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Abstract

In 1991 Tratnik derived two systems of multivariable orthogonal Wilson polynomials
and considered their limit cases. q-Analogues of these systems are derived, yielding systems
of multivariable orthogonal Askey-Wilson polynomials and their special and limit cases.

1. Introduction. In [10] Tratnik extended the Wilson [12] polynomials

wn(x; a, b, c, d) = (a + b)n(a + c)n(a + d)n(1.1)

× 4F3

[
−n, n + a + b + c + d− 1, a + ix, a− ix

a + b, a + c, a + d
; 1

]
to the multivariable Wilson polynomials (in a different notation)

(1.2)
Wn(x) = Wn(x; a, b, c, d, a2, a3, . . . , as)

=

[
s−1∏
k=1

wnk
(xk; a + α2,k + Nk−1, b + α2,k + Nk−1, ak+1 + ixk+1, ak+1 − ixk+1)

]
× wns

(xs; a + α2,s + Ns−1, b + α2,s + Ns−1, c, d),

where, as elsewhere,

(1.3) x = (x1, . . . , xs), n = (n1, . . . , ns), αj,k =
k∑

i=j

ai, αk = α1,k,

Nj,k =
k∑

i=j

ni, Nk = N1,k, αk+1,k = Nk+1,k = 0, 1 ≤ j ≤ k ≤ s.

These polynomials are of total degree Ns in the variables y1, . . . , ys with yk = x2
k, k =

1, 2, . . . , s, and they form a complete set for polynomials in these variables.

In Askey and Wilson [1], [2] the notations Wn(x2; a, b, c, d) and pn(−x2) are used for
the polynomials in (1.1) and their orthogonality relation is given. Tratnik [10, (2.5)] proved
that the Wn(x) polynomials satisfy the orthogonality relation

(1.4)
∫ ∞

−∞
· · ·

∫ ∞

−∞
Wn(x)Wm(x)ρ(x) dx1 · · · dxs = λn δn,m
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for Re(a, b, c, d, a2, . . . , as) > 0 with

ρ(x) = Γ(a + ix1)Γ(a− ix1)Γ(b + ix1)Γ(b− ix1)(1.5)

×

[
s−1∏
k=1

Γ(ak+1 + ixk+1 + ixk)Γ(ak+1 − ixk+1 − ixk)
Γ(2ixk)

× Γ(ak+1 + ixk+1 − ixk)Γ(ak+1 − ixk+1 + ixk)
Γ(−2ixk)

]

× Γ(c + ixs)Γ(c− ixs)Γ(d + ixs)Γ(d− ixs)
Γ(2ixs)Γ(−2ixs)

,

λn = (4π)s

[
s∏

k=1

nk! (Nk + Nk−1 + 2αk+1 − 1)nk
(1.6)

× Γ(Nk + Nk−1 + 2αk)Γ(nk + 2ak+1)
Γ(2Nk + 2αk+1)

]
× Γ(a + c + α2,s + Ns)Γ(a + d + α2,s + Ns)Γ(b + c + α2,s + Ns)
× Γ(b + d + α2,s + Ns),

and 2a1 = a + b, 2as+1 = c + d.

Tratnik showed that these polynomials contain multivariable Jacobi, Meixner-Pollaczek,
Laguerre, continuous Charlier, and Hermite polynomials as limit cases, and he used a per-
mutation of the parameters and variables in (1.2) and (1.4) to show that the polynomials

(1.7)
W̃n(x) = W̃n(x; a, b, c, d, a2, a3, . . . , as)

= wn1(x1; c + α2,s + N2,s, d + α2,s + N2,s, a, b)

×
s∏

k=2

wnk
(xk; c + αk+1,s + Nk+1,s, d + αk+1,s + Nk+1,s, ak + ixk−1, ak − ixk−1)

also form a complete system of multivariable polynomials of total degree Ns in the variables
yk = x2

k, k = 1, . . . , s, that is orthogonal with respect to the weight function ρ(x) in (1.5),
and with the normalization constant

λ̃n = (4π)s

[
s∏

k=1

nk!(Nk,s + Nk+1,s + 2αk,s+1 − 1)nk
(1.8)

× Γ(Nk,s + Nk+1,s + 2αk+1,s+1)Γ(nk + 2ak)
Γ(2Nk,s + 2αk,s+1)

