Triangles and triple products of Laplace eigenfunctions

Emmett L. Wyman

Northwestern University

April 16, 2021
Stanford University Department of Mathematics
Table of Contents

1 The problem and background

2 The main results

3 Sketch of proofs

4 Concluding remarks
M is a Riemannian manifold, compact, $\partial M = \emptyset$.

Δ_M is the Laplace-Beltrami operator on M.

$\Delta_M e_j = -\lambda_j^2 e_j$ for $j = 1, 2, \ldots$ is an eigenbasis for $L^2(M)$.

λ_j is the frequency of e_j.

Main objects

Given two basis eigenfunctions e_i, e_j, their product is written $e_i e_j = \sum_k \langle e_i e_j, e_k \rangle e_k$.

The coefficients $\langle e_i e_j, e_k \rangle$ are called eigenfunction triple products.
The Setting

- M is a Riemannian manifold, compact, $\partial M = \emptyset$.
- Δ_M is the Laplace-Beltrami operator on M.
The Setting

- M is a Riemannian manifold, compact, $\partial M = \emptyset$.
- Δ_M is the Laplace-Beltrami operator on M.
- $\Delta_M e_j = -\lambda_j^2 e_j$ for $j = 1, 2, \ldots$ is an eigenbasis for $L^2(M)$.

The coefficients $\langle e_i e_j, e_k \rangle$ are called eigenfunction triple products.
The Setting

- M is a Riemannian manifold, compact, $\partial M = \emptyset$.
- Δ_M is the Laplace-Beltrami operator on M.
- $\Delta_M e_j = -\lambda_j^2 e_j$ for $j = 1, 2, \ldots$ is an eigenbasis for $L^2(M)$.
- λ_j is the frequency of e_j.

The coefficients $\langle e_i e_j, e_k \rangle$ are called eigenfunction triple products.
The Setting

- M is a Riemannian manifold, compact, $\partial M = \emptyset$.
- Δ_M is the Laplace-Beltrami operator on M.
- $\Delta_M e_j = -\lambda_j^2 e_j$ for $j = 1, 2, \ldots$ is an eigenbasis for $L^2(M)$.
- λ_j is the frequency of e_j.

Main objects

Given two basis eigenfunctions e_i, e_j, their product is written

$$e_i e_j = \sum_k \langle e_i e_j, e_k \rangle e_k.$$

The coefficients $\langle e_i e_j, e_k \rangle$ are called eigenfunction triple products.
Given two eigenfunctions e_i and e_j, at which frequencies is the bulk of the spectral mass of the product $e_i e_j$ located?
The Question

Question

Given two eigenfunctions e_i and e_j, at which frequencies is the bulk of the spectral mass of the product $e_i e_j$ located?

- In the hyperbolic setting, related to Lindelöf hypothesis for Rankin-Selberg zeta functions.
The Question

Question

Given two eigenfunctions e_i and e_j, at which frequencies is the bulk of the spectral mass of the product $e_i e_j$ located?

- In the hyperbolic setting, related to Lindelöf hypothesis for Rankin-Selberg zeta functions.
- Important for the validity of fast algorithms for electronic structure computing.
Given two eigenfunctions e_i and e_j, at which frequencies is the bulk of the spectral mass of the product $e_i e_j$ located?

- In the hyperbolic setting, related to Lindelöf hypothesis for Rankin-Selberg zeta functions.
- Important for the validity of fast algorithms for electronic structure computing.
- Closely related to Clebsch-Gordan coefficients.
The Question

Given two eigenfunctions e_i and e_j, at which frequencies is the bulk of the spectral mass of the product $e_i e_j$ located?

- In the hyperbolic setting, related to Lindelöf hypothesis for Rankin-Selberg zeta functions.
- Important for the validity of fast algorithms for electronic structure computing.
- Closely related to Clebsch-Gordan coefficients.
- Related to questions about the algebraic structure of trigonometric polynomials.
The Question

Question

Given two eigenfunctions e_i and e_j, at which frequencies is the bulk of the spectral mass of the product $e_i e_j$ located?

- In the hyperbolic setting, related to Lindelöf hypothesis for Rankin-Selberg zeta functions.
- Important for the validity of fast algorithms for electronic structure computing.
- Closely related to Clebsch-Gordan coefficients.
- Related to questions about the algebraic structure of trigonometric polynomials.
- Here, the answer is related to counting configurations of triangles.
Prior results

Sarnak ‘94
\[|\langle e_{2j}, e_k \rangle| = O_j(\lambda \epsilon k - \pi \lambda k/2) \] for some \(\epsilon > 0 \).

Bernstein-Reznikov ‘99
\[|\langle e_{2j}, e_k \rangle| = O_j(\lambda \epsilon k - \pi \lambda k/2) \] for all \(\epsilon > 0 \).

Kontz-Stanton ‘04
Zelditch ‘12
Sarnak’s bounds for analytic manifolds.

Lu-Ying ‘15
Observed empirically that \(\langle e_i e_j, e_k \rangle \) tends to be supported in \(\lambda k \leq \lambda i + \lambda j \).

Lu-Steinerberger ‘18
\[|\langle e_i e_j, e_k \rangle| = O(\lambda_{-\infty} k) \] for \(\lambda k \geq (\lambda i + \lambda j)^{1+\epsilon} \).

