Homework 3

1. If f is a function such that $f=\chi_{[0,1]}$ a.e., prove that f cannot be continuous on all \mathbb{R}.
2. If f is any measurable function, prove that there is a sequence $\left\{f_{k}\right\}$ of continuous functions, such that $f_{k} \rightarrow f$ a.e.
3. a. If x is any irrational, prove that there are infinitely many distinct rationals p / q such that

$$
\left|x-\frac{p}{q}\right| \leq \frac{1}{q^{2}}
$$

b. In contrast, if $\alpha>2$, prove that the set of $x \in \mathbb{R}$ for which there are infinitely many distinct rationals p / q such that

$$
\left|x-\frac{p}{q}\right| \leq \frac{1}{q^{\alpha}}
$$

has measure 0 .
4. Royden, Section 3.1, Exercise 7.
5. Royden, Section 3.2, Exercise 24.

