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Stochastic Local Gauss-Bonnet-Chern Theorem1
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The Gauss-Bonnet-Chern theorem for compact Riemannian manifold (without
boundary) is discussed here to exhibit in a clear manner the role Riemannian
Brownian motion plays in various probabilistic approaches to index theorems.
The method with some modifications works also for the index theorem for the
Dirac operator on the bundle of spinors, see Hsu.(7)
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1. INTRODUCTION

The Gauss-Bonnet-Chern theorem is the index theorem for the Hodge-de
Rham Laplacian on differential forms. The more refined local Gauss-
Bonnet-Chern theorem was conjectured by McKean and Singer,(12) and
proved by Patodi.(13) Later Gilkey(6) gave a proof based on the more
comprehensive theory of local invariants, which has applications beyond
proving index theorems.

Since the appearance of Bismut's probabilistic proof of the local
Atiyah-Singer index theorem (Bismut(2)) (for the Dirac operator on spinor
bundles), there have appeared many works to reprove various forms of
index theorems by probabilistic and analytic methods, see Azencott,(1)

Cycon et al.,(3) Elworthy,(4) Getzler,(5) Ikeda and Watanabe,(10) Leandre,(11)

and Shigekawa et al.(16) The approach to the index theorem presented in
this article is based on the author's proof which chronologically was one of
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the many proofs shortly after Bismut's work. The early manuscript was
widely circulated and cited but never appeared in print for various reasons.
Although the basic ideas underlying the proof remains unchanged, we have
greatly streamlined and improved the presentation by taking advantage of
the hindsights gained during the years since the early draft. One obvious
feature of it is that it is a technically simple proof from the probabilistic
point of view because it uses nothing beyond the definition of horizontal
Brownian motion and Ito's formula. Another feature of the proof is that we
state the result in such a way that the "fantastic cancellation" conjectured
by McKean and Singer(12) occurs on the path level, hence the title of the
article. In the traditional spirit of probability in relation to analysis, one
obtains Patodi's local Gauss-Bonnet-Chern theorem by taking expectation.
The purpose of this article is mainly pedagogical and the so-called
stochastic local Gauss-Bonnet-Chern theorem is perhaps the only result in
this article that has not appeared (at least not explicitly) in literature.

Let us briefly describe the contents of the article. In Section 2, we state
without proof some results from linear algebra and differential geometry
needed for the exposition, especially Weitzenbock's formula:

where <j>( T) is the supertrace of a degree-preserving linear operator T on
the space of differential forms.

In Section 4, using the Weitzenbock formula and the Feynman-Kac
formula we represent eAM/2(x, x) in terms of Riemannian Brownian bridge:
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where AM is the Hodge-de Rham Laplacian on a Riemannian manifold,
AB

M Bochner's covariant Laplacian, and D*R a fibre-wise, degree-preserving
operator on A* M (the space of differential forms on M) determined by the
curvature tensor.

In Section 3, following McKean and Singer(12) we describe the relation
between the heat kernel e'AM/2(x, y) and the Euler characteristic x(M) of a
compact Riemannian manifold M, namely

where E'x, x denotes the expectation with respect to a Brownian bridge
at x with time length t, Ul is the (stochastic) parallel transport along
the Brownian bridge, and {Ms, 0 < s <t} is the Feynman-Kac functional
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given by an ordinary differential equation along the horizontal lift
{ Us , 0, <s < t} of the Brownian bridge:

Here D*Q is the scalarization of the D*R in the Weitzenbock formula.
Some of the details for this section can be found in Ikeda and Watanabe,(9)

[pp. 298-308].
In Section 5, we show how to define Riemannian Brownian bridges of

lifetime t on a common probability space and prove that the limit

exists in LN(P) for any N > 0, and e(x) is identified as the Euler form. This
is the content of the stochastic local Gauss-Bonnet-Chern theorem. The
local Gauss-Bonnet-Chern theorem follows from this by taking expecta-
tion.

In Section 6, the last section, we prove an estimate on the Brownian
homology U, which is used in the proof of our main result. This part
represents the only technical portion of the article and can be safely
skipped at the first reading, for the estimate is merely a rigorous statement
of an easily acceptable intuition.

2. ALGEBRAIC AND DIFFERENTIAL GEOMETRIC
PRELIMINARIES

Let V be a n-dimensional vector space over R. Typically in this article
V= Rn or V= T*M, the cotangent space of a Riemannian manifold M at
a point x. We use

to denote the exterior algebra of V. The set of linear maps from V to itself
is denoted by End(V)= V*® R V. Each T e End(K) extends naturally to
the exterior algebra A* V by
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If no confusion is possible we write A* T simply as T. There is another
extension of T on A* V as a derivation:

Note that A* T and D*T are degree-preserving, i.e., it sends each fp V
into itself. If T is a linear map from a vector space into itself, its (operator
or matrix) exponential is eT = E i = 0T'/i! . For a T e End(V), the relation
between these two extensions of T is

For a degree-preserving linear map T: A* V^> A* V, we define the
supertrace p ( T ) by

We have the following algebraic fact, whose proof can be found in
Patodi,(3) [p. 235].

