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ABSTRACT

We derive the principle of not feeling the boundary for the transition density function of a diffusion
process from its basic short-time logarithmic asymptotic relation. This allows us to extend this principle
for more general diffusion processes.

1. Introduction

Let M be a smooth manifold and p(t,x,y) the transition density function of a
diffusion process (a strong Markov process with continuous sample paths) on M with
respect to a smooth measure m on M. Let U be an open set in M. We use pv{t, x, y)
to denote the transition density function on U of the diffusion process killed at the
first exit time of U, that is

Pu(*>x,y)m{dy) = Px{cotedy, t < zv},

where Px denotes the law of the diffusion process in the path space Q(M) (the space
of continuous functions from [0, oo) to M) and xv — TV{OS) = inf{t > 0: cot$ U} is the
first exit time from U. The principle of not feeling the boundary says in general that
under certain geometric conditions, the short-time behaviour of pv(t, x,y) on U is
comparable with that of the free transition density function p(t,x,y). Since the
diffusion has continuous sample paths, intuitively the diffusion particle starting from
a point in U does not feel the presence of the boundary of U for small time. This
principle can be useful in two ways. First, the study ofp(t,x,y) can be reduced to the
study of pv(t, x,y) for a suitable choice of U, usually a smooth domain covered by
a suitably chlisen coordinate chart. We can then regard U as a subset of Ud (d is
the dimension of M). Second, the study of pv(t, x,y) can be reduced to the study
of p(t,x, y) by suitably extending the diffusion generator on U to Ud so that we can
simplify the computations involved by working in the whole space.

Let us now give a precise mathematical statement for this principle.

DEFINITION 1.1. We say that the principle of not feeling the boundary holds for
the transition density function p(t, x,y) at x, y in U if there exist two positive constants
tQ, X such that for all t ^ t0,

p(t,x,y)
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Note that the quantity on the left side is always nonnegative.

The principle of not feeling the boundary for the diagonal case x = y was first
pointed out in [5] in a weaker form for the euclidean Brownian motion. For the case
.Y ̂  y, the principle does not always hold, because * may be closer to the boundary
dU than to y. In [9] S. R. S. Varadhan referred to [2] for early results in this direction
for the case of euclidean Brownian motion and considered the case of diffusion
processes on euclidean space generated by second order, uniformly elliptic operators
with Holder continuous coefficients. He proved that if all distance-minimizing
geodesies joining .Y and y lie completely within U, then

\imsup2t\og\p(t,x,y)-Pu(t,x,y)\ ^ -d?u(x,y)\ (1.2)

where
ddu(x,y) = inf{d(x,z) + d(z,y):zedU}.

From (1.2) and (1.3) below we see immediately that the principle of not feeling the
boundary holds if ddu(x,y) > d(x,y). In [9], (1.2) follows from a path space large
deviation upper bound for diffusions. The proof of the requisite large deviation upper
bound uses, among other things, the logarithmic asymptotic behaviour for the
transition density function

\im2t log p(t,x,y) = -d(x,yf, (1.3)

where d{x,y) is the Riemannian distance function determined by the second order
differential operator generating the diffusion.

We aim in this paper to show that (1.2) holds for much more general diffusions
as long as (1.3) holds for some distance function df(v) under which the manifold M
is complete. In other words, we shall prove that (1.3) implies (1.2). The necessity for
such a result is twofold. First, there are diffusion processes for which the required
large deviation upper bound is either unknown or technically very complicated but
(1.3) holds for a suitably chosen distance function. See Remark 1.4 below. Our result
shows that for such diffusions we have an appropriate principle of not feeling the
boundary, adequate for studying short-time asymptotic behaviour of their transition
density functions. Second, even for diffusions whose large deviation upper bounds are
readily available, it is pedagogically more desirable to have a proof of the principle
of not feeling the boundary independent of large deviation upper bounds, as is the
case in [4].

Let us now be more precise. The general setting is as follows. Let M be a smooth
manifold and p(t, x,y) the transition density function of a diffusion process on M with
respect to a smooth measure m on M. Let d( •, •) be a distance function on M which
generates the topology of M. We assume that M is complete under the distance
function in the sense that every ^/-bounded set is relatively compact. We introduce the
following condition.

(D) For every compact set K on M, (1.3) holds uniformly on (x,y)eKx K.