]
× Γ(a + c + α2,s + Ns)Γ(a + d + α2,s + Ns)
× Γ(b + c + α2,s + Ns)Γ(b + d + α2,s + Ns).
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The Askey-Wilson polynomials defined as in [1] and [3] by

pn(x|q) = pn(x; a, b, c, d|q)(1.9)

= a−n(ab, ac, ad; q)n 4φ3

[
q−n, abcdqn−1, aeiθ, ae−iθ

ab, ac, ad
; q, q

]
,

where x = cos θ, are a q-analogue of the Wilson polynomials (for the definition of the
q-shifted factorials and the basic hypergeometric series 4φ3 see [3]). These polynomials
satisfy the orthogonality relation

(1.10)
∫ 1

−1

pn(x|q)pm(x|q)ρ(x|q)dx = λn(q)δn,m

with max(|q|, |a|, |b|, |c|, |d|) < 1,

ρ(x|q) = ρ(x; a, b, c, d|q)(1.11)

=
(e2iθ, e−2iθ; q)∞(1− x2)−1/2

(aeiθ, ae−iθ, beiθ, be−iθ, ceiθ, ce−iθ, deiθ, de−iθ; q)∞

and

λn(q) = λn(a, b, c, d|q)(1.12)

=
2π(abcd; q)∞

(q, ab, ac, ad, bc, bd, cd; q)∞

× (q, ab, ac, ad, bc, bd, cd; q)n(1− abcdq−1)
(abcdq−1; q)n(1− abcdq2n−1)

.

In this paper we extend Tratnik’s systems of multivariable Wilson polynomials to
systems of multivariable Askey-Wilson polynomials and consider their special cases. Some
q-extensions of Tratnik’s [9] multivariable biorthogonal generalization of the Wilson poly-
nomials are considered in this Proceedings [4]. q-Extensions of Tratnik’s [11] system of
multivariable orthogonal Racah polynomials and their special cases will be considered in
a subsequent paper.

2. Multivariable Askey-Wilson polynomials. In terms of the Askey-Wilson poly-
nomials a q-analogue of the multivariable Wilson polynomials can be defined by

Pn(x|q) = Pn(x; a, b, c, d, a2, a3, . . . , as|q)(2.1)

=

[
s−1∏
k=1

pnk
(xk; aA2,kqNk−1 , bA2,kqNk−1 , ak+1e

iθk+1 , ak+1e
−iθk+1 |q)

]
× pns

(xs; aA2,sq
Ns−1 , bA2,sq

Ns−1 , c, d |q)
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where xk = cos θk, Aj,k =
k∏

i=j

ai, Ak+1,k = 1, Ak = A1,k, 1 ≤ j ≤ k ≤ s. Our main aim in

this section is to show that these polynomials satisfy the orthogonality relation

(2.2)
∫ 1

−1

· · ·
∫ 1

−1

Pn(x|q)Pm(x|q)ρ(x|q)dx1 · · · dxs = λn(q) δn,m

with max(|q|, |a|, |b|, |c|, |d|, |a2|, . . . , |as|) < 1,

(2.3)
ρ(x|q) = ρ(x; a, b, c, d, a2, a3, . . . , as|q)

= (aeiθ1 , ae−iθ1 , beiθ1 , be−iθ1 ; q)−1
∞

×

[
s−1∏
k=1

(e2iθk , e−2iθk ; q)∞(1− x2
k)−1/2

(ak+1eiθk+1+iθk , ak+1eiθk+1−iθk , ak+1eiθk−iθk+1 , ak+1e−iθk+1−iθk ; q)∞

]

× (e2iθs , e−2iθs ; q)∞(1− x2
s)
−1/2

(ceiθs , ce−iθs , deiθs , de−iθs ; q)∞
,

(2.4)
λn(q) = λn(a, b, c, d, a2, a3, . . . , as|q)

= (2π)s

[
s∏

k=1

(q, A2
k+1q

Nk+Nk−1−1; q)nk
(A2

k+1q
2Nk ; q)∞

(q, A2
kqNk+Nk−1 , a2

k+1q
nk ; q)∞

]
× (acA2,sq

Ns , adA2,sq
Ns , bcA2,sq

Ns , bdA2,sq
Ns ; q)−1

∞ ,

where a2
1 = ab and a2

s+1 = cd. The two-dimensional case was considered by Koelink and
Van der Jeugt [6], but they did not give the value of the norm. First observe that by
(1.10)—(1.12) the integration over x1 in (2.2) can be evaluated to obtain that∫ 1

