Homework 7

- **1**. Prove that L^{∞} is complete.
- **2**. Define $T: L^p([0,1]) \to L^p([0,1])$ by T(f(x)) = xf(x) (here $1 \le p < \infty$).
 - **a**. Prove that T has an operator norm, i.e., that there is a smallest number ||T|| with $||T(f)||_p \leq ||T||||f||_p$ for all $f \in L^p([0,1])$. What is ||T||?
 - **b**. However, prove that if \overline{B} is the unit ball in $L^p([0,1])$, then $T(\overline{B})$ is not contained in any compact set.
- **3**. Royden, Section 7.1, Exercise 4.
- 4. Royden, Section 7.2, Exercise 14.
- 5. Royden, Section 7.2, Exercise 18.