Here is our main result.
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THEOREM 1.2. Let M be a smooth manifold and d{-,•) a distance function
compatible with the topology of M under which M is complete. Let p(t,x,y) be the
transition density function of a diffusion process with respect to a smooth measure m on
M such that Condition (D) holds. Then (1.2) holds for every open set U and every pair
of points (x,y) in U.

As in [9], the above theorem has the following immediate corollary.

COROLLARY 1.3. Under the conditions of Theorem 1.2, the principle of not feeling
the boundary holds for x, y in U such that d(x,y) < ddu(x,y).

REMARK 1.4. As shown in [9], Condition (D) holds for diffusion processes
generated by second order uniformly elliptic operators on Ud with Holder coefficients.
It also holds for the Riemannian Brownian motion on a complete Riemannian
manifold, see [1, 3, 4]. The work in [6] implies that it holds for a hypoelliptic diffusion
on a smooth manifold M if M is complete with respect to the control distance defined
by the hypoelliptic operator which generates the diffusion.

Our study of (1.2) will not be complete without investigating conditions under
which the corresponding limit exists and is equal to the right-hand side. We establish
such a result in the most interesting case.

THEOREM 1.5. Let M be a complete Riemannian manifold and U a smooth open set
on M. Denote by p(t, x, y) the transition density function of the Riemannian Brownian
motion on M {that is, the heat kernel associated with the Laplace-Beltrami operator |A
on M) andby Pu{t,x,y) the transition density function of the same process killed at the
first exit time of U (that is, the minimal heat kernel on U with the Dirichlet boundary
condition). Then for any x,y in U we have

M2t\og\p(t,xj)-Pu(t,x,y)\ = -ddu(x,yf. (1.4)
no

On a complete Riemannian manifold we say that an open set U is strictly convex
if for each pair of points x,y in U, every distance-minimizing geodesic joining x and
y lies completely inside U. The above theorem allows us to show that the principle of
not feeling the boundary characterizes strictly convex domains.

COROLLARY 1.6. Under the same hypotheses as in the preceding theorem, the
principle of not feeling the boundary holds for all pairs of points x,y in U if and only
if U is strictly convex.

Proof. Since M is assumed to be complete, Condition (D) holds by Remark 1.4.
Suppose that U is strictly convex. Fix a pair of points (x,y) in U. We have ddu(x,y) >
d(x,y) for any x,y in U. Inequality (1.1) follows immediately from (1.3) and (1.4)
for any positive X < \ [dgu(x, y)2 — d(x, y)2].

Conversely, suppose that (1.1) holds for all x,y in U and for some positive X
depending on x,y. Then (1.1) and (1.3) imply that

lim sup It log \p(t, x, y) -pv(t, x, y)\ ^ - d(x, y)2 - X.
t[0
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This together with (1.4) implies that ddu(x, y)2 ^ d(x, y)'2 + A, that is, dau(x, y) > d(x, y).
This last inequality shows that all distance-minimizing geodesies joining x and y must
stay completely inside U. Therefore U is strictly convex. The corollary is proved.

REMARK 1.7. We have formulated our results about transition density functions
in purely analytical terms and our proofs are probabilistic because we assume that
these transition density functions come from diffusion processes, that is, strong
Markov processes with continuous sample paths. Analytical conditions which
guarantee that such a process exists for a given transition density function can be
found in [7, Chapter XIV].

The proofs of Theorems 1.2 and 1.5 are carried out in Sections 3 and 4. In Section
2 we prove a lemma which will be used in the proofs.

2. A useful lemma

LEMMA 2.1. (a) Suppose that x is a nonnegative random variable such that

^t)**-c\ (2.1)

for some positive constant cv Then for any positive constant c2

lim sup It log E{e-^2(t~x); T ^ /} < - (c, + c2)
2. (2.2)

(b) Suppose that x is a nonnegative random variable such that

lim inf 2t log P{x ̂ t} ^ —c\ (2.3)

/or wme positive constant cv Then for any positive constant c2

lim inf 2/ log E{e~e*m-X); x < /} ̂  - (c, + c2)
2. (2.4)

Proo/. (a) Integrating by parts, we have

e-cVw-» dP{r *Z s}
0

'2 (2.5)

Fix a small ee(0,1). By (2.1) for sufficiently small s we have P{x ^ s} ^ e-<
1-£>c'/2s. On

the other hand, x2e~x < (8/^2e) ̂ "(1~£):r for all x ^ 0. Hence from (2.5) we have

8/
; r ^ } ^ - — T O I expi

2 \s t-s)\ (ec

In the last step we used the inequality
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This proves (3.1) since e can be arbitrarily close to 0.
(b) From (2.5) and (2.3) we have

Restricting the integral to the interval bounded by the points (q t/(c1 + c2))(\ ±e), we
have

from which (2.4) follows immediately.