−1

pn1(x1; a, b, a2e
iθ2 , a2e

−iθ2 |q)pm1(x1; a, b, a2e
iθ2 , a2e

−iθ2 |q)(2.5)

× ρ(x1; a, b, a2e
iθ2 , a2e

−iθ2 |q)dx1

= δn1,m1

2π(q, aba2
2q

n1−1; q)n1(aba2
2q

2n1 ; q)∞
(q, abqn1 , a2

2q
n1 ; q)∞

× (aa2q
n1eiθ2 , aa2q

n1e−iθ2 , ba2q
n1eiθ2 , ba2q

n1e−iθ2 ; q)−1
∞ .

After doing the integrations over x1, x2, . . . , xj for a few j one is led to conjecture that

(2.6)∫ 1

−1

· · ·
∫ 1

−1

P (j)
n (x|q)P (j)

m (x|q)ρ(j)(x|q)dx1 · · · dxj

= (2π)j

[
j∏

k=1

δnk,mk

(q, A2
k+1q

Nk+Nk−1−1; q)nk
(A2

k+1q
2Nk ; q)∞

(q, A2
kqNk+Nk−1 , a2

k+1q
nk ; q)∞

]
×

(
aA2,j+1q

Nj eiθj+1 , aA2,j+1q
Nj e−iθj+1 , bA2,j+1q

Nj eiθj+1 , bA2,j+1q
Nj e−iθj+1 ; q

)−1

∞ ,
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where

P (j)
n (x|q) =

j∏
k=1

pnk
(xk; aA2,kqNk−1 , bA2,kqNk−1 , ak+1e

iθk+1 , ak+1e
−iθk+1 |q),

ρ(j)(x|q) = (aeiθ1 , ae−iθ1 , beiθ1 , be−iθ1 ; q)−1
∞

×
j∏

k=1

(e2iθk , e−2iθk ; q)∞(1− x2
k)−1/2

(ak+1eiθk+1+iθk , ak+1eiθk+1−iθk , ak+1eiθk−iθk+1 , ak+1e−iθk+1−iθk ; q)∞

for j = 1, 2, . . . , s − 1. To prove this by induction on j, suppose that j < s − 1, multiply
(2.6) by the xj+1-dependent parts of the weight function and orthogonal polynomials, and
then integrate with respect to xj+1 to get

(2.7)

(2π)j

[
j∏

k=1

δnk,mk

(q, A2
k+1q

Nk+Nk−1−1; q)nk
(A2

k+1q
2Nk ; q)∞

(q, A2
kqNk+Nk−1 , a2

k+1q
nk ; q)∞

]

×
∫ 1

−1

pnj+1(xj+1; aA2,j+1q
Nj , bA2,j+1q

Nj , aj+2e
iθj+2 , aj+2e

−iθj+2 |q)

× pmj+1(xj+1; aA2,j+1q
Nj , bA2,j+1q

Nj , aj+2e
iθj+2 , aj+2e

−iθj+2 |q)
× ρ(xj+1; aA2,j+1q

Nj , bA2,j+1q
Nj , aj+2e

iθj+2 , aj+2e
−iθj+2 |q)dxj+1

= (2π)j+1

[
j+1∏
k=1

δnk,mk

(q, A2
k+1q

Nk+Nk−1−1; q)nk
(A2

k+1q
2Nk ; q)∞

(q, A2
kqNk+Nk−1 , a2

k+1q
nk ; q)∞

]
×

(
aA2,j+2q

Nj+1eiθj+2 , aA2,j+2q
Nj+1e−iθj+2 , bA2,j+2q

Nj+1eiθj+2 , bA2,j+2q
Nj+1e−iθj+2 ; q

)−1

∞ ,

which is the j → j + 1 case of (2.6), completing the induction proof.

