Homework 5

- **1**. **a**. If $\int f < \infty$, it need not be the case that $f \to 0$ as $x \to \pm \infty$. Give an example of a continuous, nonnegative, unbounded function which is integrable.
 - **b**. On the other hand, when f is uniformly continuous on \mathbb{R} prove that if f is integrable then $\lim_{x \to \pm \infty} f = 0$. Is this if and only if?
- **2**. If f is a nonnegative measurable function, prove that $\int f = 0$ if and only if f = 0 a.e.
- **3**. Royden, Section 4.3, Exercise 26.
- 4. Royden, Section 4.3, Exercise 27.
- 5. Royden, Section 4.4, Exercise 33.