3. Proof of Theorem 1.2

We remind the reader that throughout this section Condition (D) stated in Section
1 is in force.

Let Q.X(M) be the metric space of continuous paths co: [0, oo) -> M starting from
x. We shall use Px to denote the law on £lx(M) of the diffusion process starting
from x.

LEMMA 3.1. Let U be a relatively compact open set in M and X a positive number.
Then, uniformly in all x, y in U such that d(x,y) < d(y,8U) — X, we have

7[/(/,x,;;) = -d{x,yf. (3.1)

Proof By the strong Markov property, we have the following first passage
formula relating p(t,x, y) and pv(t, x,y), namely,

p(t, x,y) = p^t, x,y) + Ex{p{t-z^ coTu,y); xv ^ t}, (3.2)

where xv = inf {/ > 0: cot $ U). By Condition (D), for the second term on the right side
of (3.2) we have

Tu,wrt/,^);Tf/ ^ /} < -d(y,dU)\ (3.3)
Ho

uniformly in {x,y)eUxU. Then (3.1) follows from (3.2), (3.3), (1.3) and the
hypothesis that d(y,dU) > d(x,y) + L

LEMMA 3.2. Suppose that K is a compact set in M and y > 0. Then there exists a
10 > 0 such that for all (x, y,t)eMxKx(0, to) such that d(x, y) ^ y, we have

P(t,x,y)^\. (3.4)

Proof Let T = inf {t > 0: cot e By/2(y)}. We have by the strong Markov property
at time T,

p(t,x,y) = Ex{p(t- T,coT,y);T<t}^ sup{p(s,z,y):s ^ t,yeK,d(z,y) = \y).

Then (3.4) follows immediately from Condition (D).
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For a fixed y > 0, define xy = inf {/ > 0: d(co0, cot) = y). (Convention: inf 0 = (, the
lifetime of the path co.)

PROPOSITION 3.3. For any fixed xeM and y ^ 0 we have

lim sup It log Px{xy ^t}^- y2. (3.5)
tio

Proof. We prove (3.5) in three steps:

(a) for any compact K, there exists y0 > 0 such that (3.5) holds uniformly for all
xeK and all y ^ y0;

(b) if (3.5) holds for yx ^ 0, then there exists y2 > yx such that (3.5) holds for

(c) if (3.5) holds for all y < y3, then (3.5) holds also for y = yz.

Clearly (b) and (c) imply that the set of y for which (3.5) holds is both open and closed
in [0, oo), which implies that (3.5) holds for all y ^ 0. Step (a) is needed for the proof
of Step (b).

(a) There exists a small y'o > 0 such that for all y e (0, y'o) and E > 0 we have

u(y, e) =' inf {m[By(x)c 0 BE{z)] :xeK,ze dBy(x)} > 0.

Note that if y is too large, the above inequality may not hold. This is the case if, for
example, M is compact and y is greater than the diameter of M. In this case By(x)c is
empty.

Let U be a relatively compact open set containing K. We choose a positive y0 less
than min {y'o, \d{K, dU)}. For any y ^ y0, by the strong Markov property at zy we have

Px{eoteBy(xy,t< TV} = Ex{F(t-Ty,cory);ry ^ t), (3.6)

where F(u, z) = Pz{cou e By(x)c, u < T^}. For any z e dBy(x) and a fixed positive e ^
\d(K,dU) and for all sufficiently small w, by Lemma 3.1 we have

F(u,z) > Pz{coueBy(xY 0 Be(z),u < z,}

By(xf(\Bt(z)

Using this estimate in (3.6) for any fixed ie(0,1) and sufficiently small t we have

Px{cot e By(xY, t<zu}> u(y, a) Ex { ^ 2 ' « - V ; T, < (1 - A) /}

On replacing / by t/{\ —X), we see that the above inequality is equivalent to

2e2(l-X)/Xt

-»eBrWC> t/{\ -X)< !„}. (3.7)