Lu-Sogge-Steinerberger ‘19
Steinerberger ‘19
Introduced the local correlation functional.
Prior results

Sarnak ’94

\[|\langle e_j^2, e_k \rangle| = O_j(\lambda_k^\epsilon e^{-\pi \lambda_k/2}) \] for some \(\epsilon > 0 \).
Prior results

Sarnak ’94

\[|\langle e_j^2, e_k \rangle| = O_j(\lambda_k^\epsilon e^{-\pi \lambda_k/2}) \text{ for some } \epsilon > 0. \]

Bernstein-Reznikov ’99

\[|\langle e_j^2, e_k \rangle| = O_j(\lambda_k^\epsilon e^{-\pi \lambda_k/2}) \text{ for all } \epsilon > 0. \]

Köntz-Stanton ’04
Prior results

Sarnak ’94

\[|\langle e_j^2, e_k \rangle| = O_j(\lambda_k^\epsilon e^{-\pi \lambda_k / 2}) \text{ for some } \epsilon > 0. \]

Bernstein-Reznikov ’99

\[|\langle e_j^2, e_k \rangle| = O_j(\lambda_k^\epsilon e^{-\pi \lambda_k / 2}) \text{ for all } \epsilon > 0. \]

Köntz-Stanton ’04

Zelditch ’12

Sarnak’s bounds for analytic manifolds.
<table>
<thead>
<tr>
<th>Prior results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarnak '94</td>
</tr>
<tr>
<td>Bernstein-Reznikov '99</td>
</tr>
<tr>
<td>Köntz-Stanton '04</td>
</tr>
<tr>
<td>Zelditch '12</td>
</tr>
<tr>
<td>Lu-Ying '15</td>
</tr>
<tr>
<td>Reference</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Sarnak '94</td>
</tr>
<tr>
<td>Bernstein-Reznikov '99</td>
</tr>
<tr>
<td>Köntz-Stanton '04</td>
</tr>
<tr>
<td>Zelditch '12</td>
</tr>
<tr>
<td>Lu-Ying '15</td>
</tr>
<tr>
<td>Author</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Sarnak '94</td>
</tr>
<tr>
<td>Bernstein-Reznikov '99</td>
</tr>
<tr>
<td>Kötz-Stanton '04</td>
</tr>
<tr>
<td>Zelditch '12</td>
</tr>
<tr>
<td>Lu-Ying '15</td>
</tr>
<tr>
<td>Lu-Steinerberger '18</td>
</tr>
<tr>
<td>Lu-Sogge-Steinerberger '19</td>
</tr>
<tr>
<td>Steinerberger '19</td>
</tr>
</tbody>
</table>
A look at recent work

A priori, span \(\{e_i e_j: \lambda_i, \lambda_j \leq \lambda\}\) has dimension \(\approx \lambda^2 n\). (Lu and Ying ’15) Observed most of span \(\{e_i e_j: \lambda_i, \lambda_j \leq \lambda\}\) is contained in a space of dimension \(\approx \lambda^n\).

Theorem (Lu, Steinerberger ’18 and Lu, Sogge, Steinerberger ’19)

For all \(\epsilon > 0\),
\[
\sum \lambda_k \geq (\lambda_i + \lambda_j)^{1+\epsilon} |\langle e_i e_j, e_k \rangle|^2 = O(\epsilon (\lambda_i + \lambda_j)^{-\infty})
\]

Takeaway: For fixed \(i, j\), the triple products \(|\langle e_i e_j, e_k \rangle|\) start rapidly-decaying by the time \(\lambda_k \geq (\lambda_i + \lambda_j)^{1+\epsilon}\).
A look at recent work

- A priori, \(\text{span}\{e_i e_j : \lambda_i, \lambda_j \leq \lambda\} \) has dimension \(\approx \lambda^{2n} \).
A look at recent work

- A priori, $\text{span}\{e_i e_j : \lambda_i, \lambda_j \leq \lambda\}$ has dimension $\approx \lambda^{2n}$.
- (Lu and Ying ’15) Observed most of $\text{span}\{e_i e_j : \lambda_i, \lambda_j \leq \lambda\}$ is contained in a space of dimension $\approx \lambda^{n}$.

Theorem (Lu, Steinerberger ’18 and Lu, Sogge, Steinerberger ’19)

For all $\epsilon > 0$,

$$\sum \lambda_k \geq \left(\lambda_i + \lambda_j \right)^{1+\epsilon} |\langle e_i e_j, e_k \rangle|^2 = O(\epsilon \left(\lambda_i + \lambda_j \right)^{-\infty})$$

Takeaway: For fixed i, j, the triple products $|\langle e_i e_j, e_k \rangle|$ start rapidly-decaying by the time $\lambda_k \geq \left(\lambda_i + \lambda_j \right)^{1+\epsilon}$.
A look at recent work

- A priori, span\{e_i e_j : \lambda_i, \lambda_j \leq \lambda\} has dimension \approx \lambda^{2n}.
- (Lu and Ying '15) Observed most of span\{e_i e_j : \lambda_i, \lambda_j \leq \lambda\} is contained in a space of dimension \approx \lambda^n.

Theorem (Lu, Steinerberger '18 and Lu, Sogge, Steinerberger '19)

For all \(\epsilon > 0 \),

\[
\sum_{\lambda_k \geq (\lambda_i + \lambda_j)^{1+\epsilon}} |\langle e_i e_j, e_k \rangle|^2 = O_{\epsilon}((\lambda_i + \lambda_j)^{-\infty})
\]
A look at recent work

- A priori, span\(\{e_i e_j : \lambda_i, \lambda_j \leq \lambda\}\) has dimension \(\approx \lambda^{2n}\).
- (Lu and Ying ’15) Observed most of span\(\{e_i e_j : \lambda_i, \lambda_j \leq \lambda\}\) is contained in a space of dimension \(\approx \lambda^n\).

Theorem (Lu, Steinerberger ’18 and Lu, Sogge, Steinerberger ’19)

For all \(\epsilon > 0\),

\[
\sum_{\lambda_k \geq (\lambda_i + \lambda_j)^{1+\epsilon}} |\langle e_i e_j, e_k \rangle|^2 = O_\epsilon((\lambda_i + \lambda_j)^{-\infty})
\]

- Takeaway: For fixed \(i, j\), the triple products \(|\langle e_i e_j, e_k \rangle|\) start rapidly-decaying by the time \(\lambda_k \geq (\lambda_i + \lambda_j)^{1+\epsilon}\).
The main idea

Definition

\[\mu = \sum_{i,j,k} |\langle e_i e_j, e_k \rangle|^2 \delta(\lambda_i, \lambda_j, \lambda_k). \]
The main idea

Definition

\[\mu = \sum_{i,j,k} |\langle e_i e_j, e_k \rangle|^2 \delta(\lambda_i, \lambda_j, \lambda_k). \]

- Contains information on the triple products.
The main idea

Definition

\[\mu = \sum_{i,j,k} |\langle e_i, e_j, e_k \rangle|^2 \delta(\lambda_i, \lambda_j, \lambda_k). \]

- Contains information on the triple products.
- Nonnegative.
The main idea

Definition

\[\mu = \sum_{i,j,k} |\langle e_i e_j, e_k \rangle|^2 \delta(\lambda_i, \lambda_j, \lambda_k). \]

- Contains information on the triple products.
- Nonnegative.
- Independent of choice of basis.
Definition

\[\mu = \sum_{i,j,k} |\langle e_i e_j, e_k \rangle|^2 \delta(\lambda_i, \lambda_j, \lambda_k). \]

- Contains information on the triple products.
- Nonnegative.
- Independent of choice of basis.

