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For a geometrically and stochastically complete, noncompact Riemannian

manifold, we show that the flows on the path space generated by the Cameron–

Martin vector fields exist as a set of random variables. Furthermore, if the Ricci

curvature grows at most linearly, then the Wiener measure (the law of Brownian

motion on the manifold) is quasi-invariant under these flows. # 2002 Elsevier Science

(USA)
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1. INTRODUCTION

Let M be a complete Riemannian manifold. The bundle of orthonormal
frames of M is denoted by OðMÞ with the canonical projection p :OðMÞ !
M :We use PoðMÞ to denote the pinned path space over M ; namely the space
of continuous maps from ½0; 1� to M starting from a fixed point o 2 M: It is a
metric space equipped with a standard filtration of s-fields Bn ¼ fBs;
04s41g; where Bs is the s-field generated by the canonical process up to
time s: The last s-field B1 coincides with the usual Borel s-field on PoðMÞ:
Let Po (denoted by P for simplicity) be the Wiener measure on PoðMÞ; i.e.,
the law of a (Riemannian) Brownian motion starting from o: To ensure that
P is indeed a probability measure on ðPoðMÞ;BÞ; we make the standing
assumption that Brownian motion is conservative, or equivalently the
manifold M is stochastically complete. Analytically this means that, for the
minimal heat kernel pMðt;x; yÞ of M ;

Z
M

pMðt; x; yÞ dy ¼ 1
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QUASI-INVARIANCE OF THE WIENER MEASURE 279
for some ðt;xÞ 2 Rþ � M (and hence for all such pairs). We thus obtain a
filtered probability space ðPoðMÞ;Bn;PÞ:

Let H be the Cameron–Martin space,

H ¼ fh 2 WoðR
nÞ : ’hh 2 L2ð½0; 1�;RnÞg;

with the norm

jhjH ¼
Z 1

0

j ’hhsj
2 ds

� �1=2

:

The vector field Dh on PoðMÞ is defined by

DhðX Þs ¼ UðX Þshs; X 2 PoðMÞ;

where UðX Þ is the horizontal lift (whenever it is defined) of X to OðMÞ
starting from a frame uo; assumed to be fixed throughout the discussion.
Thus DhðX Þ is a vector field along X : In the present work, we study the
existence of the flow generated by Dh and the quasi-invariance of the Wiener
measure P under this flow. More precisely, we seek a collection of
measurable maps (or PoðMÞ-valued random variables)

zt
h : PoðMÞ ! PoðMÞ; t 2 R;

dzt
h

dt
¼ Uðzt

hÞ h; z0h ¼ IPoðMÞ ð1Þ

½IPoðMÞ is the identity map on PoðMÞ� and ask whether the measures
Pt

h ¼ P 8 ðz
tÞ1 (the law of zt

h) are mutually absolutely continuous with
respect to P:

For a compact manifold, this problem was solved in [1]; see also [2, 3]. The
purpose of the present work is to investigate the case of noncompact
manifolds.

Let dð�; �Þ be the Riemannian distance function on M: From (1), for any
path X 2 PoðMÞ;

dðztðX Þs;XsÞ4j tjjhsj:

[The reference to h is dropped from the notation for simplicity.] Therefore,
we naturally expect that the flow generated by Dh exists as long as the
manifold M is both geodesically and stochastically complete. In (1) the
horizontal lift UðztÞ has to make sense; we therefore require that each zt is an
M-valued semimartingale. We will prove that there exists a unique family of
semimartingales fztg satisfying (1). Although each map zt : PoðMÞ ! PoðMÞ
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is well-defined Po-almost surely, this does not mean that fztg is a flow for
the composition zt1

8 z
t2 makes sense only when Pt25P; and, without

proving the quasi-invariance, we cannot claim that zt1
8 z

t2 ¼ zt1þt2 :
In the compact case, the Radon–Nikodym derivative has the form

d Pt

d P
¼ exp

Z t

0

lðzlÞdl
� �

;

l ¼
Z 1

0

’hhs 
1

2
RicUs

hs; dWs

� �
:

