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ABSTRACT. We prove that reflecting Brownian motion on a bounded Lipschitz 
domain is a semimartingale. We also extend the well-known Skorokhod equa- 
tion to this case. 

In this note we study the semimartingale property and the Skorokhod equa- 
tion of reflecting Brownian motion on a bounded Euclidean domain. A R d_ 
valued continuous stochastic process X = {Xt ; t > 0} is said to be a semi- 
martingale if it can be decomposed into the form 

Xt=Xo +Mt+Nt t 2 t 

where M is a continuous martingale with zero initial value, and N (ignoring 
the factor 1/2) is a process of bounded variation. Let INI be its total variation 
process, i.e., 

n-I 

INIt = sup INt - Nt_1 1. 
i=l 

Here the supremum is taken over all finite partitions 0 = to < ti < < tn = t 
and I I denotes the Euclidean distance. We have the following expression 

t 

Nt = y vddINI 

where iv is a process with length one, i.e., with probability one, Iv15 = 1 for 
INI-almost all s. 

The original Skorokhod equation refers to one-dimensional reflecting Brown- 
ian motion X = IBI (B is a standard one-dimensional Brownian motion). It 
states that X is a semimartingale and Xt = X0 + Wt + 1Lt, where W is a 
standard Brownian motion and L is the local time of X at x = 0. 
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Suppose that D is a bounded smooth domain in Rd . Let v be the inward 
unit normal vector field on the boundary OD. Suppose that X is a reflecting 
Brownian motion on D. The multidimensional Skorokhod equation takes the 
form 

rt 

(1) Xt X0? + 2J v(Xs) dLs 

where W is a standard d-dimensional Brownian motion and L is the bound- 
ary local time of X, i.e., the continuous additive functional of X associated 
with the surface measure of D. This form of the Skorokhod equation was first 
proved for convex domains in [T], then for C1 domains by [LS] (see also [H]). 
In both cases, the stochastic Skorokhod equation is obtained by first solving a 
deterministic Skorokhod equation. As a matter of fact, (1) can be regarded as a 
stochastic differential equation with reflecting boundary conditions in two un- 
known processes X and L. The existence and uniqueness of the solution of the 
deterministic Skorokhod equation imply the existence and pathwise uniqueness 
of the solution of the stochastic Skorokhod equation. 

A natural question at this point is how smooth the domain D has to be to 
insure that reflecting Brownian motion is a semimartingale. In this paper we 
will discuss bounded Lipschitz domains in any dimension. Our main result is 
that for these domains, reflecting Brownian motion is a semimartingale and the 
Skorokhod equation holds. 

Let D be a bounded Lipschitz domain. First we must make sure that reflect- 
ing Brownian motion can be defined as a continuous D-valued process. This 
fact follows from our previous work [BH]. For a discussion of reflecting Brow- 
nian motion on arbitrary domains, see [F1]. Further information on reflecting 
Brownian motion on Lipschitz and Holder domains can be found in [BH]. 

Theorem 1. Suppose that D is a bounded Lipschitz domain. Then reflect- 
ing Brownian motion X is a continuous D-valued semimartingale, and the 
Skorokhod equation 

X1~~ X t+V/ v (X) dLs, Xt = Xo+ t+ 2 VX)L 

holds, where W is a standard d-dimensional Brownian motion, L is the bound- 
ary local time (continuous additive functional) associated with the surface mea- 
sure a on OD, and v is the inward unit normal vector field on the boundary. 

The inward pointing normal vector is only defined a.e. (with respect to sur- 
face measure). However, the continuous additive functional L is associated 
with a and so does not charge the null set. Hence the integral in the statement 
of Theorem 1 is unambiguously defined. 

We will give a proof of Theorem 1 based on our previous work on reflecting 
Brownian motion on Lipschitz domains. For general domains, the reflecting 
Brownian motion may not be a continuous process on the Euclidean closure of 
D. It is a continuous process on a special compactification of D, the so-called 
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Kuramochi compactification. In [BH], we have shown that if D is a bounded 
Lipschitz domain, then the Kuramochi compactification of D is the same as the 
Euclidean compactification. Thus, for such domains, the reflecting Brownian 
motion does live on the set D. To show that it is actually a semimartingale, we 
use the theory of Dirichlet forms [F2]. 

Proof of Theorem 1. The Dirichlet form for reflecting Brownian motion is 

9'(U, V) = I Vu(x) *Vv(x)m(dx), DQ(t) = H' (D). 2 

(m is the Lebesgue measure on D). In [BH] we proved that for D bounded 
and Lipschitz, this Dirichlet form is regular on D, which means that the set 
H' (D) n C(D) is dense in both H1 (D) and C(D), each functional space being 
equipped with its usual norm. We can now make use of the theory of regular 
Dirichlet forms developed in [F2], especially Chapter 5. 

Suppose that f E H1 (D) n C(D) . According to Theorem 5.2.2 of [F2], the 
continuous additive functional f(Xt) - f(X0) can be decomposed as follows: 

(2) f(Xd) - f(XO) = Mt + Nt/C 

where Mf is a martingale additive functional of finite energy and Nf is a 
continuous additive functional of zero energy. Since X has continuous sample 
paths and f is assumed to be continuous on D, Mf is a continuous martingale 
whose quadratic variation process is 

(3) (M M)t , - fVfl2(Xx)ds. 

(See Example 5.2.1 in [F2].) If we further assume that f E C 2(D), then by 
Theorem 5.3.2 of [F2], Nf is of bounded variation and its associated measure 
,uf is uniquely characterized by the relation 

' j Vf(x) . Vv(x)m(dx) = (x),uf(dx) Vv E H1(D). 

(v is a quasi-continuous modification of v.) Since D is Lipschitz, we can use 
Green's identity in the above equation. This allows us to identify the associated 
measure of Nf, i.e., 

(4) jif(dx) = -Af(x)m(dx) + 
I Of (x) a(dx), 

where a is the surface measure of the boundary OD. 
Now apply the above discussion to the coordinate functions f (x) = x' . We 

have 
1 

(5) Xt = YO + Mt + Nt 

where M(Mf', ... ,Mfd), and N = (Nf', ... ,Nfd) . It remains to show that 
M is a standard d-dimensional Brownian motion and Nt = ttv(Xs)dLs. 
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To see that M is a Brownian motion, we use Levy's criterion. Namely, we 
need to verify that 

(Mf' , Mfi) =' bjt, i,i j = 1, ... I,d. 

This follows immediately from (3). Therefore M is a Brownian motion. 
Let v(x) = (v' (x), ... ,vd(x)) be the components of the normal vector v. 

From (4), the measure associated with the continuous additive functional Nf 
is v'(x)j(dx). Let 

Lt v i(x) dNs 

It follows that the measure associated with L is Ed l v, (x)2a(dx) = o(dx). 
This shows that L is just the boundary local time with respect to the surface 
measure. Since the measure for Nf is v'(x)o(dx), we have 

N - v'(Xs)dLLs i-l,...,d. 

Hence we obtain 
t 

Ntz f v(Xs)dL5, 

and the proof of the Skorokhod equation is complete. o 

Remark. The tightness estimates of [BH, ?2] allow us to construct reflecting 
Brownian motions on D when D is a Holder domain in R d d> 3. Unless 
the Kuramochi compactification for such a domain D is equal to the Euclidean 
compactification, however, there will be more than one reflecting Brownian 
motion on D, and the question of semimartingale representations loses some 
of its interest. 
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