Main Idea

The asymptotics of \(\mu \) are determined in part by the size of a configuration set of triangles with side lengths prescribed by \(\lambda_i, \lambda_j, \) and \(\lambda_k \).
How are triangles involved?

Let $T_n = \mathbb{R}^n / 2\pi \mathbb{Z}^n$ be the standard flat torus. Take basis elements $e_m(x) = (2\pi)^{-n/2} e^{i \langle x, m \rangle}$ for $m \in \mathbb{Z}^n$, having respective frequencies $\lambda_m = |m|$.

For $m, j, k \in \mathbb{Z}^n$, $\langle e_m e_j, e_k \rangle = \begin{cases} (2\pi)^{-n/2} & \text{if } k = m + j \\ 0 & \text{otherwise}. \end{cases}$

$\mu = (2\pi)^{-n/2} \sum (a, b, c) \# \{ (m, j) : |m| = a, |j| = b, |m + j| = c \} \delta(a, b, c)$
How are triangles involved?

- Let $T^n = \mathbb{R}^n / 2\pi\mathbb{Z}^n$ be the standard flat torus.
How are triangles involved?

- Let $\mathbb{T}^n = \mathbb{R}^n / 2\pi \mathbb{Z}^n$ be the standard flat torus.
- Take basis elements
 \[
 e_m(x) = (2\pi)^{-\frac{n}{2}} e^{i\langle x, m \rangle} \quad \text{for } m \in \mathbb{Z}^n,
 \]
 having respective frequencies $\lambda_m = |m|$.
How are triangles involved?

- Let $\mathbb{T}^n = \mathbb{R}^n / 2\pi \mathbb{Z}^n$ be the standard flat torus.
- Take basis elements

$$e_m(x) = (2\pi)^{-\frac{n}{2}} e^{i\langle x, m \rangle} \quad \text{for } m \in \mathbb{Z}^n,$$

having respective frequencies $\lambda_m = |m|$.
- For $m, j, k \in \mathbb{Z}^n$,

$$\langle e_m e_j, e_k \rangle = \begin{cases} (2\pi)^{-\frac{n}{2}} & \text{if } k = m + j \\ 0 & \text{otherwise.} \end{cases}$$
How are triangles involved?

Let $\mathbb{T}^n = \mathbb{R}^n / 2\pi \mathbb{Z}^n$ be the standard flat torus.

Take basis elements

$$e_m(x) = (2\pi)^{-\frac{n}{2}} e^{i \langle x, m \rangle} \quad \text{for } m \in \mathbb{Z}^n,$$

having respective frequencies $\lambda_m = |m|$. For $m, j, k \in \mathbb{Z}^n$,

$$\langle e_m e_j, e_k \rangle = \begin{cases} (2\pi)^{-\frac{n}{2}} & \text{if } k = m + j \\ 0 & \text{otherwise.} \end{cases}$$

$$\mu = (2\pi)^{-\frac{n}{2}} \sum_{(a,b,c)} \# \{(m, j) : |m| = a, |j| = b, |m + j| = c\} \delta_{(a,b,c)}$$
\[|j| = b \]

\[|m| = a \]

\[|m + j| = c \]

\(\mu \) is supported only where \(\lambda_i, \lambda_j, \lambda_k \) are realizable as the side lengths of a triangle.
\(\mu \) is supported only where \(\lambda_i, \lambda_j, \lambda_k \) are realizable as the side lengths of a triangle.
Setup: Some definitions

Definition (triangle-good) \((a, b, c) \in \mathbb{R}^3\) is triangle-good if
\[a < b + c, \ b < a + c, \text{ and } c < a + b. \]
We let \(\text{area}(a, b, c)\) denote the area of the triangle with side lengths \(a, b,\) and \(c\).

Definition (triangle-bad) \((a, b, c) \in \mathbb{R}^3\) is triangle-bad if
\[a > b + c, \ b > a + c \text{ or } c > a + b. \]
We ignore \((a, b, c)\) specifying a degenerate triangle.
Setup: Some definitions

Definition (triangle-good)

\((a, b, c) \in \mathbb{R}^3\) is *triangle-good* if

\[a < b + c, \quad b < a + c, \quad \text{and} \quad c < a + b. \]

We let \(\text{area}(a, b, c)\) denote the area of the triangle with side lengths \(a, b,\) and \(c.\)
Setup: Some definitions

Definition (triangle-good)

\((a, b, c) \in \mathbb{R}^3\) is triangle-good if

\[a < b + c, \quad b < a + c, \quad \text{and} \quad c < a + b. \]

We let \(\text{area}(a, b, c)\) denote the area of the triangle with side lengths \(a, b, \) and \(c\).