On the other hand, since pv(t,x,y) ^p(t,x,y), we have

Px{coteBY(xy,t<Tu}= Pu(t,x,y)dy^m(U) max p(t,x,y). (3.8)
J By(xf yeU\By(x)
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Note that m{U) < oo because U is relatively compact. From (3.7), (3.8), and (1.3) we
have immediately

limsup2*logP,{T,< t} ̂  (1 -X)(~A.
tjo \ A /

Letting eJ,0 and then A| 1, we obtain (3.5).

(b) We assume that (3.5) holds for ylt that is,

lim sup It log Px{rh ^ t) ̂  - y\. (3.9)
do

Let y0 be the one in Part (a) chosen for the compact set K which is equal to the closure
of B (x), and y2 = yi + y0. F ° r a n y y^iy^y^ w e n a v e

Px{xy ^t} = Ex{G{(Dwt-xy),Tn ^ / } , (3.10)

where G(z, u) = Pz{xB (x) ^ u). Clearly zedByi(x) implies that rB (x) ^ Ty_h, Pz-a.s.
Hence G(z, u) ^ Pz{iy_y ^ u). Using Part (a) we have

lim sup 2u log G(z, u)^-(y- yj2 (3.11)

uniformly in zedBy(x). By (3.9) to (3.11) and Lemma 2.1(a) we have immediately
(3.5).

(c) For any y < y3 we have Px{ry ^ /} ̂  Px{xy ̂  t}. Since (3.5) holds for y, we have

lim sup It log P{TH ^ t) ^ -y2.
no

Letting y | y 3 we see that (3.5) holds for y = y3. The proof of the proposition is
completed.

Proof of Theorem 1.2. By (3.2) it is enough to show that

\\m^up2t\ogEx{p{t-Tu,a)Tu,y);Tu ^ t) ̂  -ddu(x,yf. (3.12)
no

We denote the expectation in (3.12) by Iv{t,x,y). We shall use Condition (D) to
estimate/>(/ —1^,0;^,^). But Condition (D) cannot be applied directly because coT(j is
not confined to a compact set. So we fix a large R > d(x,y) and split Iv{t,x,y) into
two parts as follows:

A/O,*,.y) = Ex{p(t-Tu,cor(j,y);coX(jeBR(x),Tu ^ t)

+ Ex{p(t-Tu,a)ru,y);a>ru$BR(x),Tu ^ t}

clef

t,x,y). (3.13)

The term Kv(t,x,y) is easy to estimate. By Lemma 3.2 we have

Kv{t,x,y) < Px{(DXv^BR{x),xu ^t}^ PX{TR ^ t).
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Hence from Proposition 3.3 we have

lim sup It log Kv(t, x, y)^- R2. (3.14)

For the term Jv(t, x,y), the exit position cor is confined to the relatively compact set
BH(x) and we can use Condition (D) to estimate p(t — ru,coT ,y). For any given
positive e, there exists a positive tx depending on R and e such that for all t ^ /x we
have

f {d(cox ,y)-e}2l
p(t-Tuta>tuty) ^ e x P [ ~ 2(7-!„)

Next, we cover the set dU n BR(x) by TV balls BE{z^) of radius £ and centres ztedU. The
number of balls TV depends on R and £ but is finite. From the definition of Jv(t, x, y)
and (3.15) we have

where yj = d(zpx)—E. In the last step we used the fact that coT reBe(Zj) implies that
d(coTu,y) ^ d(zpy) — e and r^ ^ ry(. From Proposition 3.3 fory = 1,..., Af we have

lim sup 2s log Px{ty ^ 5} ^ — yj.

By this inequality and Lemma 2.1 (a), for7= 1,...,TV we have

lim sup 2/log ./lax,.);) ^ -{(d(x,zj) + d(zj,y)-3e)}2.
no

But d(x,zj) + d(zj,y) ^ ^a( ;(x,7) for all j = 1,...,TV. It follows that for all / ^ t3 we
have

,x,^) ^ -{deu(x,y)-2e}2. (3.16)

Now from (3.13), (3.14), and (3.16) we have

lim sup 2/log/„(/,*,;>) ^ -mm{ddu(x,y)-2e,R}2.

no
Letting e|0 and R] 00, we obtain the desired inequality (3.12). This completes the
proof of Theorem 1.2.