Lemma 1. Let Ti e End( V), 1 < i < k. If k < dim V, then

If k = dim V, then

We define a bilinear map

by

From the preceding lemma we have immediately the following result.
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Corollary 1. Let TmeEnd( V), 1<m<j, and Sk e End( V)®R End( V),
1<k< i. If 2i + j < dim V then

Let M be a compact, oriented Riemannian manifold. We denote by
O(M) the bundle of orthonormal frames on M, and by n: O(M) -» M the
canonical projection. An element w e O(M) can be regarded as an isometry
from R" to Tnu M. The canonical horizontal vector field Hi, 1<i<n, on
O(M) is defined at ueO(M) by uei = n*(H i , u ), where ei is the unit coor-
dinate vector in Rn along the xi-axis.

The vector bundle of differential form is the associated bundle

where O(n) acts on A* Rn as an isometry (see (2.1)). Since u : Rn-> Tpu M
is an isometry, it can be extended naturally to an isometry from A* Rn to
A* M, the fibre of the vector bundle A* M at nu. Let x e F(/\* M) be a
differential form on M (a section of A* M). The A* Rn-valued function
Sa: O(M)-» A* Rn defined by Sa(u) = u -1a(ru) is called the scalarization
of a.

Let d: A* M -> A* M be the exterior differentiation and d* the formal
adjoint of d with respect to the canonical pre-Hilbert structure on A* M
defined by

where dx is the Riemannian volume measure on M. The second order ellip-
tic operator AM = dd* + d*d is the Hodge-de Rham Laplacian. We define
the lift A O ( M ) of AM to O(M] on the set of O(n)-invariant, A* Rn-valued
functions on O(M) by

Bochner's Laplacian is defined by AB
M = Tr V2, where V is the Levi-Civita

connection extended to differential forms. By definition we have
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where A O ( M ) = Ei=1 H2
i is Bochner's horizontal Laplacian on O(M).

The connection between the Hodge-de Rham Laplacian and Bochner's
Laplacian is given by the Weitzenbock formula. Let

be the curvature tensor of M. At each x e M, by the canonical identification
of T*M with TX M, we can regard the curvature tensor Rx as an element
in End(T* M) ®R End(TX M). Therefore D*RX : A* M - > f x * M is well
defined by (2.3). Finally at each point u e O(M), we define the scalarization
D*QU e End( A* Rn) of D* R by

Proposition 1 (Weitzenbock formula). We have

or equivalently

3. HEAT EQUATION AND THE EULER CHARACTERISTIC

Consider the heat equation on a differential form a = a(t, x) on M:

where AM is the Hodge-de Rham Laplacian on T(A* M). Theory of
parabolic equations shows that there is a smooth heat kernel

with respect to the Riemannian volume measure such that the solution of
(3.1) is given by

Theory of elliptic equations shows that the spectrum of A is discrete,
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and we have the usual L2-expansion of the heat kernel

Let u0 = 0 > u1 > u2> • •• be the distinct eigenvalues of AM. Each
eigenspace £i is finite dimensional and

where Ep is the subspace of p-forms in Ep. Since e'A m / 2(x, x): A* M ->
A* M is degree-preserving, the supertrace P{eM/2(x, x)} is defined. Then
a simple computation shows that

The key observation, due to McKean and Singer,(12) is that

where X(M) is the Euler characteristic of M. The case ui =0 is a conse-
quence of the fact that both d and d* preserves the eigenspace Ei. The
case ui = 0 follows from the Hodge-de Rham theory, which expresses
cohomology groups H*(M) of M in terms harmonic forms. We have now
arrived at an expression of the Euler characteristic in terms of the heat
kernel, namely for all t > 0,

4. PROBABILISTIC REPRESENTATION OF THE HEAT KERNEL

We express the heat kernel e'Am/2(x, y) in terms of Brownian bridge.
Consider the heat equation (3.1) and let Sa(t, •) be the scalarization of
a(t, •). Then the equation is equivalent to the following equation for Sa:

We now give a probabilistic representation of the solution Sa. Fix a
point x e M and a frame u over x, by which we identify the tangent space
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TX M with Rn. Let U= { Ut, t > 0} be the horizontal Brownian motion on
O(M) determined by the stochastic differential equation

where Hu = {Hi,u} are the canonical horizontal vector fields at u and
w = {wt, t >0} is a standard Rn-valued Brownian motion. The diffusion
process U on O(M) is generated by Bochner's horizontal Laplacian
AB