Here U is the horizontal lift starting from uo of the coordinate process X on
PoðMÞ and W ¼ J1

8X the anti-development of U (or X ). Note that X is a
Brownian motion from o under P: The map J : PoðR

nÞ ! PoðMÞ is the Itô
map, which sends an Rn-valued semimartingale its (stochastic) development
on M (see [5]). Let rð�Þ ¼ dð�; oÞ be the distance from the fixed point o: In
view of the fact that

rðzlðX ÞsÞ4jljjhsj þ rðXsÞ4jljhjH þ rðXsÞ;

the formula for the Radon–Nikodym derivative suggests that a growth
condition on the Ricci curvature together with an effective estimate of the

size of Xn ¼
def

max04s41 rðXsÞ should be sufficient for the quasi-invariance of

the Wiener measure. On the other hand, it is well known that the size of
Brownian motion can also be controlled by a lower bound of the Ricci
curvature. We will show that the growth condition

jRicMðxÞj4Cf1þ rðxÞg

is sufficient for this purpose. We note that a complete Riemannian manifold
whose Ricci curvature satisfies the above growth condition is automatically
stochastically complete; see [4].

2. EXISTENCE OF THE FLOW

We briefly recall how the existence of the flow fztg generated by Dh is
proved when M is compact, following the exposition in [3]. For a frame
u 2 OðMÞ and a 2 Rn we denote by Hua the horizontal vector at u such that
pnðHuaÞ ¼ ua: Thus fHa; a 2 Rng are the fundamental horizontal vector
fields on OðMÞ: Let ðWoðMÞ;Bn;PÞ be the pinned path space over M with
the standard Wiener measure. The coordinate process X is a Brownian
motion starting from o: Let U ¼ fUs; s 2 ½0; 1�g be the horizontal lift of X
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starting from a fixed frame uo over o and W ¼ fWs; 04s41g its anti-
development. Then W is a euclidean Brownian motion, and U is the
solution of the following stochastic differential equation on OðMÞ:

dUs ¼ HUs 8 dWs; U0 ¼ uo:

The above equation makes sense for any Rn-valued semimartingale W and
we denote the projection pU of the solution by JW : If X is an M-valued
semimartingale, we denote its anti-development by J1X ; unique after
choosing an initial frame over X0:

A formal calculation shows that the pullback p ¼ J1
n

Dh of the vector
field Dh is given at W 2 PoðR

nÞ by

pðW Þs ¼ hs 
Z s

0

KðW Þt 8 dWt;

where

KðW Þs ¼
Z s

0

OUðJW Þt ð 8 dWt; htÞ:

Here O is the curvature form, which is by definition an oðdÞ-valued
horizontal 2-form on OðMÞ:We have written Ouða; bÞ instead of more precise
OuðHa;HbÞ to simplify the notation. Finding the flow fztg generated by Dh

on PoðMÞ is equivalent to finding the flow fxtg generated by the vector field
p on WoðR

nÞ:

dxt

dt
¼ pðxtÞ; x0 ¼ IPoðR

nÞ: ð2Þ

Once fxtg is found, the desired flow on PoðMÞ is given by ztðX Þ ¼ Jxt

ðJ1X Þ: Note that the right-hand side is well defined because J1X is a
euclidean Brownian motion and xtðJ1X Þ is a semimartingale.