Definition (triangle-bad)

\((a, b, c) \in \mathbb{R}^3\) is triangle-bad if

\[a > b + c, \quad b > a + c \quad \text{or} \quad c > a + b. \]
Definition (triangle-good)

\((a, b, c) \in \mathbb{R}^3\) is triangle-good if

\[a < b + c, \quad b < a + c, \quad \text{and} \quad c < a + b. \]

We let \(\text{area}(a, b, c)\) denote the area of the triangle with side lengths \(a, b,\) and \(c.\)

Definition (triangle-bad)

\((a, b, c) \in \mathbb{R}^3\) is triangle-bad if

\[a > b + c, \quad b > a + c \quad \text{or} \quad c > a + b. \]

We ignore \((a, b, c)\) specifying a degenerate triangle.
Let $\rho \in \mathcal{S}(\mathbb{R}^3)$, supp $\hat{\rho} \subset (-\text{inj } M, \text{inj } M)^3$, with $\int \rho = 1$.
Let \(\rho \in \mathcal{S}(\mathbb{R}^3) \), \(\text{supp} \hat{\rho} \subset (-\text{inj} M, \text{inj} M)^3 \), with \(\int \rho = 1 \).

Theorem (triangle-bad)

If \(\Gamma \) is a closed cone in \(\mathbb{R}^3 \setminus 0 \) consisting of triangle-bad points, then

\[
\rho \ast \mu(a, b, c) = O_{\Gamma}(|(a, b, c)|^{-\infty}) \quad \text{for all} \ (a, b, c) \in \Gamma.
\]
Let $\rho \in \mathcal{S}(\mathbb{R}^3)$, $\text{supp} \, \hat{\rho} \subset (-\inj M, \inj M)^3$, with $\int \rho = 1$.

Theorem (triangle-bad)

If Γ is a closed cone in $\mathbb{R}^3 \setminus 0$ consisting of triangle-bad points, then

$$\rho * \mu(a, b, c) = O_{\Gamma}(|(a, b, c)|^{-\infty}) \quad \text{for all} \ (a, b, c) \in \Gamma.$$

Theorem (triangle-good)

If Γ is a closed cone in $\mathbb{R}^3 \setminus 0$ consisting of triangle-good points, then

$$\rho * \mu(a, b, c) = C_n |M| abc \text{ area}(a, b, c)^{n-3} + O_{\Gamma}(|(a, b, c)|^{2n-4})$$

for $(a, b, c) \in \Gamma$.

Interpretation

\[\rho \ast \mu(a, b, c) = \sum_{i,j,k} \rho(a - \lambda_i, b - \lambda_j, c - \lambda_k) |\langle e_i e_j, e_k \rangle|^2. \]
Interpretation

- $\rho \ast \mu(a, b, c) = \sum_{i,j,k} \rho(a - \lambda_i, b - \lambda_j, c - \lambda_k)|\langle e_i e_j, e_k \rangle|^2$.

- Main term in Theorem (triangle-good) arises as the measure of some configuration set of triangles in \mathbb{R}^n with sidelengths a, b, c.
Interpretation

- \(\rho * \mu(a, b, c) = \sum_{i,j,k} \rho(a - \lambda_i, b - \lambda_j, c - \lambda_k) |\langle e_i e_j, e_k \rangle|^2 \).

- Main term in Theorem (triangle-good) arises as the measure of some configuration set of triangles in \(\mathbb{R}^n \) with sidelengths \(a, b, c \).

- The Leray measure of \(\{ (\xi, \eta) \in \mathbb{R}^{n+n} : (|\xi|, |\eta|, |\xi + \eta|) = (a, b, c) \} \) is

 \[|S^{n-1}| |S^{n-2}| abc (2 \text{ area}(a, b, c))^{n-3}. \]
Interpretation

\[\rho \ast \mu(a, b, c) = \sum_{i,j,k} \rho(a - \lambda_i, b - \lambda_j, c - \lambda_k) |\langle e_i e_j, e_k \rangle|^2. \]

Main term in Theorem (triangle-good) arises as the measure of some configuration set of triangles in \(\mathbb{R}^n \) with sidelengths \(a, b, c \).

The Leray measure of \(\{ (\xi, \eta) \in \mathbb{R}^{n+n} : (|\xi|, |\eta|, |\xi + \eta|) = (a, b, c) \} \) is

\[|S^{n-1}| |S^{n-2}| abc(2 \text{area}(a, b, c))^{n-3}. \]

Theorem (triangle-bad) says essentially none of \(\mu \) lies in the ‘classically forbidden’ region where there are no such triangles.
Corollary

For every $\epsilon > 0$, for fixed $i, j,$

$$\sum_{\lambda_k \geq (1+\epsilon)(\lambda_i + \lambda_j)} |\langle e_i e_j, e_k \rangle|^2 = O_\epsilon((\lambda_i + \lambda_j)^{-\infty}).$$
What does the triangle-bad theorem tell us?

Corollary

For every $\epsilon > 0$, for fixed i, j,

$$\sum_{\lambda_k \geq (1+\epsilon)(\lambda_i + \lambda_j)} |\langle e_i e_j, e_k \rangle|^2 = O_{\epsilon}((\lambda_i + \lambda_j)^{-\infty}).$$

- If we take $\rho \geq 0$ with $\rho(0) \geq c > 0$, then

$$|\langle e_i e_j, e_k \rangle|^2 \leq c^{-1} \rho \ast \mu(\lambda_i, \lambda_j, \lambda_k).$$
What does the triangle-bad theorem tell us?

Corollary

For every $\epsilon > 0$, for fixed $i, j,$

$$\sum_{\lambda_k \geq (1+\epsilon)(\lambda_i + \lambda_j)} |\langle e_i e_j, e_k \rangle|^2 = O_\epsilon((\lambda_i + \lambda_j)^{-\infty}).$$

- If we take $\rho \geq 0$ with $\rho(0) \geq c > 0$, then

 $$|\langle e_i e_j, e_k \rangle|^2 \leq c^{-1} \rho \ast \mu(\lambda_i, \lambda_j, \lambda_k).$$

- Let $\Gamma_\epsilon = \{(a, b, c) : c \geq (1 + \epsilon)(a + b)\}.$
Corollary

For every $\epsilon > 0$, for fixed i, j,

$$
\sum_{\lambda_k \geq (1+\epsilon)(\lambda_i + \lambda_j)} |\langle e_i e_j, e_k \rangle|^2 = O_\epsilon((\lambda_i + \lambda_j)^{-\infty}).
$$

- If we take $\rho \geq 0$ with $\rho(0) \geq c > 0$, then

$$
|\langle e_i e_j, e_k \rangle|^2 \leq c^{-1} \rho \ast \mu(\lambda_i, \lambda_j, \lambda_k).
$$

- Let $\Gamma_\epsilon = \{(a, b, c) : c \geq (1 + \epsilon)(a + b)\}$.