(M) / 2, hence the solution to the heat equation

is given by

It is seen from this representation that AB
o ( M ) and AB

M are more naturally
associated with Brownian motion than A0(M} and AM. But using the
Weitzenbock formula we can write the solution to (4.1) in terms of a
Feynman-Kac functional. Let Mt be the End(A* Rn)-valued multiplicative
function defined by

Then the solution to (4.1) is given by

This is equivalent to

The subscript x is added to emphasize the fact that yt = nUt is a Brownian
motion on M starting at x. Note that we identify TX M with Rn by the
frame M, hence A * M with A* Rn. For a detailed discussion on this formula
see Ikeda and Watanabe,(9) [pp. 298-308].

Comparing (4.3) with (3.2) we have the following representation of the
heat kernel
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where Ex,y{ •} = EX{ • | yt = y} is the expectation with respect to Brownian
bridge from x to y with time length t, and p(t, x, y) is the usual heat kernel
on functions, i.e.,

In particular, we have

Under the probability Px,x, the process {U s } is the (stochastic) parallel
transport along the Brownian bridge y, which satisfies a stochastic equation
of the form

5. STOCHASTIC LOCAL GAUSS-BONNET-CHERN THEOREM

To state a stochastic version of the local Gauss-Bonnet-Chern
theorem, we need to put the collection of Brownian bridges at x of various
time lengths t > 0 on a common probability space. Let (W o (R n ) , $, P) be
the standard Wiener probability space, where W o ( R n ) is the space of
continuous functions from [0, 1] to Rn starting at the origin, B the Borel
S-field on W o (R n ) and P the Wiener measure. The coordinate process
{ws, 0<s< 1} is the canonical realization of Brownian motion on Rn

starting from the origin. Let {Ut,s, 0< s< 1} be the solution of the
following stochastic differential equation on O(M):

We rescale the process as follows:

Then {rs, 0 < s <t} is a Brownian bridge at x; Ut= U' is an End(Rn)-
valued random variable and is the parallel transport along the Brownian
bridge at x. Define as before
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Then Mt = M't is also an End(Rn)-valued random variable. It is now clear
that

where the subscript x indicates the base point of the Brownian bridge.
From (5.1), we have Ut — I=O(/t) as t-»0. The key probabilistic

fact here is that in fact Ut — I= O(t). More precisely we have the following
estimate, whose proof is relegated to Section 6.

Proposition 2. Let K, = t-1 |Ut — I|. Then for each positive integer N,
there is a constant CN independent of t e [0, 1 ] such that EKN < CN .

We are in a position to prove our main result.

Theorem. The limit

exists in LN(P) for all N >0. Furthermore, if n = 2l is even,

otherwise e(x) = 0.

Proof. As t -> 0, we have p(t, x, x) ~ ( 2 n t ) - n / 2 . Thus we need to show
that the following limit exists:

The idea is to expand Mt and Ut into exponential series. Let l = n/2 and [ l]
the largest integer not exceeding l. Let l* = [l] + 1 for simplicity. We
assume throughout the proof that 0 < t < 1.

Let ut e so(n) such that Ut = exp ut in O(n). Such ut is unique if t is
small because Ut -> I as t -> 0. By (2.2) Ut, as an isometry on A* Rn (also
denoted by A* U t), is given by Ut = exp D*ut . For any positive integer N,
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where the remainder |Rt| <|ut|l+1/(l +1)! On the other hand, iterating
(5.3) we have

where

Writing mi,t for mi,t we have

where the remainder satisfies |Qt| < ( C t ) l + 1 / ( l + 1)! for some constant C.
Combining the two expansions we have

The remainder can be estimated as

From definition it is clear that mi,t is the limit of a sequence of
linear combinations of the terms of the form D*Sl = ••• ^D*Si with
Sk e End(Rn) x End ( R n ) . Hence by Proposition 1 we have

After taking the supertrace in (5.6), the only nonvanishing terms are p(St )
and the terms with i+j < n+2 and 2i + j >n, that is, j = 0 and 2i = n. In
this case l = n/2 must be an integer and

Suppose that t -1 j ( S t ) -»0 in LN(P). Then for « even, we have
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For n odd, only the remainder in (5.8) stays and we obtain e(x) = 0. Thus
it is enough to show t -l t ( S t ) -» 0 in LN(P).

Let Ft = { w : | U t ( ( w ) - I | < 1 / 2}. The probability of Fc is small by
Proposition 2:

Since Ut = eut, on the set Ft,

From (5.8) it is clear that (p(St ) is uniformly bounded, a fact we will use on
Ft . Consider the cases Ft and Ft separately and using Proposition 2 we find

which completes the proof.

