Homework 4

Due Monday, Oct. 30.

1. Find the complex Fourier series for x^{2} on $[-L, L]$ and show that it is equal to the real series we found in class.
2. Find the Fourier transform of $f(x)= \begin{cases}e^{-x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}$
3. Show that in spherical coordinates, the 3-dimensional Laplace equation becomes

$$
u_{\rho \rho}+\frac{2}{\rho} u_{\rho}+\frac{1}{\rho^{2}}\left[u_{\phi \phi}+(\cot \phi) u_{\phi}+\frac{1}{\sin ^{2} \phi} u_{\theta \theta}\right]=0
$$

4. Suppose u satisfies the 3-dimensional Laplace's equation with axial symmetry (i.e., u is independent of $\theta)$. If $u(\rho, \phi)=\Phi(\rho) \Psi(\phi)$ determine Φ.
5. Prove that the solution of the 1-dimensional heat equation on $[0, L]$

$$
\begin{aligned}
& u_{t}=\alpha^{2} u_{x x} \\
& u(0, t)=T_{1}, u(L, t)=T_{2} \\
& u(x, 0)=f(x)
\end{aligned}
$$

is unique, as follows:
a) Suppose u_{1}, u_{2} are two solutions and set $u=u_{1}-u_{2}$. Show that

$$
\frac{1}{2} \frac{\partial}{\partial t}\left(u^{2}\right)+\alpha^{2} u_{x}^{2}+\frac{\partial}{\partial x}\left(-\alpha^{2} u u_{x}\right)=0
$$

b) Integrate the above expression on $[0, L]$ and use the result to explain why $u=0$.

