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ON THE 6-FUNCTION 
OF A RIEMANNIAN MANIFOLD WITH BOUNDARY 

PEI HSU 

ABSTRACT. Let Q be a compact Riemannian manifold of dimension n with 
smooth boundary. Let AI < A2 < ... be the eigenvalues of the Laplace- 
Beltrami operator with the boundary condition [0/On + y]q = 0. The associ- 
ated 0-function Oy(t) = I exp[-Ant] has an asymptotic expansion of the 

form 

(47rt)n/28y(t) = aO + a tl/2 + a2t + a3t3/2 + a4t2 + - -. 

The values of ao, a, are well known. We compute the coefficients a2 and a3 

in terms of geometric invariants associated with the manifold by studying the 

parametrix expansion of the heat kernel p(t, x, y) near the boundary. Our 

method is a significant refinement and improvement of the method used in 

[McKean-Singer, J. Differential Geometry 1 (1969), 43-69]. 

1. INTRODUCTION 

The present work is devoted to the study of the asymptotic expansion of the 
so-called 4-function of the third boundary value problem under the general 
setting of a Riemannian manifold with smooth boundary. The 4-function is 
defined as follows. Let Q be a compact Riemannian manifold of dimension n 
with smooth boundary. The Laplace-Beltrami operator is denoted by A. Let y 
be a smooth function defined on the boundary aQ. We do not assume that y 
is strictly positive. 

Consider the following eigenvalue problem 

J AqO+ AXq=O, onQ, 

l [t +Y](1=o, on A. 

(n denotes the outward unit normal vector at the boundary). Let {in, ()nl}, 
n = 1, 2, ..., be the normalized eigenpairs. The 4-function of the boundary 
value problem is by definition 

00 

eY(t) = Ee-nt 
n=1 
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This function is very important in the study of asymptotic properties of the 
eigenvalue distribution. In the simplest case when Q2 is the circle of radius 
one, Q),(t) is the famous Jacobi 0-function 

00 

O(t)= E e-2t 
n=-oo 

For O(t), we have the Jacobi inversion formula 

0(t)= 0 ) 5 

from which it follows that vfi6(t) = 2r + O(tk) for any k > 0. This is the 
simplest case of the asymptotic formula we still study in this paper. 

Abstract analysis shows that EQ (t) has an asymptotic expansion of the form 
(see [G]): 

(1.1) (47rt)nl2e,(t) = ao + a,t 12 + a2t + a3t312 + a4t2 + * 

In the case of a manifold without boundary, all terms with fractional powers of 
t disappear. 

The study of the behavior of the 0-function as t -* 0 was initiated by the 
work of Kac [K]. The central question there was whether the eigenvalues of an 
Euclidean domain determines the domain uniquely. Kac studied this problem 
by obtaining explicit formulas for the coefficients ai in terms of geometric 
invariants of the domain. For an Euclidean domain, Kac computed the first 
two terms under the Dirichlet boundary condition (y = oo): 

ao= IQI, a, = V7 
- OLj, 

and went on to conclude that the eigenvalues determine the volume and the 
boundary area of an Euclidean domain. Since then computations have been 
carried out for more general domains (e.g., on a Riemannian manifold) and for 
more coefficients. The most significant work in this direction is [MS], in which 
the coefficient a2 is computed for a general Riemannian manifold under the 
Dirichlet or the Neumann boundary condition: 

a2 = - j K(x) dx - 3 j M(z)af(dz), 6 3 aa 

where K(x) is the scalar curvature of Q at x and M(z) is the mean curvature 
of the boundary aQ at z. In the present work, we will carry out the compu- 
tations for a2 and a3 in the most general situation stated at the beginning of 
this section. 

The chief reason that 0, (t) can be studied analytically is its connection 
with the heat kernel p,(t, x, y). By definition, p,(t, x, y) is the fundamental 
solution of the heat equation with the boundary condition [a/On + y]o = 0, 
i.e., it is the unique nonnegative smooth function defined on (0, oo) x Q x 
which satisfies the following two properties: 

(i) For fixed x E Q2, it satisfies the heat equation in t, y: 

a 
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and the boundary condition 

+ +Y&)]PY(t, x, y) = 0 
-any 

Y 

(subscript y means that the derivatives are taken in y variables); 
(ii) For any function f continuous on Q, 

lim f(y)p(t, x, y) dy = f(x). 

It is well known that the heat kernel has the following expansion in terms of 
the eigenvalues and the eigenfunctions (Mercer's expansion): 

00 

py(t, x, y) =E e AntqOn(x)qOn(y). 

n=1 

Setting x = y and integrating over Q, we obtain the formula 

(1.2) ey(t) = Jpy(t, x, x)dx. 

Thus Ey(t) can be studied by constructing good approximations of the heat 
kernel. 

Let us mention some previously known results before stating our main the- 
orems. As mentioned earlier, ao, a, were computed in [K] for Euclidean do- 
mains, and a2 for the Dirichlet and the Neumann cases were computed in 
[MS] for compact Riemannian manifolds with smooth boundary. The formula 
for a2 appeared in [KCD]. The coefficient a3 was computed in [P] for a two 
dimensional, strictly convex Euclidean domain 

(1. 3) |3 64 { V/7 f k(z)2a(dz), with Dirichlet boundary condition, 

6 f7 k(z)2a(dz), with Neumann boundary condition, 

where k(z) is the curvature of the boundary aQ and a(dz) is the arclength. 
Much later, apparently unaware of [P], Louchard [L] used a probabilistic method 
and recomputed a2 under the same conditions on the domain. Waechter [W] 
extended Pleijel's method and computed a3 for three dimensional, strictly con- 
vex Euclidean domain with the Dirichlet boundary condition 

1 /'; k 2]2 (1.4) a3 =- vt [ki (z) - k2(z)1a(dz), 
64 J0 

where k1 (z), k2(z) are the two principal curvatures of the boundary surface at 
point z. 

The formula for the coefficient a3 in the case where the ambient space is flat 
appeared in [KCD] without proof. Our formula for a3 and a sketch of the proof 
was announced in [H]. We are happy to acknowledge the recent independent 
work of Gilkey and Branson [GB] where a3 and a4 are computed using a 
different method. 

We now state our result. As before, Q is a compact Riemannian manifold 
with smooth boundary aQ. We will use H to denote the second fundamental 
form of the boundary a Q. The scalar curvature of Q at x is denoted by 
K(x). The scalar curvature of aQ (equipped with the induced metric) at z is 
denoted by K190(z). The Ricci curvature of Q at z in the normal direction 
n of the boundary is denoted by Ric(n)(z). 
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Theorem 1. The first four coefficients in the asymptotic expansion of the e3- 
function with the boundary condition [0/On + y]q = 0 are 

a0= IQI,~ 

a2 = - J K(x) dx - 3 j[tr H(z) + 6y(z)]uf(dz), 
6 3 jj 

a3 =/i| [A1 K (z) - 37 (tr H(z))2 + 9tr H(z)2 + 8Ric(n)(z)] a(dz) 

+ V'j [2y(z)tr H(z) + y(z)2] a(dz). 

The coefficients for the case of the Neumann condition are obtained by setting 
y 0= O in these formulas. o 

Theorem 2. The first four coefficients in the asymptotic expansion of the E)- 
function with the Dirichlet boundary condition are 

a0= I=I, 

a, = 
V 
/2t I QI, 

a2 = -JK(x) dx - j tr H(z)a(dz), 
= j" [ 3 132 . 

A3 /i| Ij1Ka(z) + 13(tr H(z))2 - 5tr H2 (Z) Ric(n)(z)j a(dz). 

Remark. For a smooth domain in R3 we have 

K -Q = 2klk2, (Gauss' Theorema egregium), 

Ric(n) = 0, tr H = -k1 - k2, trH =kl +k2 

We can thus recover (1.4) from the general formula in Theorem 2. In the 
Neumann case, we have from Theorem 1 

7 f ]2a 
a3 = 64 'i | [k1 (z) - k2(z (dz). 

The general plan of the paper is as follows. The first step, carried out in ?2, 
is to reduce the general case y : 0 to the Neumann case y = 0. After such 
reduction we only have two cases to consider, the Dirichlet case and the Neu- 
mann case. The heat kernel in these two cases will be denoted by pD(t, x, y) 
and pN(t, x, y) respectively. The two cases being similar, we will concentrate 
on the Neumann case. The method we will use to compute the asymptotic 
expansion of 

ON(t) = jPN(t x, x) dx 

follows in broad outline the parametrix method in [MS]. However, a brute 
force attempt to push the computation there to one more term in the asymptotic 
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expansion can easily be frustrated by an insurmountable amount of computation 
can be kept within a workable limit. 