4. Proof of Theorem 1.5

The proof of Theorem 1.5 depends on a more delicate geometric argument. Since
we have shown in Theorem 1.2 that (1.2) holds, it suffices to prove that

lim inf2/log |/</, *,;;)-/>„(/, A', >;)l £ -{d(x,z) + d(z,y)}2 (4.1)

for all zedU. We introduce the following condition.
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T(U; z) There exists a distance-minimizing geodesic $ joining JC and z such that
0 lies entirely in U and that 0 is transversal to the boundary dU at z.

We shall first prove (4.1) under the above transversality condition T(U;z) and
then remove this condition. From (3.2) and (1.3) we have

p(t,x,y)-pu(t,x,y) = Ex{p(t-Tu,coXu,y);xu ^ t}

> Ex{p{t-Tu,ojXu,y)\(oTuEBe{z),Tu ^ t)

(4.2)

where We = BE{z) n dU. We estimate the probability Px {o)X(je We,xv ^ s}. Let ex < e
and VE = BE{z) n Uc. Since ft)seP^ implies that xv^s, by the strong Markov
property at xu we have

Px{a>seVE} = Ex{Pw {cos_x eVE};cox 6 ^ , ^ ^ 5 }

+ j&x{/^ {cos_Xue Vej;coTvf WE, xv ^ s).

Hence the probability we want to estimate

Px{cox eW^Ty^s}^ L^s,x,z)-Mv(s,x,z), (4.3)
where

f
^s, x, z) = Px{cos e Ve) = p(s, x, zx) dz1

and
Mu{s,x,z) = Ex{PWtu{cDs_Xue K);coxJ WE,TV ^ s).

We have by a proof similar to that of Theorem 1.2

lim sup 2s log Mv(s, x, z) ^ - ddu^wj,x, VE)2. (4.4)
s|0

On the other hand by (1.3)

lim inf 2slogLv(s, x,z)^~d(x, Ve)\ (4.5)
siO

Now Condition T{U;z) implies that for sufficiently small ex < £

d(x, VE) < ddu,w(x, Ve). (4.6)

From (4.3) to (4.6) we have immediately

l iminf i^e Wvxv ^s}> -d(x, VE). (4.7)
s|0

From (4.2), (4.7) and Lemma 2.1(b) we have

no

which proves (4.1) under Condition T(U;z).
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We now remove the transversality condition T(U;z). Let zedU and let 0 be a
distance-minimizing geodesic from x to z. Let z' be the first point at which 0 intersects
dU. Then by the triangle inequality we have

d(x, z') + d(z',y) ^ d(x, z') + d{z\ z) + d(z, y) ^ d(x, z) + d(z,y). (4.8)

In the last step we used the fact that z' lies on a distance-minimizing geodesic <fi
from x to z. For any fixed positive £ we choose a point z1 EBE(Z') ft dU and a small
e1 e (0, \e) such that the closure of B2 (zv) does not intersect C(x), the cutlocus of
A'. This is possible because C(x) is a closed set of measure zero. Take any point
z2 G dBB (zj fl Uc such that the unique geodesic <f>2 joining x and z2 is transversal to
dBE ( z j at z2. Now choose a smooth open set 0 such that

(i) U contains U;
(ii) 0 contains 02;

(iii) dU near z2 coincides with dBe (zx) in a small neighbourhood of z2.

Such 0 obviously exists. Now Condition T(U; z2) is satisfied. Hence by what we have
proved under the transversality condition,

lim inf It log \p(t, x, y) -po(t, x, y)\ > - [d(x, z2) + d(z2, y)f. (4.9)
no

Since U => U we have by the maximum principle for the Dirichlet heat kernel
po(t,x,y)^pu(t,x,y). Hence

p(t,x,y)-Pu(t,x,y) >p(t,x,y)-po(t,x,y) ^ 0. (4.10)

On the other hand by the choice of z2 we have d(z', z2) ^ 2e, hence by (4.8)

d(x, z2) + d(z2,y) ^ d(x, z) + d(z, y) + 4e. (4.11)

The desired inequality (4.1) follows immediately from (4.9) to (4.11). This completes
the proof of Theorem 1.5.
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