It turns out sufficient to seek solutions in the space of semimartingales of
the form

zs ¼
Z s

0

At dtþ
Z s

0

Ot dWt; ð3Þ

where O and A are, respectively, OðdÞ-valued and Rn-valued processes, both
being adapted to the canonical filtration Bn: For such semimartingales, we
introduce the norms

jjAjj2 ¼E

Z 1

0

jAsj2 ds;

jOj2 ¼E sup04s41 jOsj2;

hzi2 ¼ jjAjj2 þ jOj2:
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We have included the norm of O to accommodate the situation where O

may not be OðnÞ-valued. In these norms, (2) can be solved by Picard’s
iteration. Let xt;0 ¼ W ; and

xt;n ¼ W þ
Z t

0

pðxl;n1Þ dl:

If M is compact, there is a constant C depending only on T > 0 such that

hxt;n  xt;n1i4C

Z t

0

hxl;n1  xl;n2i dl; jtj4T : ð4Þ

To prove this estimate we need to write p in Itô’s form, if z is a
semimartingale in the form (3), then

pðzÞs ¼ hs 
1

2

Z s

0

RicUðJzÞtht dt
Z s

0

hKðzÞt; dzti;

KðzÞs ¼
Z s

0

OUðJzÞt ð 8 dzt; htÞ

¼
Z s

0

OUðJzÞt ðdzt; htÞ þ
1

2

Z s

0

HiOUðJzÞt ðej ; htÞ dhzi; zjit:

Here feig is the canonical orthonormal basis of Rn; and Hi ¼ Hei: Note that
by (3) the stochastic integrals with respect to fzig and their co-variations in
the above equations can be further reduced to stochastic integrals with
respect to t and dWt: If we write

xt
s ¼

Z s

0

At
tdtþ

Z s

0

Ot
t dWt;

then the flow equation (2) is equivalent to the following system of equations:

xt
s ¼

R s

0 At
t dtþ

R s

0 Ot
t dWt;

Ot ¼ I 
R t

0 KðxlÞOl dl;

At ¼ Ot
R t

0 Ol* ’hh 
1

2
RicUðJxlÞh

� �
dl:

8>>><
>>>:

ð5Þ

With this form of the flow equation, the proof of inequality (4) involves
nothing more than routine bounds of stochastic integrals with respect to
dWt by Doob’s inequality and those with respect to dt by taking absolute
values under the integrals.

Now, inequality (4) implies that the limit xt ¼ limn!1 xt;n exists and is the
solution to (2). The uniqueness is clear because we are dealing with a
Volterra-type integral equation. The flow on PoðMÞ is now obtained by
ztðX Þ ¼ JxtðJ1X Þ:
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Remark 2.1. What we have said so far is still valid if we stop at a Bn-
stopping time s41 in the s-direction.

Because the process K takes values in oðnÞ; the space of anti-symmetric
matrices, from (5) we see that Ot takes value in OðnÞ; the space of orthogonal
matrices. If M is compact, the Ricci curvature is uniformly bounded, hence

jRicUðJxtÞs
hsj4Cjhsj4CjhjH:

It follows from (5) that

jAt
sj4C j tjfj ’hhsj þ jhjHg

for some constant C: Let Q be the Wiener measure on PoðR
nÞ: Girsanov’s

theorem and the hypothesis that h 2 H imply thatQ 8 ðx
tÞ1 (the law of xt) is

mutually absolutely continuous with respect to Q; namely, the Wiener
measure is quasi-invariant under the flow fxtg on PoðR

nÞ: Transporting
this result to the space PoðMÞ by the Itô map J; we obtain the
quasi-invariance of the Wiener measure P under the flow fztg generated
by Dh:

We now turn to a complete, but not necessarily compact Riemannian
manifold. Estimate (4) may not hold because the curvature O and its
derivatives HiO;HiHjO may not be uniformly bounded. To overcome this
difficulty, we will truncate the vector field Dh to zero whenever the path are
outside a large compact set. Let f : M ! ½0; 1� be a cut-off function on M ;
vanishing outside a compact subset of M : Consider a modified flow
equation

dzt;f

dt
¼ fðzt;fÞDhðz

t;fÞ ¼ Uðzt;fÞ fðzt;fÞh
 �

; z0;f ¼ IPoðMÞ:

We rewrite this equation on WoðR
nÞ: Define

pf
s ¼fðXsÞhs 

Z s

0

KfðW Þ 8 dWs; X ¼ JW ;

KfðW Þ ¼
Z s

0

OUðX Þt ð 8 dWt;fðXtÞhtÞ:

Note that these definitions are obtained from the old p and K by
replacing h with the semimartingale fðX Þh: The equation for
xt;fðW Þ ¼ J1zt;fðJW Þ is

dxt;f

dt
¼ pfðxt;fÞ; x0;f ¼ IPoðR

nÞ:
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Equations (5) become

xt;f
s ¼

R s

0 At;f
t dtþ

R s

0 Ot;f
t dWt;

Ot;f ¼ I 
R t

0 KfðxlÞOl dl;

At;f ¼ Ot;f
R t

0 Ol;f* ’hh 
1

2
RicUðJxl;fÞfðz

l;fÞh
� �

dl:

8>>><
>>>:

ð6Þ

By inspecting the definition of pf we see that these equations involve only
the curvature and its derivatives on the support of f: Therefore, we can
apply Picard’s iteration just as we did before for the compact case and claim
that it has a unique solution fxt;fg: Again the solution on PoðMÞ is obtained
by zt;fðX Þ ¼ Jxt;fðJ1X Þ:

After these preliminary remarks, we are ready to prove our first main
result.

Theorem 2.2. Let M be a geodesically and stochastically complete

Riemannian manifold. Let h 2 H: Then there exists a unique set of measurable

maps ðPoðMÞ-valued random variables)

zt : PoðMÞ ! PoðMÞ; t 2 R

with the following properties:

(1) fzt
s; s 2 ½0; 1�g is an M-valued BðPoðMÞÞn-semimartingale for each

t 2 R;
(2) for P-almost all X ; t/ ztðX Þs is C1 for fixed s and satisfies

dztðX Þs
dt

¼ UðztðX ÞÞshs:

Proof. Let fN : M ! ½0; 1� be a smooth function such that fN ¼ 1 on
Bðo;NÞ; the geodesic ball of radius N; and fN ¼ 0 on Bðo; 2NÞc: Let
xt;N ¼ xt;fN and zt;N ¼ zt;fN for simplicity. From the equation for zt;N ; we see
that

dðzt;N
s X ;XsÞ4jtjjhsj4jtjjhjH:

This holds for all N: Recall that rð�Þ is the distance function from the
reference point o: Now for a fixed positive L let

sL ¼ inffs41: rðXsÞ ¼ Lg:

Then for all s4sL; all N and jtj4T we have

rðzt;N
s X Þ4dðzt;N

s X ;XsÞ þ rðXsÞ4T jhjH þ L:
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In particular, if N5T jhjH þ L; then rðzt;N
s X Þ4N: Thus the stopped process

zt;N;L
s ¼def zt;N

s^sL
does not wander out of the geodesic ball Bðo;NÞ; on which the

cut-off function fN ¼ 1: It follows that fzt;N;Lg satisfies the same equation
for all N5T jhjH þ L:Note that in the s-direction, the equation only runs up
to time sL; which may be strictly less than 1, see Remark 2.1. By the
uniqueness, for all sufficiently large N we have zt;N;L

s ¼ zt;Nþ1;L
s for all s 2

½0; 1�; or equivalently, zt;N
s ¼ zt;Nþ1

s for all s4sL: Now because M is
stochastically complete,

P½sL ¼ 1� " 1 as L " 1:

We define

zt
s ¼ limN!1 zt;N

s on fsL ¼ 1g:

The properties of fztg stated in the theorem are inherited from the
corresponding properties of fzt;Ng: The proof is completed. ]

3. QUASI-INVARIANCE OF THE WIENER MEASURE

Throughout this section we assume that there is a constant C such that

jRicMðxÞj4Cf1þ rðxÞg: ð7Þ

Let fztg be the semimartingale solution of the flow equation for Dh on
PoðMÞ constructed in Section 2 and fxtg the corresponding solution on
WoðR

nÞ: We will show that the law of zt is mutually absolutely continuous
with respect to the Wiener measure P on PoðMÞ; namely

Pt ¼def P 8 ðz
tÞ1 � P:

This is equivalent to showing that

Qt ¼def Q 8 ðx
tÞ1 � Q;

where Q is the Wiener measure on WoðR
nÞ: We need the following criterion.