In order to obtain the desired precision in our calculation, we need to com- 
pute the first few terms of the Taylor expansion of the metric matrix in a suitably 
chosen coordinate system near the boundary. This computation is done in ?3. 
At the beginning of ?4 we will use the localization principle (stated in ?7) to 
reduce the computation to a thin collar at the boundary. We then construct 
the heat kernel near the boundary and make some necessary estimates to set up 
for the computations in the next section. Lengthy computations are carried out 
in ?5. From the expansion of the metric in ?3 and the computations in ?5 we 
conclude that the coefficient a3 has to have the form 

a3 = fa3(z)a(dz) 

where a3(z) is a linear combination of the following terms 

a3(Z) = AK0Q(z) + BRic(n)(z) + C(trH(z))2 +DtrH(z)2. 

The work in ?5 gives explicitly the values of A and B but not those of C 
and D. Determination of C, D by direct computation involves calculating 
a large number of definite integrals. To avoid these calculations, we show in 
?6 that A, B, C, D are universal constants, i.e., they are independent of the 
dimension of the manifold. This important observation allows us to determine 
the two remaining coefficients C, D by the explicit results of Euclidean balls 
of dimensions 2 and 3. Fortunately, the values of a3 in these two special cases 
are available. In dimension two, it can be read off from (1.3) above. It turns out 
that for a ball of dimension 3, a3 is equal to zero for both the Dirichlet case 
(see (1.4) above) and the Neumann case. The computation of the latter case 
was carried out in [Z]. Having known a3 for these two cases, we can determine 
C, D in the general case by solving two linear equations. 

The last section (?7) contains a discussion of the localization principle of the 
heat kernel, which are used on several occasions in the paper. 

Throughout this paper, letters c, a, ft. y, c, with or without subscripts, and 
to denote constants whose values are unimportant and may change from one 
appearance to another. 

2. REDUCTION TO THE NEUMANN CASE 

As before PN(t, x, y) denotes the heat kernel on Q with the Neumann 
boundary condition. The impedance function y is assumed to be smooth on 
AQ . 

Proposition 3. The heat kernel py(t, x, y) can be expressed as an infinite series 
00 

(2.1) py(t, xI y) = (- l)mFm(t, x, y), 
m=O 

where 

FO(t , x , y) = PN(t X x , y) 
(2.2) Fmt t ) = j - x ) z y)i(dz) 
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Proof. The boundary condition for p,(t, x, y) can be written as 

apr(t, X, y)/&ny = -y(y)p,(t, x, y). 

Thus by the superposition principle of the heat equation, py(t, x, y) is the sum 
of the solutions of two initial-boundary value problems of the heat equation: 
(i) PN(t, x, y) with initial value 3x (the Dirac delta function at x) and the 
boundary condition O9PN(t, x, y)/Ony = 0; and (ii) g(t, x, y) with initial 
value zero and the boundary condition ag(t, X, y)/&fny = -y(y)p7(t, X, y). 
The solution g(t, x, y) can be expressed as 

t' 
g(t, X, y) = - ds PN(t - s, x, z)y(z)py(s, z, y)a(dz). 

Hence we have an integral equation for py(t, x, y): 

rt 

py(t, X, y) = PN(t, X, y) - j ds jpN(t - s, x, z)y(z)py(s, z, y)a(dz). 
O Q 

We obtain the series for p,(t, x, y) by iteration. Li 

We will often use the following simple estimate for the Neumann heat kernel: 
There exist positive constant to, cl such that for all t < to, (x, y) E Q x n, 

(2.3) PN(t, X y) < ct-nI2e-d(x,y)2/c,t. 

This estimate can be verified by the parametrix method, see (4.12) below. Note 
that in this estimate, the Riemannian distance d(x, y) can be replaced by any 
distance function D(x, y) which is compatible with the Riemannian distance 
in the sense that there exists a constant A > 0 such that A-1D(., *) < d(., *) < 
AD(., .). We often replace d by the Euclidean distance of a local cartesian 
coordinate system. 

We claim 
00 

(2.4) (47rt)n/2 n J IFm(t, x, x)l dx = O(t2). 
m=3 

The proof runs as follows. We first verify (2.4) under the assumptions that 
Q2 is the half-space Rn = {x = (xI, ..., xn):xI > O} and that the metric is 
the usual Euclidean metric outside a neighborhood of the origin. Under these 
assumptions, we may replace d(x, y) in (2.3) by the Euclidean distance Ix-yI . 
Furthermore (2.3) holds globally for all x, y (see (4.11) and (4.12)). We now 
use the convolution property of the Gaussian kernel to verify by induction that 
Fm(t, x, y) has an estimate of the following form: 

IF. (t , x , y) I < C2C'tr (m2 ) t(m-n)/2 e- _xy 12 IC, t 

Summing over m and using (2.1), we see that there exist positive constants 
c4, to such that for all t < to and all x, y, 
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Let Gm(t, x, y) be the function (-1)mFm(t, x, y) under the boundary 
function y --IIYI I . By the recursive relation (2.2) of Gm(t, x, y), 

00 t 

EGm (t~ X y) < IIy112 Jds, JPN(t 
- 

SI, X , zl )a(dzl ) 

(2.6) m=2 00 

x J ds2 j PN(S1 - S2, Z1, Z2)jE GmO m2, Z2, y)cr(dZ2) 
0 AQ ~~~~m=0 

But it is clear from (2.1) and (2.2) that 
00 

E Gm(s, z, Y) < p-11y,10,,(s, z, Y). 
m=0 

Hence the right-hand side of (2.6) can be estimated by the Gaussian type upper 
bounds (2.3) and (2.5) of the heat kernels PN(t, x, y) and pIlyll.(t, x, y) 
and we obtain 

00 

(2.7) E Gm(t, x, y) < c6t(2-n)/2ed(x,Y)2/C7tt 
m=2 

From the recursive relation of Gm(t, x, y) again, we have 
rtr 

J Gm(t, x, x) dx = IIyII2 j(t - u)du j (dy) 

x PN(t - U, Y, Z)Gm-2(U, z, y)o(dz). 

Hence 
t 

JGm (t x, x) dx= IIYII02t Jdu Ji(dy) 

(2.8) x ApN(t -U, Y, z)Gm_j(u, z, y)uf(dz) Q 
= Iyll-t AGm-, (t,5 y,~ y)a(dy). 

Summing over m from 3 to infinity and using (2.7), we obtain (2.4) with 
Fm(t, x, x) replaced by Gm(t, x, x) . (2.4) now follows immediately from the 
inequality IFm(t, x, y)l < Gm(t, x, y). Thus (2.4) is proved for the case of 
Euclidean half-space. In the general case of a compact manifold with boundary, 
the localization principle in ?7 shows there exists a 5 > 0 such that (2.5) holds 
for all x, y on Q satisfying d(x, y) < 65. This fact can then be used together 
with the localization principle again to show via (2.6) that (2.7) holds under the 
same condition on x and y. This suffices for (2.8) since we only need (2.7) 
for x = y. The proof of (2.4) is completed. O 

Now we have from (1.2), (2.1), and (2.4) 

(2.9) ey(t) = eN(t) + F, (t, x, x) dx + F2(t, x, x) dx + O(t2). 

The difficult term 4N(t) will be dealt with in ??3 and 6. In the rest of this 
section, we study the integrals of Fi(t, x, x), i = 1, 2, over Q. For this 
purpose we need 
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Proposition 4. As t -* 0, we have uniformly in z E oQ: 

(47rt)n2pN(t, z, z) = 2[1 - ltr H(z)V'7t] + O(t). 

Recall that tr H(z) is the mean curvature of the boundary. 

We will prove this proposition at the end of ?5. 

Lemma 5. We have as t -O, 

(47t)n/2 JFt(t, x, x) dx 

= 2t j y(z)a(dz) - 2 /t3/2 j y(z)tr H(z)u(dz) + 0(t2), 

and 
(47rt) /2 J F2(t, x, x) dx = /t3/2 j y(z)2a(dz) + O(t2). 