- Theorem (triangle-bad) yields

$$
|\langle e_i e_j, e_k \rangle|^2 = O_\epsilon(||(\lambda_i, \lambda_j, \lambda_k)||^{-\infty}) \quad \text{for} \quad \lambda_k \geq (1 + \epsilon)(\lambda_i + \lambda_j)
$$
Table of Contents

1. The problem and background
2. The main results
3. Sketch of proofs
4. Concluding remarks
First simplify by writing

\[\mu = \sum_{i,j,k} \left| \int_M e_i e_j e_k \, dV \right|^2 \delta(\lambda_i, \lambda_j, \lambda_k). \]
Translate to the language of FIOs

- First simplify by writing
\[
\mu = \sum_{i,j,k} \left| \int_M e_i e_j e_k dV_M \right|^2 \delta(\lambda_i, \lambda_j, \lambda_k).
\]

- \(\varphi_m = e_i \otimes e_j \otimes e_k |dV_{M^3}|^{1/2} \), where \(m = (i, j, k) \in \mathbb{N}^3 \).
First simplify by writing
\[
\mu = \sum_{i,j,k} \left| \int_M e_i e_j e_k \, dV_M \right|^2 \delta(\lambda_i, \lambda_j, \lambda_k).
\]

\[\varphi_m = e_i \otimes e_j \otimes e_k |dV_{M^3}|^{1/2}, \text{ where } m = (i, j, k) \in \mathbb{N}^3.\]

Let \(\Delta = \{(x, x, x) : x \in M\} \subset M^3.\)
First simplify by writing
\[\mu = \sum_{i,j,k} \left| \int_M e_i e_j e_k \, dV_M \right|^2 \delta(\lambda_i, \lambda_j, \lambda_k). \]

\(\varphi_m = e_i \otimes e_j \otimes e_k |dV_{M^3}|^{1/2} \), where \(m = (i, j, k) \in \mathbb{N}^3 \).

Let \(\Delta = \{(x, x, x) : x \in M\} \subset M^3 \).

Let \(\delta_\Delta \) be the half-density distribution on \(M^3 \) with
\[(\delta_\Delta, f|dV_{M^3}|^{1/2}) = \int_M f(x, x, x) \, dV_M(x). \]
Translate to the language of FIOs

- First simplify by writing
 \[\mu = \sum_{i, j, k} \left| \int_M e_i e_j e_k \, dV_M \right|^2 \delta_{(\lambda_i, \lambda_j, \lambda_k)}. \]

- \(\varphi_m = e_i \otimes e_j \otimes e_k \, dV_{M^3} \, |^{1/2} \), where \(m = (i, j, k) \in \mathbb{N}^3 \).

- Let \(\Delta = \{(x, x, x) : x \in M\} \subset M^3 \).

- Let \(\delta_{\Delta} \) be the half-density distribution on \(M^3 \) with
 \[(\delta_{\Delta}, f \, dV_{M^3} \, |^{1/2}) = \int_M f(x, x, x) \, dV_M(x). \]

- \[\left| \int_M e_i e_j e_k \, dV_M \right|^2 = |(\delta_{\Delta}, \varphi_m)|^2 = (\delta_{\Delta} \otimes \delta_{\Delta}, \varphi_m \otimes \varphi_m). \]
The key composition

Given $t = (t_1, t_2, t_3) \in \mathbb{R}^3$, let $U : C^\infty_c(M^3 \times M^3) \to \mathcal{D}'(\mathbb{R}^3)$ with distribution kernel

$$U(t, x, y) = e^{it_1 \sqrt{-\Delta_M}}(x_1, y_1)e^{it_2 \sqrt{-\Delta_M}}(x_2, y_2)e^{it_3 \sqrt{-\Delta_M}}(x_3, y_3).$$
Given $t = (t_1, t_2, t_3) \in \mathbb{R}^3$, let $U : C_c^\infty (M^3 \times M^3) \to D'(\mathbb{R}^3)$ with distribution kernel

$$U(t, x, y) = e^{it_1 \sqrt{-\Delta_M}}(x_1, y_1) e^{it_2 \sqrt{-\Delta_M}}(x_2, y_2) e^{it_3 \sqrt{-\Delta_M}}(x_3, y_3).$$

Note,

$$U(t, x, y) = \sum_{m \in \mathbb{N}^3} e^{i \langle t, \lambda_m \rangle} \varphi_m(x) \overline{\varphi_m(y)} |dt|^{1/2}$$

where here $\lambda_m = (\lambda_i, \lambda_j, \lambda_k)$ and $x, y \in M^3$.

The key composition
The key composition

- Given \(t = (t_1, t_2, t_3) \in \mathbb{R}^3 \), let \(U : C_c^\infty (M^3 \times M^3) \to \mathcal{D}'(\mathbb{R}^3) \) with distribution kernel

\[
U(t, x, y) = e^{it_1 \sqrt{-\Delta_M}}(x_1, y_1)e^{it_2 \sqrt{-\Delta_M}}(x_2, y_2)e^{it_3 \sqrt{-\Delta_M}}(x_3, y_3).
\]

- Note,

\[
U(t, x, y) = \sum_{m \in \mathbb{N}^3} e^{i\langle t, \lambda_m \rangle} \varphi_m(x)\overline{\varphi_m(y)}|dt|^{1/2}
\]

where here \(\lambda_m = (\lambda_i, \lambda_j, \lambda_k) \) and \(x, y \in M^3 \).