Taking expectation in (5.4) and using (4.4) we obtain the local Gauss-
Bonnet-Chern theorem:

Integrating over M and using (3.3), we obtain the Gauss-Bonnet-Chern
theorem:

To identify the integrand e(x) more explicitly, we let { e i } be the standard
orthonormal basis for TX M = R n and { e * } the dual basis. We write
the curvature tensor in this basis: R = R i j k le*®e j®e*®e l. Then by
Lemma 1 we have when n is even

where I= {i1,..., in } and J= { j1 , . . . , jn }. The n-form e = e(x) dx is the Euler
form on M and is the unique form on M such that

Here in the last expression Q = {Qij } is understood to be the o(n)-valued
curvature form on O(M).
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6. AN ESTIMATE ON BROWNIAN HOLONOMY

In this section we prove Proposition 2, which was used in the proof of
our main theorem. In the course of the proof, we will need the following
fact on the gradient of the heat kernel. There exists a constant C such that
for all ( x , y , t ) e M x M x ( 0 , 1]:

See Sheu(15) for a proof and Hsu(8) for a more recent treatment.
Let {Ut, s, 0 < s <1} be as defined in the last section and yt,s = nU t ,s.

Recall that Us= Ut,s,t and yt = nU's = y t , s / t . The process {r t ,0 < s < t} is a
Brownian bridge at x. Intuitively we have d(y's, x) ->0 as t->0. We show
more precisely that it goes to zero at the rate of rt.

Lemma 2. For any fixed a e (0, 1/2), t e[0, 1], and positive integer
N, there exist a random variable Kt and a constant CN independent of t
such that EKN < CN and almost surely

Proof. Let O be a neighborhood of x covered by the Cartesian
coordinate system {x1,..., xn} on the tangent space TXM with respect to
the fixed basis at u. For each i= 1,...,n, let fi be a smooth function on M
such that f i ( x ) = xi for x e O and |fi| strictly positive outside O. Let
f = Ei= l|f

i|2. Then it is clear that there is a constant C such that

From (6.1) and h(t, u) = V log p(t, pu, x) we have

Recall the Eq. (5.1) for Ut,s and apply Ito's formula to f(yt,s). We have
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where F(u} = f ( n u ) and VHF= { H i F } I < i < n , the so-called horizontal
gradient. Using the estimate (6.2) we have for 0 <s < 1/2,

where

Hence,

Let K2 be the supremum over s e [0, 1/2] of the right-hand side of this
inequality divided by s2a. Simple moment estimates on stochastic integrals
show that for any N there is a constant CN independent of t such that
EKN < CN . The lemma for 0 < s < 1/2 now follows from (3.2) because

The same conclusion holds for the interval 1/2 < s < 1 because the law of
Brownian bridge is invariant under the time reversal s -» 1 — s.

We now prove Proposition 2. We will use Kt to denote a general
random variable with the property in the proposition. Let O be a
neighborhood of x as in the preceding lemma. Let O1 be another
neighborhood of x whose closure is contained in O. Let G: O(M)-> Rn2

be a smooth function such that G(u) = { u j } on n - 1 ( O 1 ) and zero on
n - 1 (M\O) , where u = { u j d / d x i } 1 < j < n . Then we have G(Ut, 0 ) = I and
G( Ut,1 ) = Ut. Using Ito's formula, we have

The key to the proof is the following fact
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To see this, we write Hi in the local Cartesian coordinates on O,

where F'^y) are the Christoffel symbols at y [see Ikeda and Watanabe,(9)

p. 280]. Inequality (6.4) follows immediately from the fact that the
Christoffel symbols vanish at the origin of the Cartesian coordinates.

Now since |VHG(U t , s) | d ( y t , s , x), using Lemma 2, we can show by
simple estimates on stochastic integrals that the first term on the right-
hand side of (6.3) is bounded by Kt (note the cancellation of rt ). The
second term is uniformly bounded. As for the third term, from (6.4), (6.2),
and Lemma 2 with a = 1/4, we have

Note again the cancellation of t and tt, respectively. It follows that the
third term of the right-hand side of (6.3) is also bounded by Kt. This
completes the proof.

Remark 1. We can prove the following more precise results on
yt,s and Ut. Let s :M->R n be a Cartesian coordinate system in a
neighborhood of x. Then

where { YS, 0 <s< 1} is the Euclidean Brownian bridge determined by

For the Brownian holonomy Ut, we have
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where Q is the (o(n)-valued) curvature form at the fixed frame u at x.
Probabilistically these precise results are the only work we need beyond
what we have done in this article in order to prove the Atiyah-Singer index
theorem for the Dirac operator on the spinor bundle over a compact
Riemannian manifold, see Hsu(7) for further details.
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