Q A~~~~~Q 
Proof. The definition of F1 (t, x, x) and the Chapman-Kolmogorov equation 
of the heat kernel imply 

JFi(t, x, x)dx = tj PN(t, z, z)y(z)i(dz). 

The first assertion follows immediately from the above identity and Proposition 
4. 

To prove the second assertion, we use 
r r ~ ~~~~~~~~~~~t J F2(t, x, x)dx= J(t - u)du y(z)o(dz) 

x jPN(t - u, z, Y)Y(Y)PN(U, y, z)o(dy). 
Q 

We replace y(y) in the above integral by y(z) + O(d (z, y)) and split the integral 
into two integrals accordingly. Using the upper bound for the heat kernel (2.3) 
we find that 

j d(z, Y)PN(t - u, y, Z)pN(u, z, y)i(dy) 

< cI[u(t - U)]-n/2 J yle IyIec2ly2 t/u(t-u) dy. 
Rn-I 

The last integral is bounded by C3rt-nI2. Hence 

J F2(t, x, x) dx = j y(z)2g(t, z)a(dz) + 0(t(4-n)/2), 

where 
rt 

g(t, z) = J - u)du jP (t- U, y, Z)PN(U, z, y)a(dy). 
0 AQ~ 

The right-hand side can be computed by taking the first term in the series 
expansion (4.1) of the heat kernels PN(t - u, y, z) = 2q(t - u, y, z) and 
PN(U, z, y) = 2q(u, z, y) (Note that z* = z if z E aQ.) The explicit com- 
putation can be carried out with the help of a suitably chosen local coordinate 
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system (see ?3) and the localization principle. We leave the details of this com- 
putation to the interested reader and we content ourselves with the statement 
that the leading term of g(t, z) is equal to the same integral in the Euclidean 
space, i.e., 

(47rt)nl2g(t, Z) = 4jt [ - u n u)du 

x j exp {-I t_ Y) - IY' 4ZI} dy + 0(t2) 

ijt 
t Ud( ) =4XSdu+Ou + (t2) 

- 
Vt3'2 + 0(t2). 

This yields the second assertion. D 

Up to now all terms in Theorem 1 and involving y have been accounted for. 
In the rest of this paper, we take up the asymptotic expansions of ED(t) and 
ON(t) . 

3. CALCULATIONS CONCERNING THE RIEMANNIAN METRIC 

NEAR THE BOUNDARY 

In the next section we will construct the heat kernel pD(t, x, y) and 
PN(t, x, y) by the parametrix method. In order to obtain enough terms in 
the expansion of the heat kernel, we need to know the Taylor expansion of the 
metric matrix in a suitably chosen coordinate system near the boundary. This 
section is devoted to the development of such expansion. 

We will work in a neighborhood of a fixed point on the boundary. Take this 
point to be the origin 0 of our local coordinates x = (xl, x) = (xl, x2, .... 
xn). The first coordinate xl is defined to be d(x, OQ), the Riemannian 
distance from point x to the boundary. The remaining coordinates x = 
(X2, X3, ... , xn) are defined to be the normal cartesian coordinates of 0Q 
(as a Riemannian manifold with the induced metric) in a neighborhood of the 
origin 0, i.e., x is the image (by the exponential map at 0) of the cartesian 
coordinates in the tangent plane of aQ at 0. In the next section, we will 
consider the double of Q. In such case, the metric matrix is extended to the 
region xl < 0 by setting g(xl, x) = g(-xl, x). In this section we assume 
that g has been extended as such. 

The advantage of choosing the coordinate system we have just defined is that 
the quantities that appear in the general formula of a3 are all singled out by the 
expansion of the metric matrix in these coordinates. See Proposition 6 below. 

In the statement of the next proposition and the rest of the paper, we will 
use the following conventions: (1) the second fundamental form matrix H = 
{Hij, 2 < i, j < n} is an (n - 1) x (n - 1) matrix. We extend it to an n x n 
matrix by setting H1I = 0 for j = 1, ... , n; (2) without stating the contrary, 
repeated indices are summed over from 2 to n, not from 1 to n . 

Proposition 6. Let 0 be a point on the boundary aQ. In the local coordinates 
described above, the Riemannian metric matrix g = (gij(x)) has the following 
expansion in a neighborhood of 0. 
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(a) glj(x) = 1j for j =1,...,n; 
(b)for 2< i, j1 n, 

gij(x) = 3ij + 2HjjIxI I + (-RIjIj + (H2)1j)Ix 12 
+ 2kH,ijIx1 Ixk _ 3Rafixkxl +O(x13). 

Here H = {H1j} is the matrix of the second fundamental form of the boundary, 
Rik1l are the components of the curvature tensors of Q, and Raf2 are the com- 
ponents of the curvature tensor of 0A with the induced metric. All quantities are 
evaluated at 0. 
Proof. First of all, since the coordinate line x = const. is a geodesic perpen- 
dicular O 2, we have glj(O, .x) = (5j for all xi E e O, and V I = 0 (the 
equation of geodesics). Hence 

1gi j(x) = (0O, VIlj) = (01, Vj}1) = 2V}(01, 01) = 0. 

((, *) denotes the inner product in the Riemannian metric.) It follows that 
glj(x) -5j. This proves part (a). 

The second fundamental form matrix Hij is defined by 

Hij = H(0i, aj) = -(Vij, 01). 

(Vi denotes covariant derivative along Oi = 0/O0xi. Note that 01 is the inward 
unit normal vector.) Now assume that neither i nor j is equal to 1. We have 

Og1ij = (V11i, Oj) + (0i, VI0j) = (Via01, Oj) + (si, Vj i) 
= Vi(0 1 Qj) - (01, Vi0j) + Vj(0i, 01) - (Vj0i, 01) 

=2Hij. 

This also implies Ok1lgij = 2OkHij. Next we note that in our coordinates, 
RjIIi = (VIVi 1, aj). This identity is used in the last step of the following 
computation: 

01Og1ij = 0ii(Oi, Qj) = al (VI ioj) + 0(0i, VI0j) 
= 09l(Vial, a j) + 09l(09i VjOI) 
= (V1 ViO, Qj) + (0i, V1VjO0) + (ViOl, VjO0) + (Via, 1 vj1l) 
= RjlIi + RilIj + 2(Vi0j, Vj01) 

=-2RijIj + 2(Vi0j, Vj10). 

We want to express the last term in terms of the second fundamental form 
matrix H. Because (01,01) = 0 for 2 < ? < n, we have Hi, = (01, Vi0j). 
Since {Oi, ... , 04 form an orthonormal basis at 0 and (ViOl, 0A) = 0, we 
have V1al = En=2 H,011. Thus 

(Vi01, V} 01) = HilHjk(Ol, 9 k) = HikHkj. 

It follows that 
0101gij =-2RijIj + 2(H2)ij. 

The only case left is VkVlgij, where none of the four indices is equal to 1. It 
is a classical result of E. Cartan (see [BGM, p. 97 or CE, pp. 15-16]) that in 
the normal cartesian coordinates, the metric matrix g9f2(x) = g(O, x) has the 
expansion 

gi1(o I) = ij- 3RiklI + O(|xI3). 

Part (b) is proved. O 
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We now use the above expansion of the metric g to compute the first and 
second derivatives of several functions. 

First of all, we compute the first few terms of the Taylor expansion of the 
volume element 

def J (x) = d-et g(x-). 
For any square matrix, we have 

(3.1) det[I + A] = 1 + tr A + '[(tr A)2 - tr(A2)] + O(11A113). 

Proof of (3.1). For diagonal matrices, this can be proved by direct computation. 
For symmetric matrices A, we can verify it by first diagonalizing A. Finally, 
for an arbitrary square matrix A, we use the identity 

det[I + A] = Vdet[II+ B], 

where B = (A + A*) + AA* is a symmetric matrix. 5 

The expansion of g can be written in the matrix form: 

(3.2) g(x) = I + 2HIxl I + Llxl 12 _ IC(xk, x) + 2VkHlxl I + O(1x13), 

where H, L, C(x, x) and VkH are matrices whose components are H - 

{Hij} = the second fundamental form matrix, 

L = {-Rlilj + (H2)ij}, C(x, x k) = {R,fy XkXl }2<i, j<n 

VjH = {VkHijXk}. 