Key composition

\[
\check{\mu}(t)|dt|^{1/2} = (2\pi)^{-3} \sum_{m \in \mathbb{N}^3} e^{i\langle t, \lambda_m \rangle} (\delta_\Delta \otimes \delta_\Delta, \varphi_m \otimes \overline{\varphi_m})|dt|^{1/2}
\]

\[
= (2\pi)^{-3} U \circ (\delta_\Delta \otimes \delta_\Delta).
\]
The relevant dynamics on \(M \)

- Theorem (triangle-bad) follows if \(\text{WF}(\dot{\mu}) \) does not contain any triangle-bad covectors.
The relevant dynamics on M

- Theorem (triangle-bad) follows if $\text{WF}(\hat{\mu})$ does not contain any triangle-bad covectors.
- Compute using $\text{WF}(\hat{\mu}) \subset \text{WF}'(U) \circ \text{WF}(\delta_\Delta \otimes \delta_\Delta)$.
The relevant dynamics on M

- Theorem (triangle-bad) follows if $\text{WF}(\tilde{\mu})$ does not contain any triangle-bad covectors.
- Compute using $\text{WF}(\tilde{\mu}) \subset \text{WF}'(U) \circ \text{WF}(\delta_\Delta \otimes \delta_\Delta)$.
- The following dynamical objects arise.
The relevant dynamics on M

- Theorem (triangle-bad) follows if $\text{WF}(\tilde{\mu})$ does not contain any triangle-bad covectors.
- Compute using $\text{WF}(\tilde{\mu}) \subset \text{WF}'(U) \circ \text{WF}(\delta_\Delta \otimes \delta_\Delta)$.
- The following dynamical objects arise.

Definition (geodesic triple)

Let $x \in M$ and $\xi = (\xi_1, \xi_2, \xi_3) \in (T^*_x M)^3$. We say (t, x, ξ) is a **geodesic triple** if all of the following hold.
The relevant dynamics on M

- Theorem (triangle-bad) follows if $WF(\tilde{\mu})$ does not contain any triangle-bad covectors.
- Compute using $WF(\tilde{\mu}) \subset WF'(U) \circ WF(\delta \otimes \delta)$.
- The following dynamical objects arise.

Definition (geodesic triple)

Let $x \in M$ and $\xi = (\xi_1, \xi_2, \xi_3) \in (\dot{T}_x^* M)^3$. We say (t, x, ξ) is a *geodesic triple* if all of the following hold.

1. $\xi_1 + \xi_2 + \xi_3 = 0$.

The relevant dynamics on M

- Theorem (triangle-bad) follows if $WF(\tilde{\mu})$ does not contain any triangle-bad covectors.
- Compute using $WF(\tilde{\mu}) \subset WF'(U) \circ WF(\delta_\Delta \otimes \delta_\Delta)$.
- The following dynamical objects arise.

Definition (geodesic triple)

Let $x \in M$ and $\xi = (\xi_1, \xi_2, \xi_3) \in (\dot{T}_x^*M)^3$. We say (t, x, ξ) is a **geodesic triple** if all of the following hold.

1. $\xi_1 + \xi_2 + \xi_3 = 0$.
2. There exists $y \in M$ and $\eta = (\eta_1, \eta_2, \eta_3) \in (\dot{T}_y^*M)^3$, such that...
The relevant dynamics on M

- Theorem (triangle.Bad) follows if $WF(\tilde{\mu})$ does not contain any triangle.Bad covectors.
- Compute using $WF(\tilde{\mu}) \subset WF'(U) \circ WF(\delta_\Delta \otimes \delta_\Delta)$.
- The following dynamical objects arise.

Definition (geodesic triple)

Let $x \in M$ and $\xi = (\xi_1, \xi_2, \xi_3) \in (\dot{T}_x^*M)^3$. We say (t, x, ξ) is a **geodesic triple** if all of the following hold.

1. $\xi_1 + \xi_2 + \xi_3 = 0$.
2. There exists $y \in M$ and $\eta = (\eta_1, \eta_2, \eta_3) \in (\dot{T}_y^*M)^3$, such that...
3. $\eta_1 + \eta_2 + \eta_3 = 0$, and...
The relevant dynamics on M

- Theorem (triangle-bad) follows if $WF(\tilde{\mu})$ does not contain any triangle-bad covectors.
- Compute using $WF(\tilde{\mu}) \subset WF'(U) \circ WF(\delta_{\Delta} \otimes \delta_{\Delta})$.
- The following dynamical objects arise.

Definition (geodesic triple)

Let $x \in M$ and $\xi = (\xi_1, \xi_2, \xi_3) \in (\dot{T}^*_x M)^3$. We say (t, x, ξ) is a *geodesic triple* if all of the following hold.

1. $\xi_1 + \xi_2 + \xi_3 = 0$.
2. There exists $y \in M$ and $\eta = (\eta_1, \eta_2, \eta_3) \in (\dot{T}^*_y M)^3$, such that...
3. $\eta_1 + \eta_2 + \eta_3 = 0$, and...
4. $(y, \eta_j) = G^t_j(x, \xi_j)$ for $j = 1, 2, 3$.
We apply a PDO cutoff to take out the ‘degenerate’ triangles. Then...
Conclusion of the proof of Theorem (triangle-bad)

We apply a PDO cutoff to take out the ‘degenerate’ triangles. Then...

Lemma (the wavefront set of $\tilde{\mu}$)

\[
WF(\tilde{\mu}) \subset \{(t, \tau) \in \tilde{T}^*\mathbb{R}^3 : \text{there exists a geodesic triple } (t, x, \xi), \text{ and } \tau_j = |\xi_j|_x \text{ for each } j = 1, 2, 3\}.
\]
We apply a PDO cutoff to take out the ‘degenerate’ triangles. Then...

Lemma (the wavefront set of \(\tilde{\mu} \))

\[
WF(\tilde{\mu}) \subset \{(t, \tau) \in \mathring{T}^*\mathbb{R}^3 : \text{there exists a geodesic triple } (t, x, \xi), \text{ and } \tau_j = |\xi_j|_x \text{ for each } j = 1, 2, 3\}.
\]

Recall if \(\xi \) belongs to a geodesic triple, \(\xi_1 + \xi_2 + \xi_3 = 0 \).
Conclusion of the proof of Theorem (triangle-bad)

- We apply a PDO cutoff to take out the ‘degenerate’ triangles. Then...

