Homework 2

1. Let N be the nonmeasurable subset of $[0,1]$ we constructed using rational equivalence.
a. Prove that every measurable subset of N has measure 0 .
b. Prove that $m^{*}([0,1] \sim N)=1$.
2. Choose positive numbers c_{k} such that $\sum_{k=1}^{\infty} 2^{k-1} c_{k}<1$. Starting with the unit interval, mimic the construction of the Cantor set by at the k th step deleting 2^{k-1} symmetrically arranged open subintervals, each of length c_{k}. Let C^{\prime} denote the intersection of all the resulting sets.
a. Prove $m\left(C^{\prime}\right)>0$.
b. Let U be the union of all open intervals which are deleted at the odd steps in the construction of C^{\prime}. Prove that U is an open set with $m(\bar{U}) \neq m(U)$.
3. Suppose E is a measurable set. For each $k>0$, define $U_{k}=\left\{x \in \mathbb{R}: d(x, E)<\frac{1}{k}\right\}$.
a. If E is compact, prove that $m(E)=\lim _{k \rightarrow \infty} m\left(U_{k}\right)$.
b. Find an example of an unbounded closed set and a bounded open set for which a does not hold.
4. Royden, Section 2.4, Exercise 22.
5. Royden, Section 2.6 Exercise 33.