Using (3.1) and (3.2), we see that the Taylor expansion of det g(x) is 

det g(x) = 1 + 2tr Hlx1 I + [2(tr H)2 - tr(H2) - Ric(n)]1xl 12 
- 3tr C(x* , x) + 2tr VkHlxl I + O(1x13), 

where by definition Ric(n) = En-2 Rlili. Hence we have 

J(x) = 1 + trHlx1 I + I[(tr H)2 - tr H2 - Ric(n)]1xl 12 
(- tr C(x* , x) + tr VtHlx1 I + O(1x13). 
We also need the Taylor expansion of the inverse matrix of g(x), which will 

be denoted by h(x). This is done easily with the help of the formula 

(I+A)-1 =I-A+A2 + O(I1AII3). 
The answer is 

(3.4) h(x) = I - 2HIxl I + [4H 2- L]Ixl 12 

+ I C(x, x) - 2V7Hlx 1I + O(1x13). 

As a consequence of (3.4), we see that if none of i, j, k, I is equal to 1, then 

(3.5) OjOjhkl = 3OiOjCk1(X, X) = (R +Rkj1) 

The Laplace-Beltrami operator in the local coordinate form is 

(3.6) A= 1 0 [ detg(x)gij(x)01] 
d vFd -etg g (x) Ox' . x. 

h 00x x xj0b(x x 
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where 
b1(x) = 0[J(x)hj(x)]. 

J(X x) 
Using (3.3), (3.4), and (3.5), we have 

(3.7a) b'(iO, O) = ?tr HjI, 

(3.7b) Vlbl (O) = -[Ric(n) + tr H2], 

(3.7c) 0 bi (0) = tr OjH - 20jHijj i 34 1, 

2n 
(3.7d) Oj b (O) =- E 1 RJkj 1 i 1. 

k=2 

4. LOCALIZATION AND THE PARAMETRIX METHOD 

As before Q is a compact Riemannian manifold with smooth boundary. We 
consider the double Q2 of _2 defined as follows. Take another copy of Q and 
call it Q* . The double Q2 is simply the union Q U Q* with the each corre- 
sponding pair of boundary points on Q and Q* identified. Thus symbolically 

Q = Q U Q*/Q Q* . Clearly the double Q2 has a natural Riemannian struc- 
ture which in general has discontinuous derivatives at the boundary of contact 
of Q2 and Q*. If x is a point of Q, we use x* to denote the point on Q* 
which is symmetric to x. Unless On is totally geodesic (i.e., the second fun- 
damental form vanishes identically) the Laplace-Beltrami operator on Q5 is in 
general not a smooth operator, but it is easy to see that in local coordinates it is 
still a second order elliptic operator. The coefficients of its second order deriva- 
tives are continuous on Q2 and smooth on Q and Q*. The coefficients of its 
first order derivatives are smooth on Q and Q* up to the boundary of contact 
(see Proposition 6 of the last section). We denote the fundamental solution of 
the heat equation on Q2 by q(t, x, y). Now the fundamental solutions for the 
heat equation on Q with the Dirichlet condition or the Neumann condition 
are, respectively, 

(4.1a) PD(t, x, y) = q(t, x, y) - q(t, x*, y), 

(4. 1b) PO(, x, y) = q (t , x , y) + q (t , x ,y). 
Therefore we have 

(4.2) J.PN(t, x, x)dx =Jq(t, x, x) dx + Jq(t, x*, x) dx. 

We now divide Q into two parts. If e is sufficiently small, then for every 
point x E Q such that d(x, On) < e, there is unique point z E On such 
that d(x, z) = d(x, dn). It follows that for sufficiently small e, the set n, = 
{x E Q: d(x, O n) < e} can be parametrized by (x1, z) E (0, e) x O n, where 
xi = d(x, 0n). We fix such an e and a collar n, of width e of the boundary. 

There exists a constant 3 > 0, depending on e, such that 

(4.3) Vt < to, J q(t, x*, x) dx < e-6t. 
a\0E 
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This follows easily from (4.12). On the other hand, by [MS, p. 50] we have 

(4.4) (47rt),/2q(t, x, x) = 1 + K(x) + 0(t2) 

uniformly on Q\Q2. Hence from (4.2)-(4.4) we see that 

(4.5) (4nrt)"'29N(t) = IQ\Q2el + - j K(x) dx + I, (t) + I2(t) + 0(t2), 
6Q\Qe' 

where 

11(t) = jq(t, x, x) dx and I2(t) = jq(t, x*, x) dx. 

We note that the boundary collar K2 is parametrized by x = (xl, z) with 
xi = d(x, Oil) and z E dfl. The volume element dx can be written as 
fl(x)dx1ci(dz), where a(dz) is the volume element of the boundary. We can 
therefore write 

(4.6) Ii(t) - J Ii(t, z)a(dz), i = 1, 2, 

where 

II(t, z) = jq(t, x, x)fl(x) dx1, 
(4.7) IC 

I2(t, z) = q(t, x*, x)f(x) dxl. 

We will use the parametrix method to write the heat kernel q(t, x, y) as a 
convergent series and take the first three terms to compute the integrals in (4.7). 
From the above formula for Ii(t, z), we see that it is enough to construct the 
heat kernel in a neighborhood of a fixed point z E 092. From now on we fix 
a point z = 0 on the boundary OQ and choose the local coordinates in a 
neighborhood of 0 as in ?3. 

The parametrix method works as follows. First of all, since we are only con- 
cerned with the heat kernel in a neighborhood of 0, by the localization princi- 
ple, we may modify the metric outside a neighborhood of 0 as we wish without 
affecting the asymptotic expansions of Ii(t, 0), i = 1, 2. This observation al- 
lows us to assume, for the purpose of computing the asymptotic expansions, 
that Q is the Euclidean half-space-Rn {x = (xl, x):xl > 0} and the metric 
matrix g1j is the identity matrix outside some neighborhood of the origin 0. 
We may also assume that xl - d(x, d ?)(d(., ) is the Riemannian metric), the 
double Q2 = Rn, and that the symmetric reflection is simply x* = (-xI, x). 
Under these assumptions the metric matrix in Q* = {x = (x', ): xI < 01 is 
defined by g (x I , x) = g (-x I, x ) . 

Now the heat kernel can be expressed as a convergent series: 
00 

(4.8) q(t, x, y) = E qm(t, x, y). 
m=O 

The functions qm(t, x, y) are defined recursively as follows: 

( 1 )n/2 
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rt 

(4.10) qm(t x, y) =jds J qm-I(t-s, x, z)f(s, z, y)dz, 

where 

f(s, z, y) = [AO - gii(y)O.] qo(s, z, y)J(z) 

= [(hJ(z) - h'J(y)) + bJ(z) 001] qo(s , z , y) J(z). 

(See (3.6) for the local expression of A.) From now on, if an integral is over 
Rn, Rn, or Rn-1, then dz denotes the Euclidean volume element. Note that 
we have chosen a first approximation qO(t, x, y) of the heat kernel slightly 
different from the one in [MS]. It turns out that our choice greatly simplifies the 
subsequent calculations. (4.8) is obtained by iterating the integral equation 

q(t, x, y) = qO(t, x, y) + j ds j q(t - s, x, z)f(s, z, y)J(z) dz, 
O n 

which can be verified by simple calculation. 
It is not difficult to show by induction that qm(t, x, y) satisfies the following 

estimate: there exist positive constant to, co, cl such that for all x, y in Rn 
and t < to, 

(4.11) qm(t , x , y) < cocm r ( +) t(m-n)12 e-lx-yl'lclt. 

Summing over m, we obtain the basic estimate for the heat kernel 

(4.12) q(t, x, y) < C2t-n/2e-lx-Y2/clt, 

from which (2.3) and (4.3) follow. (4.11) implies 

00 

tn/2Z1 {lqm(t, x, x)l + Iqm(t, x*, x)I} dx < C3et312. 
m=3 S 

Since ? can be chosen arbitrarily small, and we know beforehand that EN(t) 

and E)D(t) have asymptotic expansions of the form (1.1) in powers of t1/2, an 
error term of the order t3/2C will not affect the computation of the coefficient 
a3 of the power t3/2 . 

Now we have from (4.7) 

2 

(4.13a) II(t, z) = E .h(t) + 0(t3/26), 
i=o 

2 

(4.13b) 12(t, z) = E3K (t) + 0(t3/2e) 

i=O 

where 

(4.14) Ji(t) = qi(t, x, x)J(x)dx1, Ki(t) =] qi(t, x*, x)J(x) dx'. 
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Note that z = 0 is fixed (the origin of our local coordinates) and x = (x1, 0). 
Also note that in the local coordinates we are using, ,B(x) = J(x). 

