## Homework 5

1. a. If $\int f<\infty$, it need not be the case that $f \rightarrow 0$ as $x \rightarrow \pm \infty$. Give an example of a continuous, nonnegative, unbounded function which is integrable.
b. On the other hand, when $f$ is uniformly continuous on $\mathbb{R}$ prove that if $f$ is integrable then $\lim _{x \rightarrow \pm \infty} f=0$. Is this if and only if?
2. If $f$ is a nonnegative measurable function, prove that $\int f=0$ if and only if $f=0$ a.e.
3. Royden, Section 4.3, Exercise 26.
4. Royden, Section 4.3, Exercise 27.
5. Royden, Section 4.4, Exercise 33.