Now set j = s− 1 in (2.6) and use it and (2.5) to find that∫ 1

−1

· · ·
∫ 1

−1

Pn(x|q)Pm(x|q)ρ(x|q)dx1 · · · dxs(2.8)

= (2π)s−1

[
s−1∏
k=1

δnk,mk

(q, A2
k+1q

Nk+Nk−1−1; q)nk
(A2

k+1q
2Nk ; q)∞

(q, A2
kqNk+Nk−1 , a2

k+1q
nk ; q)∞

]

×
∫ 1

−1

pns
(xs; aA2,sq

Ns−1 , bA2,sq
Ns−1 , c, d|q)

× pms
(xs; aA2,sq

Ns−1 , bA2,sq
Ns−1 , c, d|q)

× (e2iθs , e−2iθs ; q)∞(1− x2
s)
−1/2

(ceiθs , ce−iθs , deiθs , de−iθs ; q)∞
× (aA2,sq

Ns−1eiθs , aA2,sq
Ns−1e−iθs , bA2,sq

Ns−1eiθs , bA2,sq
Ns−1e−iθs ; q)−1

∞ dxs

= λn(q) δn,m,
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where λn(q) is given by (2.4). This completes the proof of (2.2).

Note that the integration region and weight function in (2.2) and (2.3) are invariant
under the permutation of variables and parameters

(2.9) a ↔ c, b ↔ d, ak+1 ↔ as−k+1, k = 1, 2, . . . , s− 1,

θk ↔ θs−k+1, k = 1, 2, . . . , s.

Hence, when these permutations are applied to (2.2) and (2.3) the transformed polynomials
also form an orthogonal system with the same weight function. Since the polynomials
Pn(x|q) in (2.1) are not invariant under (2.9), we obtain a second system of multivariable
orthogonal Askey-Wilson polynomials, which is a q-analogue of Tratnik’s second system
(1.7) of multivariable Wilson polynomials. After doing the permutation nk ↔ ns−k+1,
k = 1, . . . , s, the transformed polynomials and the normalization constant are given by

P̃n(x|q) = P̃n(x; a, b, c, d, a2, a3, . . . , as|q)(2.10)
= pn1(x1; cA2,sq

N2,s , dA2,sq
N2,s , a, b|q)

×

[
s∏

k=2

pnk
(xk; cAk+1,sq

Nk+1,s , dAk+1,sq
Nk+1,s , aeiθk−1 , ae−iθk−1 |q)

]
,

λ̃n(q) = λ̃n(a, b, c, d, a2, a3, . . . , as|q)(2.11)

= (2π)s

[
s∏

k=1

(q, A2
k,s+1q

Nk,s+Nk+1,s−1; q)nk
(A2

k,s+1q
2Nk,s ; q)∞

(q, A2
k+1,s+1q

Nk,s+Nk+1,s , a2
kqnk ; q)∞

]
× (acA2,sq

Ns , adA2,sq
Ns , bcA2,sq

Ns , bdA2,sq
Ns ; q)−1

∞ ,

with a2
1 = ab, a2

s+1 = cd, and max(|q|, |a|, |b|, |c|, |d|, |a2|, |a3|, . . . , |as|) < 1. These polyno-
mials are of total degree Ns in the variables x1, . . . , xs and they form a complete set.

A five-parameter system of multivariable Askey-Wilson polynomials which is associ-
ated with a root system of type BC was introduced by Koornwinder [7] and studied with
four of the parameters generally complex in Stokman [8].

3. Special Cases of (2.2). First observe that the continuous dual q-Hahn polynomial
defined by

dn(x; a, b, c|q) = a−n(ab, ac; q)n 3φ2

[
q−n, aeiθ, ae−iθ

ab, ac
; q, q

]
(3.1)

is obtained by taking d = 0 in (1.9) and x = cos θ. Since dn(x; a, b, c|q) is symmetric in its
parameters by [3, (3.2.3)], we may define the multivariable dual q-Hahn polynomials by

Dn(x|q) = Dn(x; a, b, c, a2, a3, · · · , as|q)(3.2)

=

[
s−1∏
k=1

dnk
(xk; ak+1e

iθk+1 , ak+1e
−iθk+1 , aA2,kqNk−1 |q)

]
× dns

(xs; b, c, aA2,sq
Ns−1 |q),
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with xk = cos θk for k = 1, 2, . . . , s. It follows from the b = 0 case of (2.2)—(2.4) that the
orthogonality relation for these polynomials is

(3.3)
∫ 1

−1

· · ·
∫ 1

−1

Dn(x|q)Dm(x|q)ρ(x|q)dx1 · · · dxs = λn(q) δn,m

with

(3.4)
ρ(x|q) = ρ(x; a, b, c, a2, a3, . . . , as|q)