5. ASYMPTOTIC CALCULATIONS 

(a) Calculation of Jo(t). We see from (4.9) of the last section that 

/1 \n/2 
qo(t, x, x) = 4 t 

Therefore we obtain 

(5.1) (47rt)/2Jo(t) = (47rt)n/2J qo(t, x, x)J(x)dxl = J (x)dxl. 

(b) Calculation of Ko(t). In the local coordinates we are using, x* = 

(-xl, 0). Also note that in our coordinates, the metric matrix has a special 
form, i.e., g1j(x) = 61j (Proposition 6). Hence 

qO(t, X*, x) = 

(t) /2e-lxl2/t 
Hence 

(47rt)n/2Ko(t) = e-lxl 12/tJ(x) dx 

We now use the asymptotic expansion of J(xl, 0) computed in (3.3), 

J(x , 0) = 1 + tr Hlxl I + 2 [(tr H)2 - tr H2 - Ric(n)]1xl 12 + O(1x 13). 

Therefore, (47rt)n/2Ko(t) is equal to 

e-lx {1 + tr Hxl + -[(tr H)2-tr H2- Ric(n)]Ixl 12 + O(Ix1 I3)} dx1. 

After calculating the integrals, we have 

(5.2) (47rt)nl2Ko(t) I vf7+ I t tr H 

+ k Vt3/2[(tr H)2 - tr H2 - Ric(n)] + 0(t2). 

(c) Calculation of J1 (t). We have 

f(s, y, x) = M(s, x, y)qo(s, x, y) 
where 

M(s, x, y; t) = L(s, x, y)J(y), 

(5 3) L(s, x, y) = I2 (Y_-X)Tg(x)[h(y) -h(x)]g(x)(y -x) 

- 2-tr[h(y) - h(x)]g(x) - 2 b(y)Tg(x)(y -x). 

