Homework 5

Due Monday, Nov. 6.

1. Solve for u.

$$
\begin{array}{ll}
u_{t}=\alpha^{2} u_{x x} & t, x>0 \\
u_{x}(0, t)=0 & t>0 \\
u(x, 0)=f(x) & x>0
\end{array}
$$

(Extend f to the entire real line as an even function.)
2. Solve for u.

$$
\begin{aligned}
& u_{x x}+u_{y y}=0 \quad y>0 \\
& u(x, 0)=f(x)
\end{aligned}
$$

Assuming f is real-valued, express your answer as a real-valued function.
3. a) Prove that

$$
\int_{-\infty}^{\infty} \hat{f}(u) g(u) d u=\int_{-\infty}^{\infty} f(u) \hat{g}(u) d u
$$

for all f, g for which both sides are defined.
b) Prove that

$$
\int_{-\infty}^{\infty}|f(u)|^{2} d u=\int_{-\infty}^{\infty}|\hat{f}(u)|^{2} d u
$$

(This is the Fourier transform analogue of Parseval's Identity. You may want to begin by showing that if \bar{f} is the complex conjugate of f, then $\hat{\vec{f}}(s)=\overline{\hat{f}}(-s)$.)
4. Prove that $f * \delta=f$ for every f.
5. a) Solve the heat equation on $[-L, L]$.

$$
\begin{array}{ll}
u_{t}=\alpha^{2} u_{x x} & x \in[-L, L] \\
u(-L, t)=u(L, t) & \\
u_{x}(-L, t)=u_{x}(L, t) & \\
u(x, 0)=f(x) & x \in[-L, L]
\end{array}
$$

Express your solution in terms of the complex Fourier series for f.
b) By taking the limit of the function you found in a) as $L \rightarrow \infty$, show that you get the solution of the heat equation on \mathbb{R} that we found in class.