Lemma (the wavefront set of $\tilde{\mu}$)

$$WF(\tilde{\mu}) \subset \{(t, \tau) \in \hat{T}^* \mathbb{R}^3 : \text{there exists a geodesic triple } (t, x, \xi), \text{ and } \tau_j = |\xi_j|_x \text{ for each } j = 1, 2, 3\}.$$

- Recall if ξ belongs to a geodesic triple, $\xi_1 + \xi_2 + \xi_3 = 0$.
- So, $|\xi_1|_x \leq |\xi_2|_x + |\xi_3|_x$, etc.
Conclusion of the proof of Theorem (triangle-bad)

We apply a PDO cutoff to take out the ‘degenerate’ triangles.
Then...

Lemma (the wavefront set of $\tilde{\mu}$)

\[\text{WF}(\tilde{\mu}) \subset \{(t, \tau) \in \dot{T}^*\mathbb{R}^3 : \text{there exists a geodesic triple } (t, x, \xi), \text{ and } \tau_j = |\xi_j|_x \text{ for each } j = 1, 2, 3\}. \]

Recall if ξ belongs to a geodesic triple, $\xi_1 + \xi_2 + \xi_3 = 0$.
So, $|\xi_1|_x \leq |\xi_2|_x + |\xi_3|_x$, etc.
Hence $\text{WF}(\tilde{\mu})$ contains no (t, τ) for which τ is triangle-bad.
We apply a PDO cutoff to take out the ‘degenerate’ triangles. Then...

Lemma (the wavefront set of $\tilde{\mu}$)

$$WF(\tilde{\mu}) \subset \{(t, \tau) \in \tilde{T}^*\mathbb{R}^3 : \text{there exists a geodesic triple} \ (t, x, \xi), \ \text{and} \ \tau_j = |\xi_j|_x \ \text{for each} \ j = 1, 2, 3\}.$$

Recall if ξ belongs to a geodesic triple, $\xi_1 + \xi_2 + \xi_3 = 0$.

So, $|\xi_1|_x \leq |\xi_2|_x + |\xi_3|_x$, etc.

Hence $WF(\tilde{\mu})$ contains no (t, τ) for which τ is triangle-bad.

This concludes the proof of Theorem (triangle-bad).
Strategy for Theorem (triangle-good)

- **Note**

\[\rho \ast \mu(\tau) = (2\pi)^3 (\eb{\bar{\mu}}, e^{-i \langle \cdot, \tau \rangle}). \]
Strategy for Theorem (triangle-good)

- Note
 \[\rho \ast \mu(\tau) = (2\pi)^3 (\check{\mu}, \check{\rho}e^{-i\langle \cdot, \tau \rangle}). \]
- Suffices to compute the symbolic data of \(\check{\mu} \) near 0.
Strategy for Theorem (triangle-good)

- Note
 \[\rho \ast \mu(\tau) = (2\pi)^3 (\check{\mu}, \check{\rho} e^{-i\langle \cdot, \tau \rangle}). \]

- Suffices to compute the symbolic data of \(\check{\mu} \) near 0.

- If \((t, x, \xi)\) is a geodesic triple, \(t \neq 0 \), then \(|t_j| \geq \text{inj } M \) for some \(j \).
Strategy for Theorem (triangle-good)

- Note
 \[\rho \ast \mu(\tau) = (2\pi)^3 (\tilde{\mu}, \tilde{\rho} e^{-i\langle \cdot, \tau \rangle}). \]

- Suffices to compute the symbolic data of \(\tilde{\mu} \) near 0.

- If \((t, x, \xi)\) is a geodesic triple, \(t \neq 0\), then \(|t_j| \geq \text{inj } M\) for some \(j\).

Lemma (the component of WF(\(\tilde{\mu}\)) over 0)

The wavefront set of the restriction of \(\tilde{\mu}\) to \((- \text{inj } M, \text{inj } M)^3\) is contained in

\[\{(0, \tau) \in \dot{T}_x^* \mathbb{R}^3 : \tau \text{ is triangle-good}\}. \]

Furthermore, the composition \(WF'(U) \circ WF(\delta_{\Delta} \otimes \delta_{\Delta})\) is clean over this component.
Strategy for Theorem (triangle-good)

- Note
 \[\rho \ast \mu(\tau) = (2\pi)^3 (\tilde{\mu}, \tilde{\rho} e^{-i\langle \cdot, \tau \rangle}). \]

- Suffices to compute the symbolic data of \(\tilde{\mu} \) near 0.

- If \((t, x, \xi)\) is a geodesic triple, \(t \neq 0\), then \(|t_j| \geq \text{inj } M\) for some \(j\).

Lemma (the component of \(\text{WF}(\tilde{\mu})\) over 0)

The wavefront set of the restriction of \(\tilde{\mu}\) to \((- \text{inj } M, \text{inj } M)^3\) is contained in

\[\{ (0, \tau) \in \dot{T}^*_x \mathbb{R}^3 : \tau \text{ is triangle-good} \}. \]

Furthermore, the composition \(\text{WF}'(U) \circ \text{WF}(\delta_\Delta \otimes \delta_\Delta)\) is clean over this component.

- We compute the symbol of the composition \(U \circ (\delta_\Delta \otimes \delta_\Delta)\).
The order of $U \circ (\delta_\Delta \otimes \delta_\Delta)$

\[\text{ord} U \circ (\delta_\Delta \otimes \delta_\Delta) = \text{ord} U + \text{ord} \delta_\Delta \otimes \delta_\Delta + \frac{e}{2}. \]
The order of $U \circ (\delta_\Delta \otimes \delta_\Delta)$

- $\text{ord } U \circ (\delta_\Delta \otimes \delta_\Delta) = \text{ord } U + \text{ord } \delta_\Delta \otimes \delta_\Delta + \frac{e}{2}$.

- $\text{ord } U = -\frac{3}{4}$.

- Lemma (the order of $U \circ (\delta_\Delta \otimes \delta_\Delta)$ at 0)

- $\text{ord } U = -\frac{3}{4}$.