Hence 
~~~~~~~~t 

Ji(t) = j J(x)dxl j[471(t-s)47rs]-nl2dsj e-N(s,xY;t)M(s, x, y; t)dy 
O O R~~~~~~~~~~~~~~~n 

with 
N(s, x, y; t) = (y X)Tg(y)(y X) + (x y)Tg(x)(x - y) 

4(t -s) +4s 
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We need to expand N(s, x, y; t) and M(s, x, y; t). We have to be care- 
ful because derivatives of J(y), g(y), h(y) and the function b(y) itself have 
jumps across the hyperplane y 1 = 0. For the sake of convenience, we introduce 
the notation 9 = (ly1 l, y). In addition, for a vector a = (al . , an), we use 
the notation Vah = aiaih, summing from 1 to n. Now since h(y) = h(y), we 
have 

h(y) - h(x) = h(9) - h(x) 

h(x) + O(1Y - XI3) 
= V -xh(x) + I 2 

_h(x) + Vy_yh(x) 

+V + h(x) + O(1Y - X13). 

Clearly 9 - y = (91 - y1, 0). Using (3.4), we have 

V-Y_h(x) + V2_ ,_,h(x) + V_ h(x) 

= 2(y- - yl)H + I V? . y+h 

- 0(19 - IX 1x2 + I - yl lY - XI lxI + I- yI2IxI). 

It follows that 

h(y) - h(x) = Vyxh(x) + I 2 _h(x) - 2(1 - yl)H 

+ 0(19 - XI + Lf - _y IxI2 + 19- yl IY - Xl lXI + 19- yI2IXI). 

The following elementary inequalities will be used repeatedly below to sim- 
plify error terms: 

I' - xI < Iy - xI, I' - yI < I' - xI + Iy - xI < 21y - xI, IYI < Iy - xI + IxI. 
In order to record various error terms in a more compact form, we adopt the 
following convention. 

Convention A. If a monomial in time and length has the dimension lengtha timeb 
(b may be negative), then we say that this monomial has the order a + 2b. An 
error term is said to be of the form Ok if it is bounded by a sum of monomials 
of order k whose length factors are bounded by powers of Ix - y I. An error term 
is said to have the form Ok if it is of the form Ok and it vanishes when yI > 0 . 

For example, an error term of the form O(Ix - y13) is of the form 03. 

An error term O(Ix - yl/s) is of the form 0-1, an error term of the form 
0(Ix -y12Ix ) is of the form Ix102. An error term of the form 0(19-yI2IxI) 
has the form Ix 1 0 since it vanishes when y1 > 0 and I 9-y I2IXI < 41x _yI2IXI. 

Using Convention A, we can write 

h(y) - h(x) = Vy-xh(x) + 1,V2 h(x) 
- 2(1 - yl)H + 03+ IxI' + IxI2. 

Similarly, we have 

g(y) = g(x) + Vy-xg(x) + 2(9 - yl)H + 2 + IxIOlY, 
J(y) = J(x) + Vy-xJ(x) + (91 - yl)tr H + 2 + IxIO-l. 
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The expansion of b(y) is a little more complicated. Noting that h1i - 31] and 
9 = ( IY1I, y) we have 

b1 (y) = () 
J(9) 0 y 

= bJ(9) + [sgnyl - 1]3lj91[J](-) 
= bJ(x) + V7y-bJ(x) + (91 - yl)01bi 

+ [sgny1 - l]31i[01J + V9J] +O+ IxI20O. 

Using (3.3), (3.7b), and (3.7c) we have 

(l 9 
y')0,bi + [sgny1 - l]1j1V901J 

= (I1 - y1)3lj(tr H)2 + (91 - yl)[tr 01H - 20iHij] 

+ [sgn y - 1 ]3l1tr V9H. 

It follows that 

bi(y) = bJ(x) + Vy-,bJ(x) + [sgn y 1 - 1]1i[tr H + tr V9H] 

(5.4) - (91 - yl)dl(tr H)2 + (-I - yl)[tr ajH - 20aHij] 
+ ?2 + IX12Y.0 

We now discuss the expansions of N(s, x, y; t) and M(s, x, y; t). Let us 
first discuss N(s, x, y; t). Using the expansion for g(y) above, we have 

N(s, x, y; t) = No(s, x, y; t) + 4(t -) y-X)TVy_xg(X)(y-X) 

+ (91 -y1)J~H Tj + + IXIOrV 2(t -s) Y 

where 

NO(s, x,y; t) =4 (y _X)Tg(X)(y _X), r t ] 

As will be explained below, we can always restrict the integration in y variables 
to the region Iy - xI < (t _ S)215. If Iy - xI < (t _ S)215, we have 

e N(s,x,y ;t) N1 + (Y-X)TVy g(X)(y X)1 

(5.5) + e-No(s,x,Y;t) 
1 

(91 _yl)jTHj 
2(t -s) 

+ e-No(s,x,y; t)[02 + IXIOY]. 

Now using the elementary relation 

e-a = e-b + e-min{a,b}O(Ia - bl) a > O, b > O, 

and the inequality 

lxlke-'Ix12 < cle-c21x2 k > 0, 

we have 

(5.6) e-No(s, x, y; t) - e-Noo(s,x,y;t) + e-cNDO(s x,Y;t)O(IIX) 
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where 

NOO(s, x, y; t) ly _X12. 

We replace the exponential factor e-No in the second and the third term on the 
right-hand side of (5.5) by the right-hand side of (5.6) and obtain for Ix - y I < 
(t _ S) 2/5 

e-N(s,x,y;t) -No(s,x,y;t) + ( )(y - X)TVyxg(X)(y - X) 

(5.7a) + e-Noo(s , ,y; t) _(gl _yl)yTHy 
2(t -s) 

+ e-cNoo(s,x ,y; t)[2 + IXIOv]. 

To simplify notation, we sometimes use the abbreviated symbol N for 
N(s, x, y; t) , No for No(s, x, y; t), etc. 

Another kind of expansion of e-N is as follows. We have 

N = N00 + 4 [(tY + YTHY + 2 + IXI20o. 

As will be explained below, we can restrict the integration to the region 

IY - xl < r215 < min{(t - s)2/5, S215}, lxi < r215 < min{(t - S)215, s2"5}. 

If these conditions are satisfied, we have 

- N _ _ __~~ 
- .1 

xI1 e -N +- yy 
(5.7b) 

e e 
s) s] 

+ ecNoo[O2 + IXIO| + |X12 00] 

We call (5.7a) the mixed expansion (at x at 0), and (5.7b) the expansion at 
0. 

For the expansions of J(y) we have the mixed expansion 

(5.8a) J(y) = Jo(x, y) + (9 - yl)tr H + ?2 + IxIO-v, 

where 
Jo(x, y) = J(x) + VY_xJ(X), 

and the expansion at 0, 

(5.8b) J(y) = J(Y) = 1 + 91tr H + 2 + IX12 IY. 

We also need two expansions of L(s, x, y). The mixed expansion of 
L(s, x, y) is 

L(s, x, y; t) = Lo(s, x, y)_ 1 (- yl)yT [H + V9H]) 

+11 1l(yl _1Xl)yTH2+ 
1(91 

1y_ )tr[H + VyH] + _X1 (yI -XI)yHy + sj 

(5.9a) + -(Y' - yl)xltr H2 - 2[sgn y1 - 1](yl - xl)[tr H + tr VyH] 

1 1 2 
1)(yl - xl)tr H2- 

1 
(,I - yl)[tr VyH - 2yjaiH'i] 

+01 + IxIoY + Ix120Y1, 
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where 
(5.10) 

Lo(s, x, y) = 4- 2(Y- x)Tg(x) [Vy-xh(x) + V yh(x) g(x)(y -x) 

- 'tr [Vy_xh(x) + IVY-X,Y-Xh(X)] g(x) 

I 
[b(x) + Vy xb(x)]Tg(x)(y - x). 

The expansion of L at 0 is 

(5.9b) L(s, x, y) = Loo(s, x, y) + O + IxIO-1, 

where 

1(yl _ xl )yTHy + 2(l_X t Loo(s, x,y)= -?y~1j j+(y'?-xl)tr H 

1 (yl - xl)sgn yltr H. 

We now state another convention. 

Convention B. We will use Fk to denote a general polynomial of order k (in 
the sense of Convention A) in the variables 11I y1, xl, s-1 and (t - s)-1. A 
general polynomial of the form Fk which vanishes on y1 > 0 will be denoted by 
Fky . Furthermore, we will use G to denote a polynomial of the following form: 

G = F-JTH2y+ F-4(yTHy)2 + F-2JTHytr H + Fo(tr H)2 

+ Fotr H2 + F-33TV9HJ + F-1tr VyH + Fiyo9iHi . 

Gy is a general polynomial of the above form which vanishes when y1 > 0. 

Using Convention B, (5.9a) can be written as 

(5.9a) L(s, x, y; t) = Lo(s, x, y)+LoYoo(s x, y)+GY+01llO+x ?Y 

where 

LY00(s, x, y) = L l _yl)T)THy 'X(0 0(y 1)(x1 +y 1)trH. 

Note that Loyo vanishes when y1 > 0. To get the extension of M, we use 

M = LJ = LOJO + L(J - JO) + (L - Lo)J - (L - Lo)(J - Jo). 

Using the expansions (5.8a) and (5.9b) in the second term, the expansions (5.8b) 
and (5.9a) in the third term, and (5.8b) and (5.9b) in the fourth term, we obtain 

(5.lla) M(s, x, y) = Mo(s, x, y)+Loo(s, x, y)+Gy+0+IxIO+IxI2O , 

where 
Mo(s, x, y) = Lo(s, x, y)Jo(x, y). 

The expansion of M at 0 can be computed from (5.8b) and (5.9b). We only 
need terms of order -1 . Hence 

(5.llb) M(s, x, y) = Loo(s, x, y) + 00 + IxI0-1. 
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Using Convention B, we rewrite (5.7a) and (5.7b). If Ix - yI < r215, then 

(5.12a) e-N = e-NoSO + e-NooFY JyTHy + ecNoo[02 + IxIOly] 

and if Ix - I ? x r2/5, lx < r2/5, then 

(5.12b) e = eN ?[I + F IJTHy] + ecNoo[02 + IxIOi + IxI20] 
where 

So=So(s,x,y; t)= 1+ 4(t 1) y-xg(X)(Y 

Now 

(5.13) eeNM = eNOSoMo + e (M-Mo) + (e - e NOSo)M 
- (e-N - e-NoSo)(M - Mo). 

Substituting (5.11) and (5.12) into the above identity, we obtain 

(5.14) e M M=eNSoMo +e 
+ e-NooGY + ecNoo[Oi + IxI0Y + IxI2Oi 1] 

Since (5.12a) and (5.12b) hold only under the range of x, y, t, s specified 
for them, we need to justify their use in (5.13). Recall that r = s(t - s)/t . Since 

