Homework 2

Due Friday, Feb. 7.

1. Give an example of a finite extension K/k with infinitely many intermediate fields.

2. Suppose char k = p and K/k is a finite extension. Let $K_s = \{\alpha \in K : \alpha \text{ is separable over } k\}$. Prove that K_s is a subfield of K which is the maximal intermediate field that is separable over k. Prove also that $[K:K_s] = p^n$ for some n.

3. With notation as in Problem 2, suppose in addition that K/k is normal. Prove that K_s is Galois over k and $\operatorname{Gal}(K_s/k) \cong \operatorname{Aut}_k(K)$.

4. Suppose char $k \neq 2$ and $f \in k[X]$ has distinct, non-repeated roots $\alpha_1, \ldots, \alpha_n$ in some splitting field K. Let

$$\Delta = \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j) \,.$$

Prove that if $G = \operatorname{Gal}(K/k)$ is viewed as a subgroup of S_n , then $G \subset A_n$ if and only if $\Delta \in k$.

5. Let K be the splitting field of $(X^2+2)(X^3-3)$ over \mathbb{Q} . Determine all \mathbb{Q} -isomorphism classes of subfields of K and find all those that are Galois over \mathbb{Q} .