= (aeiθ1 , ae−iθ1 ; q)−1
∞

×

[
s−1∏
k=1

(e2iθk , e−2iθk ; q)∞(1− x2
k)−1/2

(ak+1eiθk+1+iθk , ak+1eiθk+1−iθk , ak+1eiθk−iθk+1 , ak+1e−iθk+1−iθk ; q)∞

]

× (e2iθs , e−2iθs ; q)∞(1− x2
s)
−1/2

(beiθs , be−iθs , ceiθs , ce−iθs ; q)∞
,

(3.5)
λn(q) = λn(a, b, c, a2, a3, . . . , as|q)

= (2π)s

[
s∏

k=1

(qnk+1, a2
k+1q

nk ; q)−1
∞

]
(abA2,sq

Ns , acA2,sq
Ns ; q)−1

∞ ,

where a2
s+1 = bc and max(|q|, |a|, |b|, |c|, |a2|, |a3|, . . . , |as|) < 1.

By taking the limit a → 0 in (3.2)—(3.5) we can now deduce that the multivariable
Al-Salam-Chihara polynomials defined by

Sn(x|q) = Sn(x; b, c, a2, a3, . . . , as|q)(3.6)

=

[
s−1∏
k=1

pnk
(xk; ak+1e

iθk+1 , ak+1e
−iθk+1 |q)

]
× pns

(xs; b, c|q).
satisfy the orthogonality relation

(3.7)
∫ 1

−1

· · ·
∫ 1

−1

Sn(x|q)Sm(x|q)ρ(x|q)dx1 · · · dxs = λn(q) δn,m

with

(3.8)

ρ(x|q) =

[
s−1∏
k=1

(e2iθk , e−2iθk ; q)∞(1− x2
k)−1/2

(ak+1eiθk+1+iθk , ak+1eiθk+1−iθk , ak+1eiθk−iθk+1 , ak+1e−iθk+1−iθk ; q)∞

]

× (e2iθs , e−2iθs ; q)∞(1− x2
s)
−1/2

(beiθs , be−iθs , ceiθs , ce−iθs ; q)∞
,

(3.9)

λn(q) = (2π)s
s∏

k=1

(qnk+1, a2
k+1q

nk ; q)−1
∞ ,
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where a2
s+1 = bc, max(|q|, |b|, |c|, |a2|, |a3|, . . . , |as|) < 1, and the Al-Salam-Chihara poly-

nomial pn(x; b, c|q) is defined by

(3.10) pn(x; b, c|q) = b−n(bc; q)n 3φ2

[
q−n, beiθ, be−iθ

bc, 0 ; q, q
]

,

see [5, (3.8.1)].

Setting

(3.11) a = q(2α+1)/4, b = q(2α+3)/4, c = −q(2β+1)/4, d = −q2β+3)/4

in (2.1) and (2.2) gives a multivariable orthogonal extension of the continuous q-Jacobi
polynomials P

(α,β)
n (x|q) defined in [3, (7.5.24)], while setting

(3.12) a = q1/2, b = qα+1/2, c = −qβ+1/2, d = −q1/2

in (2.1) and (2.2) gives a multivariable orthogonal extension of the P
(α,β)
n (x; q) polynomials

defined in (7.5.25). Also, via [3, (7.5.33)] and [3, (7.5.34) with q → q1/2] the α = β = λ−1/2
substitution gives a multivariable orthogonal extension of the continuous q-ultrashperical
polynomials Cn(x; qλ|q). By letting λ → ∞ when we use (3.12), i.e. set a = −d = q1/2

and b = c = 0, we get a multivariable orthogonal extension of the continuous q-Hermite
polynomials defined in [3, Ex. 1.28].

A multivariable orthogonal extension of the continuous q-Hahn polynomials defined
by

pn(cos(θ + φ); a, b|q)(3.13)

= (a2, ab, abe2iφ; q)n(aeiφ)−n
4φ3

[
q−n, a2b2qn−1, ae2iφ+iθ, ae−iθ

a2, ab, abe2iφ ; q, q
]

,

see [3, (7.5.43)], is obtained from (2.1)—(2.4) by replacing a, b, c, d, θk and xk = cos θk

by a1e
iφ, a1e

−iφ, as+1e
iφ, as+1e

−iφ, θk + φ and cos(θk + φ), respectively.

It is clear that similar special cases of the second system of multivariable orthogonal
Askey-Wilson polynomials can be obtained by appropriate specialization of the parameters
in (2.10) and (2.11). Additional systems of multivariable orthogonal polynomials will be
considered elsewhere.
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