e-Nf(s,x,y;t)1M(S x, y)l < cL -e-c21X_y12 Ir -N~~~~~~~~~vs 

for some constants cl, c2, 

r-nl2ds C2lxy2Ir dy < C3e-c4t- 
j? I y-xI>r2/5 V/I 

(compare with [MS, p. 57]), we see that the integration of y can be restricted 
to the region lY - xl < r215. This justifies the use of (5.12a) in (5.13). Next, to 
justify the use of (5.12b) in, say, the second term of (5.13), we first note that 
from (5.1 la), M - Mo is the sum of Loyo + Gy, which vanishes on y1 > 0, 
and the error terms 01 + IxIOV + Ix12O 1. Clearly 

e-N(s,x,Y;t)ILoYo + Gy < Ce -C21x-yl2 /r 

After the integration, the error terms 01 + Ix I OV + IxI2O 1 will contribute a 
term of order 0(t3/2e + t2) to the final result (see below). The integration of 
Loyo + Gy can be restricted to the region xl < r215 < r215, because 

_ IRn~~~~~-21_l2I ||nsOt dxlr-nl2ds< d / e 4=ec2I/dy 
X- >Xr2Vs5 n 

<C3 ||<s<t dxlr-112ds | 
0 

-C2 IW 12 Ir dw 

< C3 j ds j -C2 wI/r(W _ S2/5) dw 

<c4 j e -c2r-/5 d 

< c5e 
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The other terms in (5.13) can be treated in the same way. 
We now return to (5.14). A careful observation reveals that the contribution 

of the term SoMo is 

t [-I ] n/2 ds e-NoSoMody = tKi(x)J(x) + 0(t2), 

for some function K1 (x) whose explicit expression is unimportant. Note that 
there are no terms of order xt- because the terms of order -1 in SoMo are 
odd functions of y - x. The contributions of various other terms in (5.14) 
are straightforward and the results are as follows: the contribution of LyQ)J is 
al ttr H, the contribution of Gy is a2t312(tr H)2 +a2t312tr H2 , the contribution 
of 01 + IxIOY + IxI20Y I is 0(t312e + t2). Therefore we obtain 

(5.15) (47rt)n/2Ji (t) = aot tr H + tj K, (x)J(x) dx1 

+ t3/2[aI(tr H)2 + a2tr H2] + 0(t312e + t2). 

In fact a0 = -1/3. This completes the calculation of J1 (t) . 
(d) Computation of K1 (t) . We have 

(47rt)n2 q1(t, x*, x) = 
- I 

ds e)N*(s,x,yt)M(S, x, y; t)dy, 
j 

4 [rri n/ 

where M = M(s, x, y) is the same as before and 

N = N*(s, x, y; t) = (y - X*)Tg(y)(y - X*) + (x y)Tg(x)(x - y) 

4(t -s) +4s 

In the present case we only need the expansions of N* and M at 0. We have 

N* =N* +4 [ 5+ ] TH + o 2 + Ix20, 

where 

No* = No*(s, x, y; t)= Iy+x112 + lys-x112 + t I 
4(t -s) 4s 4s(t- s) 

As before the integration can be restricted to the region IY - xl < r215, lxl < 
r215. If these conditions are satisfied, 

e = e o F1 + TH + ecN& [02 IXI2Oo]. 

The expansion of M = M(s, x, y; t) at 0 has been computed before in 
(5.1 ib). But this time we need the precise zeroth order terms. From (5.1 a) 
and Mo = LOJO, we see that the only zeroth order terms of M which are not 
incorporated in G come from the zeroth order terms of Lo in (5.10). We have 

Vy-xh(x) + IV2x h h(x) = 2VY-X,y+xh + O(IX 
_ 

yI3). 

Now 
va-XnY+Xh = d2 h- IXl 2VI lh, 

and 
v~~~ h = ly I 

i2v2 Ih _+ 
2yli7,i+yy' 

h 
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Since we know from (5.1 lb) that the (-1)th order part of M is Loo, we have 

Mi-L0Q = 8 |Y | YkYiV1, kl I i k lv21 ihkl + 1 yiyjykylv 1hkj 

I 
I 2ykylv2, hkl- 

l 
y I12tr V72, h 1 ylyiV72hkk 

yiyjV h jhkk+ 
I IIxI 12tr V72 1h -1 VI xl)alb 

-yY Yalb - -(y1 -x )yij9b1 - 
y jy9Ob' 2s ~2s 2s 

+G+O + IxIOo. 
We claim that the third term is equal to zero. Indeed, by (3.5), this term is 
equal to Co/24s2, where 

Co = V, ih klyiyiykyl = {Rkilj + Rkl}yiyykyl 

= 2Rkiljyiyiykyl = -2Rikljyiyiykil =-CO. 

Hence CO = 0. When integrating fRn e-No (M-Loo) dy, we may drop the terms 
in M - Loo which are odd functions of y because these terms will contribute 
nothing to the final result. Thus we have 

e-N*(s,x,Y;t)M(s, x, y) dy 
Rn 

- J e-N&*(s,x,Y;t)M1(s, x, y)dy 
Rn 

+ eeN* (s,x,y;t)LOO(s, x,y)dy+ eN* [G+1 +IxIOo]dx 
Rn Rn 

where 

Mi(s,x,y; t) i-[Iy1I2 I112]lykl2V72 hkk - -11 1x12]t ~ Ml (S x, y; t) I yll2_1x 1l2lyl2v I hkk-yl|2_| X11|2 ]tr Ih,l 

- Iyi Vi2vihkk 
- 

?yl(yl 
- xl)lbl - 2 Ojbi. 

Using (3.4), (3.5) and (3.7), we have 

Ml(s, x, y) 

82[IY I -lx I2]lykl2(4H2-L)kk- I [Iyl 12-xI12]tr(4H2-L) 

+ I 
lyi12Ran 411+ y (y I-x1)ly1 12(Ric(n) + tr H2) + 

I 
Iyji2Ra5nik. 

Hence after calculating a few definite integrals, we have 

(5.16) j f 4xr n 

- AK + ?aRic(n) + c1tr H2 + O(t1/2). 

We also have 

(5.17) lo dxl [4-]nr ds e N&o(s xY;t)LOO(s, x, y)dy 

- c1t312tr H + O(t2). 
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We have as before 

(5.1 8) jOe dxj r '-n12ds -Nj (sx Y;t)G(s, x,) dy 

= t312[c1 (tr H)2 + c2tr H2] + 0(t2). 

It now follows from (4.14), (5.9), (5.16)-(5.18) that 

(5.19) ~(47t)n/2 K(t) = ot tr H+ 1 3/2 V2+ /t1/2Ric( 

+ t3/2[/,h (tr H)2 + ,62 tr H2] + 0(t2). 
In fact, we have f80 = -1/2. The computation of K1 (t) is completed. 

(e) Calculation of J2(t). We now compute the term J2(t) . We have 
(5.20) 

jd tsj [(7r2p n/2 
(47rt)nl2q2(t, x, x) = (4X)2p] du 

x dzj e-K(s,u,XY,z;t)M(S,x, z)M(u, z,y)dy, 
Rn Rn 

where 
t 

p' su(t - s - U 

K = K(s, u, x, y, z; t) = -y _X)Tg(y)(y - X) 
4(tP -ss-u) 

+ (Z _ y)Tg(Z)(z -y + (X - Z)Tg(X)(X - z) 

47ru 4s 
and M is defined as before. Expanding K at x we obtain 

K - - x)Tg(x)(y x) + (z y)Tg(x)(z - y) 

(5.21) 4(t - s - u) 47ru 
(x - z)Tg(x)(x ) + 01- + ~~4s +1 

As before, the integrations can be restricted to the region 

Iy - xI < (t - s - U)2/5, Iz-xl < u2"5 Iz -yI <u 2/5 
If these conditions are satisfied, we have 

e-K = e-Ko + e-cKoo01, e-KO = e-Koo + e`cKoo(xI), 
where Ko is the sum of the first three terms of the right side of (5.10) and 

ly _ ~X1i2) + 1z y12 +X IxZI2 
Koo(s,u,x,y,z;t)=4(t -s - u)+ 47ru + 4s - 

For the expansion of M(s, x, z), we only need the terms of order -1. We 
have 

(5.22a) M(s, x, z) = MI (s, x, z) + FZf 3TH + FLItr H + 00 + IxI0fi , 
where 

M1 (s, x, z) = 2-(Z -x)Tg(x)Vz-xh(x)g(x)(z - x)J(x) 

- 21tr Vz_h(x)g(x)J(x) - 2! b(x)g(x)(z - x)J(x). 2s~ ~ ~~~~2 
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The expansion of M(s, x, z) at 0 has been calculated in (5.1 lb), i.e., 

(5.22b) M(s, x, z) = Loo(s, x, z) + Ob + IxIO-1. 

We now compute the expansion of M(u, z, y). First of all, we have 

M(u, z, Y) = 1l 2 (Y - z)Tg(z)[h(9) - h(z)]g(z)(y - z)J(z) 

- +tr[h(h) -h(z)]g(z)J(z) - 2 b(z)Tg(z)(y - z)J(z). 

Now we have 

h(y) - h(z) = Vyzh(x) + [( y) - (z' - zl)]tr H + 02 + IxI[O + 0Of], 

J(z) = 1+01, bj(z) = bj(x)-2cljX(-O,01(zl)trH+O1 +IxI01z. 
Hence 

M(u, z, y) = M2(u, y - z, x) + FY3( - 2)TH(9 - 2) 

(5.23a) + FL3U - 2)TH(j - 2) + Fyltr H + FLitr H 

where 

M2(U, Z - Y, x) = y_ Z- z)Tg(x)Vy_zh(x)g(x)(y - x)J(x) 

- 2tr Vy_zh(x)g(x)J(x) - I 
b(x)Tg(x)(y - z)J(x). 

Also we have 

(5.23b) M(u, z, y) = F-3( - 2)TH(y - 2) + FK1tr H 
+ 0o + Ixj[Oj1 + 0f1]* 

Thus from (5.22) and (5.23) 

M(s,x, z)M(u, z,y)=MI(s,x,,z)M2(u, z,y)+PY z 

+ 0-1+ IXI[O2 + OZ2] 

where PY, Z stands for a general term of the form 

Py, z = FY6 yTHy. 2y_ )TH(y - z) + fZf6 TH. * Y-)TH(Y - 2) 

+ FY4jTHStr H + Ff4 THi + FY3Ff3yTHj * (y - 2)TH(j - 2) 

+ Fy3Fz yTH?tr H + F4(U - )TH(? - 2) + FY2(tr H)2 + Ff2(tr H)2. 

The integrand of the y, z integration in (5.20) is then equal to 
(5.24) 

e-KM(s, x, z)M(u, z, y) = eKoMi (s x, z)M2(u, z, y) + e KOOPY, z 

+ e-cKoo[0l1 + IxIO2 + IxIOI2i. 

Recall that 

(5.25) J2(t)= jq2(t, x, x)dx'. 



0-FUNCTION OF A RIEMANNIAN MANIFOLD 667 

Substitute (5.22) into (5.20), and then substitute (5.20) into (5.25). The contri- 
bution of MlM2 to J2(t) is 

jdx' fdsf du [()1 fdyj e-KOM,M2dz .X; I ..X [ (4nr)2p ] ln ln 

= -K2(x)J(x) + 0(t2). 
6 

The contributions of other terms in (5.24) to J2(t) are as follows: the con- 