Proposition 3.1. Let z ¼ fzs; s 2 ½0; 1�g be a semimartingale on the

filtered probability space ðWoðR
nÞ;Bn;QÞ such that

zs ¼
Z s

0

At dtþ
Z s

0

Ot dWt;
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where A is a Bn-adapted, Rn-valued integrable process and O is a Bn-adapted,
OðnÞ-valued process. If

EQexp
1

2

Z 1

0

jAsj
2 ds

� �
o1; ð8Þ

then the law Qz ¼def Q 8 z1 is mutually absolutely continuous with respect to

the Wiener measure Q:

Proof. Define the local exponential martingale

es ¼ exp

Z s

0

hAt;Ot dWti 
1

2

Z s

0

jAtj
2 dt

� �
:

Then it is well known that (8) implies Ee1 ¼ 1 (see [6, p. 152]). Define a new
probability measure *QQ on WoðR

nÞ by d *QQ=dQ ¼ e1: By Girsanov’s theorem,
z is a Brownian motion under *QQ: Let Bz ¼ z1ðB1Þ be the s-field generated
by z: General measure theory guarantees the existence of a measurable
function Q : WoðR

nÞ ! ½0;1Þ such that

E
*QQ½e1

1 jBz� ¼ QðzÞ:

Now for any nonnegative measurable function f on WoðR
nÞ;

EQ
z

f ¼ EQf ðzÞ ¼ E
*QQ½ f ðzÞe1

1 � ¼ E
*QQ½ f ðzÞQðzÞ� ¼ EQ½ fQ�:

The last equality holds because the law of z under *QQ is Q: This shows that
Qz � Q and in fact d Qz=d Q ¼ Q: ]

In the following, we will use C to denote a constant depending on h and
M ; whose value may differ from one appearance to another. From (5), (7),
and jhsj4jhjH we have

jAt
sj4

Z t

0

fj ’hhsj þ C þ Crðzls Þg dl:

Now let

Xn ¼ max
04s41

rðXsÞ

be the maximum distance traveled by the Brownian motion X : We have

rðzt
sX Þ4tjhsj þ rðXsÞ4tjhjH þ Xn:

Hence for jtj41;

jAt
sj4Ctfj ’hhsj þ jhjH þ Xng
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and

1

2

Z 1

0

jAt
sj
2ds4Ct2f1þ X 2

n
g: ð9Þ

In order to apply Proposition 3.1 we need to investigate the exponential
integrability of Xn:

Lemma 3.2. Under assumption (7) on the Ricci curvature we have

E eX 2
n =10o1:

Proof. It is a well-known fact in stochastic analysis that the radial
process rs ¼ rðXsÞ has the decomposition (see [7])

rs ¼ bs þ
1

2

Z s

0

DMrðXtÞ dt Ls;

where b is a one-dimensional Brownian motion, L is a nondecreasing
process which increases only when Xs is on the cut-locus of o; and DM is the
Laplace–Beltrami operator on M : By Itô’s formula, we have

r2s ¼ 2

Z s

0

rt drt þ hris:

Hence, noting that L is nondecreasing we have

r2s42

Z s

0

rt dbt þ
Z s

0

rtDMrðXtÞ dtþ s: ð10Þ

Fix a K51 and let

sK ¼ inffs : rs ¼ Kg:

If rðxÞ4K ; then the Ricci curvature is bounded by Cð1þ KÞ: By the
Laplacian comparison theorem (see [5]),

DMrðxÞ4ðn  1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1þ KÞ

p
coth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1þ KÞ

p
rðxÞ:

For t4sK ; using the inequality c coth c41þ c for all c50 and the fact that
rt4K ; we have

rtDMrðXtÞ41þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1þ KÞ

p
rt4C1K

3=2:
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Letting s ¼ sK in (10), we have

K242

Z sK

0

rt dbt þ CK3=2sK :

From this inequality we see that sK41 implies

2

Z sK

0

rt dbt5K2  CK3=25
K2

2

for sufficiently large K : On the other hand, by Lévy’s criterion there is a one-
dimensional Brownian motion W such that

Z sK

0

rt dbt ¼ WZ; Z ¼
Z sK

0

r2t dt4K2:

It follows that sK41 implies

max
04s4K2

Ws5WZ5
K2

4
:

Since max04s4K2 Ws has the same distribution as K jW1j; we have

PfXn5Kg4PfsK41g4P jW1j5
K

4

� �
4CeK2=8:

This implies immediately that E eX 2
n
=10 is finite. ]

Remark 3.3. In the above proof, we only used the lower bound
RicMðxÞ5 Cf1þ rðxÞg: The exponential integrability of X 2

n
can be proved

under much more relaxed growth condition on the Ricci curvature; for
example, it holds when RicMðxÞ5 Cf1þ rðxÞ2g (see [8, p. 128]). But this
does not seem to lead to any improvement on our final result in the next
theorem.

We are ready to prove the second main result of this paper.

Theorem 3.4. Let M be a complete Riemannian manifold. Suppose that

there is a constant C such that

jRicMðxÞj4Cf1þ rðxÞg:

Then for any h 2 H; the Wiener measure is quasi-invariant under the flow fzt
hg

generated by Dh; namely Pt ¼def P 8 ðz
t
hÞ

1 and P are mutually absolutely

continuous.



QUASI-INVARIANCE OF THE WIENER MEASURE 289
Proof. From (9) and Lemma 3.2 we have

E exp
1

2

Z 1

0

jAt
sj
2 ds

� �
o1

for all sufficiently small j tj: By Lemma 3.1 we have Qt � Q and Pt � P for
small jtj: It remains to show that this implies that the equivalence holds for
all t:

Suppose that Pt � P for all 04t4t0: The composition ztt0
8 z

t0 now
makes sense as a PoðMÞ-valued random variable because ztt0 is P-almost
everywhere defined and Pt0 � P: If we define *zz

t
¼ zt for 04t4t0 and *zz

t
¼

ztt0
8 z

t0 for t04t42t0; then it is easy to see that f*zz
t
; 04t42t0g satisfies the

same flow equation as fzt; 04t42t0g: By the uniqueness we have *zz
t
¼ zt for

04t42t0; or zt ¼ ztt0
8 z

t0 for t04t42t0: Now Pt � P for t04t42t0
follows from Pt0 � P and Ptt0 � P: In fact, if we let R : PoðMÞ ! R be a
measurable function such that

E
dPt0

dP

����Bztt0

� �
¼ Rðztt0Þ;

where Bztt0 ¼def ðztt0 Þ1ðB1Þ; then

dPt

dP
¼

dPtt0

dP

� �
R; t04t42 t0:

This method can be continued to show that Pt� P for all t: ]

We end this paper with two remarks.

(1) The need for an upper bound of the Ricci curvature runs counter to
intuition: it seems that a complete manifold whose Ricci curvature is
bounded from below by, say, a negative constant K should be more likely
to have the quasi-invariance property than the simply connected manifold of
constant curvature K :

(2) It is unlikely that the quasi-invariance property holds for all
geodesically complete and stochastically complete manifolds without any
further restrictions.
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