Homework 4

Due Friday, March 6.

1. Suppose $F : \mathcal{C} \to \mathcal{D}$ has a right adjoint G. Prove that F is *continuous*, i.e., that for any direct system $\{X_i\}$ in \mathcal{C} ,

$$F(\varinjlim X_i) = \varinjlim F(X_i)$$

whenever $\lim X_i$ exists.

2.

- (a) Suppose R and S are (not necessarily commutative) rings and N is an (R, S)-bimodule. Prove that $\operatorname{Hom}_S(N, -)$ and $-\otimes_R N$ are adjoint functors.
- (b) Deduce Frobenius reciprocity from (a). Also deduce the alternative version, $\operatorname{Hom}_G(W, \operatorname{Ind}_H^G V) \cong \operatorname{Hom}_H(\operatorname{Res}_H^G W, V).$
- 3. Let H < G, let W be a representation of H, and set $V = \operatorname{Ind}_{H}^{G} W$. Prove that

$$\chi_V(g) = \frac{1}{|H|} \sum_{g_1 \in G} \chi_W(g_1 g g_1^{-1})$$

where we extend χ_W to G by making it 0 on $G \setminus H$.

4. Determine the irreducible representations of Q_8 (describe them explicitly) and find the character table.

5. If R is a commutative ring and S is a subring, we say that $\alpha \in R$ is *integral* over S if α satisfies a monic polynomial in S[X].

- (a) Prove that α is integral over S if and only if $S[\alpha]$ is a finitely-generated S-module. (One direction is easy. For the other, suppose u_1, \ldots, u_n generate $S[\alpha]$ as an S-module, where $u_1 = 1$. If $\alpha u_i = \sum a_{ij} u_j$, set $A = (a_{ij})$ and apply $\alpha I A$ to the vector (u_1, \ldots, u_n) .)
- (b) Prove that $\{\alpha \in R : \alpha \text{ is integral over } S\}$ is a subring of R.
- (c) Prove that $\{\alpha \in \mathbb{Q} : \alpha \text{ is integral over } \mathbb{Z}\} = \mathbb{Z}$.