tribution of e-oOPY Z is t3/2[yl(tr H)2 + y2tr H2] + 0(t2), the contribution 
of e-Koo0_, is 0(t3/2e), the contribution of e-cKooIx1{02, 2} is 0(t2). 
Summing up, we conclude that 

(5.26) (4irt)n/2J2(t)= 6 j K2(x)J(x)dxl 

+ t3/2[y1 (tr H)2 + y2tr H2] + 0(t3/2e + t2). 

(f) Calculation of K2(t). The computation of K2(t) is similar to that of 
J2(t). The expression for q2(t, x*, x) is the same for that of q2(t, x, x) 
except that the function K there should be replaced by 

K*(s, u, x, y, z; t) = (Y x)Tg(y)(y x*) 
4(t- s -u) 

(z _ y)Tg(z)(z _ y) (X - Z)Tg(X)(X - Z) 

47iu 4s 
We only need to expand the integrand at 0 up to the terms of order -2. We 
have 

M(s, x, z)M(u, z, y) = P 

where P is defined as PY, Z but with superscripts y, z removed. We can 
replace K* by Ko, which is obtained from K* by setting g(x), g(y), and 
g(z) in the definition of K* equal to the identity matrix. The result is 

(5.27) K2(t) = t3/2[5, (tr H)2 + 32tr H2] + 0(t2). 

We have now completed the computations of Ji(t), Ki(t), i = 0, 1, 2. 
Combining the results (4.5)-(4.7), (4.13), (5.1), (5.2), (5.15), (5.19), (5.26), 
and (5.27), we draw the following conclusion about the coefficient a3 in the 
asymptotic expansion of e4N(t) and eD(t)- 

Lemma 7. (i) The coefficient a3 in the expansion of the function EJN(t) has the 
following form 

a3 = ja3(z)a(dz) 

where 

(5.28) a3(z) = AK92(z) + BRic(n) + C(tr H(z))2 + Dtr H(z)2 

with A = V+/i12 and B = V/(/8 and some constants C, D; 
(ii) The coefficients a3 in the expansion of the function E9D(t) has the follow- 

ing form 

a3= ja3(z)a(dz) 
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where 

(5.29) a3(Z) = AK92(z) + BRic(n) + C(tr H(z))2 + Dtr H(z)2 

with A = -a// 12 and B = -V,/7/8 and with some constants C, D. a 

We end this section with the 

(g) Proof of Proposition 4. For any z E &Q we have 

(5.30) PN(t, z, z) = 2q(t, z, z) = 2qO(t, z, z) + 2q1(t, z, z) + 0(t(2-n)/2). 

By definition 
rtX 

(5.31) (47rt)n/2 q(t, z, z) = j[47rr]-n/2 J e-N(s, zy;t)M(S, z, y)dy. 
O R~~~~~n 

The expansion of the integrand at z = 0, 

eNM - e Noo [- y2 TH + + t cNoo 0. 

Hence after some explicit calculations, we obtain 

(5.32) (47rt)n/2q1(t, z, z) = -V7'tr H+ 0(t). 

Now from (5.30)-(5.32) we have 

(47rt)n/2PN(t, Z, z) = 2[1 - V'7 ttr H] + 0(t). 

Proposition 4 is proved. 

6. DETERMINATION OF THE CONSTANTS C AND D 
From the last section we see that direct computation of the coefficients C 

and D involves a large number of definite integrals. We will determine C and 
D indirectly by showing that A, B, C, D are universal constants, i.e., they do 
not depend on the dimension n. 

To prove this assertion, consider the symbolic expression 

(6.1) gZ(x) = I + 2ZiIx1I + ZIx1I2 + 2ZlkIX k- I 
ZIXxkxl + O(1x13). 

Clearly we obtain the metric matrix expansion by the substitutions 

Z = H, ZI1 = -R1.1. + H , Zlk =kH, Zkl = {ZikIl =Rikj}. 

In the computation of the last section, besides the symmetry of these Z matri- 
ces, the only algebraic relation we use among the entries of Z 's are the relations 
among the components of the Riemannian curvature tensor: 

(6.2) Zijk = -Zjikl = -Zijkl = Zklij- 

Now in (6.1), we regard the entries of these matrices Z1, Z11, ZIk, Zkl as 
algebraically independent variables subject only to the relations in (6.2). Note 
that H, H2, R I. I., 29kH, R.k.j may not be algebraically independent in some 
special cases. For example, by Gauss's Theorema Egregium, we have HiiHjj - 
H2 = R 111 for 2 < i, j < n . However the important fact is that the symmetry 
of Z matrices and (6.2) are the only algebraic relations we have used in the 
last section. The symbolic expansion (6.1) can be used instead of the actual 
expansion of the metric matrix in the computation of the last section. Let us 
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denote the resulting a3 and a3(z) by az and az(z) respectively. We then 
have 

aZ =j az(z)a(dz), 

where az (z) are polynomials in the entries of the Z matrices. The computa- 
tion in the last section shows that a3z(z) must have the following form 

(6.3) az (z) = Al (tr Z1)2 + A2tr(ZI)2 +)u3tr Z1 I + A4KZ, 

where Kz = Z2<j 'j<n Zijij. Furthermore, A, B, C, D are obtained in such 
way that 

A =A4, B = 3 C=Al, D =Al + A2- 

Thus to prove A, B, C, D are universal it is enough to show that same for Ai, 
i = 1 , 2 , 3 , 4. 

Proposition 8. The constants Ai, i = 1, 2, 3, 4 defined above are independent 
of the dimension. 
Proof. Let ,i be the corresponding numbers for the dimension n + 1. Let 

- = (z, Zn+l). We then have 

(6.4) di(Z) = Al (tr Z1)2 + 
)2tr(Z1)2 

+ )3tr Zii + )4KZ. 

Let Z* be the matrix of size (n + 1) x (n + 1) obtained from Z by replacing 
the entries of the last row and the last column by zeros. The key to the present 
proof is that from the computation of the last section 

(6.5) afz (z) = az (z). 

On the other hand, because tr Z* = tr Z and Kz* = Kz, we have by setting 
the last row and the last column equal to zero in (6.4) that 

(6.6) afz (z) = Al (tr Z1)2 + -2tr(Zl)2 + )3tr Z11 +a4Kz. 

It follows from (6.2), (6.4) and (6.5) that 

(Al - il)(tr Z1)2 + (A2 - )2)tr Z1I + (A3 - )3)tr ZI1 + (A4 - )4)Kz = 0. 

Since this is an identity in Z variables and the four polynomials (tr Zl)2, 
trZ?2, tr Z1I, Kz are clearly linearly independent, we obtain Ai = )i, i = 

1,2,3,4. O 
Now that we know that C and D do not depend on the dimension n, we 

can determine their values as follows: 
(a) If Q is a ball of radius one in R2, then we have the 

Ka = 0O, Ric(n) = 0, trH= -1, tr H2 = 1. 

The values of a3 can be obtained from (1.5). We have a3 = 7ir3/2/32 for 
the Neumann case and a3 = 7r3/2/32 for the Dirichlet case; 

(b) If Q is a ball of radius one in R3 then 

Ka = 2, Ric(n) = 0, tr H = -2, tr H2 = 2. 

We also have the explicit asymptotic expansions: 

(47rt) 12 (N(t) = 47r + 27312tl/2 + -t- _3rt2 + 0(t5/2) 
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(see [ZI) and 

(47rt) 12 OD(t) = 4-2ir 312t112 + girt_ -2 7rt2 + 0(t5/2) 

(see [W]). In both cases we have a3 = 0. The fact that a3 = 0 for the Dirichlet 
case can also be seen from (1.5). 

The Neumann case. (a) and (b) give us equations 

C + D = 674v, A + C + 2D = O. 

We also know that A = v/7/ 12. Hence 

C=96 V D=192 

The Dirichlet case. The two equations are 

C+D= I4 v/ AA+C+2D=O. 

In the present case A = -fa/12. Hence 

C 956 V, D = 193 v/. 

7. LOCALIZATION PRINCIPLE 

The following theorem is referred to as the localization principle. 

Theorem 9. Suppose that g1, g2 are two smooth Riemannian metrics on Rn 
which coincide on a neighborhood U of the origin 0. Let p1 (t, x, y) and 
p2(t, x, y) be the heat kernel associated with the Laplace-Beltrami operators A1 
and A2 of the metrics g, and g2, respectively. Then for any smaller neigh- 
borhood U1 of 0 with U1 c U, there exist positive constants 3 and to such 
that 

V(t, x, y) E (0, to) x U1 x U1, IpI(t, x, y) -ep2(t, x, y)I ? e-t. O 

This is a well-known theorem and various existing proofs of this theorem 
involves ideas from probability theory in one way or another. We refer to [M] 
for one of such proofs. 

We can paraphrase the localization principle as follows: Since the difference 
between Pi (t, x, y) and p2(t, x, y) is exponentially small, the asymptotic 
properties of these two heat kernels in powers of t are the same. Therefore, 
when studying such asymptotic properties at a fixed point 0, we may arbitrarily 
alter the metric outside a neighborhood of 0 without affecting final results. 
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