- $\rho^* \mu(\tau)$ is polyhomogeneous of order $2n - 3 - \frac{3}{4} = 2n - 3$.

The order of $U \circ (\delta_\Delta \otimes \delta_\Delta)$

- $\text{ord } U \circ (\delta_\Delta \otimes \delta_\Delta) = \text{ord } U + \text{ord } \delta_\Delta \otimes \delta_\Delta + \frac{e}{2}$.
- $\text{ord } U = -\frac{3}{4}$.
- $\text{ord } \delta_\Delta \otimes \delta_\Delta = \text{ord } \delta_\Delta + \text{ord } \delta_\Delta = \frac{n}{4} + \frac{n}{4} = \frac{n}{2}$.
The order of $U \circ (\delta_\Delta \otimes \delta_\Delta)$

- $\text{ord } U \circ (\delta_\Delta \otimes \delta_\Delta) = \text{ord } U + \text{ord } \delta_\Delta \otimes \delta_\Delta + \frac{e}{2}$.
- $\text{ord } U = -\frac{3}{4}$.
- $\text{ord } \delta_\Delta \otimes \delta_\Delta = \text{ord } \delta_\Delta + \text{ord } \delta_\Delta = \frac{n}{4} + \frac{n}{4} = \frac{n}{2}$.
- The excess is

$$e = \dim \{(x, \xi_1, \xi_2, \xi_3) : x \in M, \xi_1 + \xi_2 + \xi_3 = 0, \quad |\xi_j|_x = \tau_j \text{ for } j = 1, 2, 3\} = 3n - 3.$$
The order of $U \circ (\delta_\Delta \otimes \delta_\Delta)$

- $\text{ord } U \circ (\delta_\Delta \otimes \delta_\Delta) = \text{ord } U + \text{ord } \delta_\Delta \otimes \delta_\Delta + \frac{e}{2}$.
- $\text{ord } U = -\frac{3}{4}$.
- $\text{ord } \delta_\Delta \otimes \delta_\Delta = \text{ord } \delta_\Delta + \text{ord } \delta_\Delta = \frac{n}{4} + \frac{n}{4} = \frac{n}{2}$.
- The excess is

$$e = \dim \{ (x, \xi_1, \xi_2, \xi_3) : x \in M, \xi_1 + \xi_2 + \xi_3 = 0, \quad |\xi_j|_x = \tau_j \text{ for } j = 1, 2, 3 \} = 3n - 3.$$

Lemma (the order of $U \circ (\delta_\Delta \otimes \delta_\Delta)$ at 0)

$\text{ord } U \circ (\delta_\Delta \otimes \delta_\Delta) = 2n - \frac{9}{4},$

and $\rho \ast \mu(\tau)$ is polyhomogeneous of order $2n - \frac{9}{4} - \frac{3}{4} = 2n - 3.$
The symbol of $U \circ (\delta_\Delta \otimes \delta_\Delta)$

- After applying the clean composition calculus...
The symbol of $U \circ (\delta_\Delta \otimes \delta_\Delta)$

- After applying the clean composition calculus...
- Find, up to powers of 2π, the principal symbol of $U \circ (\delta_\Delta \otimes \delta_\Delta)$ is
The symbol of $U \circ (\delta_{\Delta} \otimes \delta_{\Delta})$

- After applying the clean composition calculus...
- Find, up to powers of 2π, the principal symbol of $U \circ (\delta_{\Delta} \otimes \delta_{\Delta})$ is

$$|M||S^{n-1}|S^{n-2}|\tau_1\tau_2\tau_3(2\text{ area}(\tau))^{n-3}.$$

The symbol of \(U \circ (\delta_\Delta \otimes \delta_\Delta) \)

- After applying the clean composition calculus...
- Find, up to powers of \(2\pi \), the principal symbol of \(U \circ (\delta_\Delta \otimes \delta_\Delta) \) is
 \[
 |M||S^{n-1}|S^{n-2}|\tau_1\tau_2\tau_3(2 \text{ area}(\tau))^{n-3}.
 \]
- Theorem (triangle-good) follows by oscillatory testing,
 \[
 \rho \ast \mu(\tau) = (2\pi)^3(\hat{\mu}, \hat{\rho}e^{-i \langle \cdot, \tau \rangle})
 \]
Further questions

What happens at the degenerate interface? Can we refine bounds to\[
\sum \lambda_k \geq (1 + \epsilon)(\lambda_i + \lambda_j) \left| \langle e_i e_j, e_k \rangle \right|^2 \leq O((\lambda_i + \lambda_j)^{-\infty})\]
where \(\epsilon = \epsilon(\lambda_i + \lambda_j) \to 0\) quantitatively?

Scale \(\rho\) so that \(\rho T(\tau) = T(\rho(\tau))\). Can we get an Ivrii-type refinement for \(\rho T^* \mu(\tau)\) given some 'thinness' assumptions on the geodesic triples?
Further questions

- What happens at the degenerate interface?
Further questions

- What happens at the degenerate interface?
- Can we refine bounds to

\[
\sum_{\lambda_k \geq (1+\epsilon)(\lambda_i+\lambda_j)} |\langle e_i e_j, e_k \rangle|^2 = O((\lambda_i + \lambda_j)^{-\infty})
\]

where \(\epsilon = \epsilon(\lambda_i + \lambda_j) \to 0 \) quantitatively?
Further questions

- What happens at the degenerate interface?
- Can we refine bounds to

\[\sum_{\lambda_k \geq (1+\epsilon)(\lambda_i + \lambda_j)} |\langle e_i, e_j, e_k \rangle|^2 = O((\lambda_i + \lambda_j)^{-\infty}) \]

where \(\epsilon = \epsilon(\lambda_i + \lambda_j) \to 0 \) quantitatively?
- Scale \(\rho \) so that \(\rho_T(\tau) = T\rho(T\tau) \). Can we get an Ivrii-type refinement for

\[\rho_T \ast \mu(\tau) \]

given some ‘thinness’ assumptions on the geodesic triples?
Thank you!