
3.3.

It remains to prove the uniqueness of the weak solution. Let feLx(dD) and
suppose that u is a weak solution of N(D, V;f), namely ueL\D), uVeL\D) and u
satisfies (1.7). We show that u(x) must be given by

e(t)J[Xt)^(dt)\, m-a.e. (3.9)
LJo J

Let rt i ft
At= u(X8)V(X8)ds + - flX^ds)

Jo z Jo
and

Mt = M*(t) = u(Xt)-u(X0) + At. (3.10)

Denoting the shifting operator of the process X by 0 we have, for any / ^ s ^ 0,

Mt = Ms + Mt_so0,

Since dp(t,x,y)/dt = Ayp(t,x,y)/2, for t ^ s > 0 we have
t - M g ] = f [p(t,x,y)-p(s,x,y)]u(y)m(dy)+ f d/ [ u(y) V(y)p(l,x,y)m(dy)

JD JS JD

Ay)p{l,x,y)a{dy)[ dl \
Js JbD

The last term is zero by (1.7) with v = p(l,x, •), because p(t, x, )€Cl(D). Therefore

fort>s>0. (3.11)



384 POISSON KERNEL FOR THE NEUMANN PROBLEM j

Let us show now that, for all t > 0, i

ExMt = 0, m-a.e. JC. (3.12)

To prove this, assume that fi is a probability measure on D with bounded density •
(with respect to the Lebesgue measure) dfi/dm e C{D). As usual, PM denotes the law ijj
of X with initial distribution fi. From the definition of Ma and our choice of fi, we
prove easily that lim,_0#lAf, = 0. Hence by (3.11) BM% = 0 for any t ^ 0. Then
(3.12) follows. Now integrating by parts, we have

P P
At e(t) — As de(s) = e(s) dAs

Jo Jo
= f u(Xs)de(s)+l- P e(s)f{Xs)<f>(ds). (3.13)

Jo L Jo

Using (3.10), we find that (3.13) is equivalent to

u(X0) = e(t)u(Xt)-Mt- f (Mt-Ms)de(s)+l- f e(s)f{X8)</>(ds). (3.14)
Jo 2 Jo

Now take the expectation £* on both sides of (3.14). On the left-hand side we have
E*u{X^ = u(x). By Lemma 2.4, the first term on the right-hand side, Ex[e(t)u(Xt)],
tends to zero exponentially as t-+ oo. By (3.12), the second term is equal to zero
almost everywhere in x. The third term is equal to

*. 1-
l~8 6S \

Thus after taking E1 in (3.14) and letting t-+co, we obtain (3.9). The proof of
Theorem 1.3 is complete.
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