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Abstract

Necessary multiplier conditions for Laguerre expansions are derived and discussed
within the framework of weighted Lebesgue spaces.

1 Introduction

The purpose of this paper is to enlighten the structure of multipliers for Laguerre
expansions on Lp spaces from the point of view of necessary conditions. From the
theory of Hankel and Jacobi multipliers (see Gasper and Trebels [6], [7] ) it is known
that necessary conditions may very well reflect the behavior of multipliers in so far
as they are (up to a natural smoothness gap) comparable with sufficient conditions.
Following Görlich and Markett [9] we consider the Lebesgue spaces

Lp
w(γ) = {f :‖ f ‖Lp

w(γ)
= (

∫ ∞

0
|f(x)e−x/2|pxγ dx)1/p < ∞} , 1 ≤ p < ∞;

in particular, for γ = αp/2, these are the Lp
u(α)-spaces in [9]:

Lp
u(α) = {f :‖ f ‖Lp

u(α)
=
(∫ ∞

0
|f(x)u(x, α)|p dx

)1/p

< ∞}, 1 ≤ p < ∞,

where u(x, α) = xα/2e−x/2. Let Lα
n(x), α > −1, n ∈ N0, be the classical Laguerre

polynomials (see Szegö [19, p. 100]),

Rα
n(x) = Lα

n(x)/Lα
n(0), Lα

n(0) = Aα
n =

(
n+ α
n

)
=

Γ(n+ α + 1)
Γ(n+ 1)Γ(α + 1)

.
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Define the Fourier Laguerre coefficients of a function f ∈ Lp
w(γ) with respect to the

orthogonal system {Rα
n} by

f̂α(n) =
∫ ∞

0
f(x)Rα

n(x)xαe−x dx,

if the integrals exist. Then the formal Laguerre expansion of f is given by

f(x) ∼ (Γ(α + 1))−1
∞∑

k=0

f̂α(k)Lα
k (x).

A sequence {mk} is called a multiplier on Lp
w(γ), notation {mk} ∈ Mp

w(γ), if

‖
∞∑

k=0

mkf̂α(k)Lα
k ‖Lp

w(γ)
≤ C ‖ f ‖Lp

w(γ)

for all polynomials f ; the smallest constant C for which this holds is called the
multiplier norm ‖ {mk} ‖Mp

w(γ)
. Generic positive constants that are independent

of the functions (and sequences) will be denoted by C. In the case of Laguerre
multipliers on Lp

w(α) there seems to occur a surprising phenomenon: whereas for
4/3 ≤ p < 2 the necessary conditions quite well reflect the boundedness behavior of
the well understood example of the Cesàro means, there is a broadening (towards p =
1) growth/smoothness gap between our (at p = 1 best possible) necessary conditions
and the Cesàro multiplier; it seems that the space L4/3

w(α) plays a crucial role for the
theory of Fourier Laguerre multipliers. The boundedness of the Cesàro means of the
Laguerre expansion of f

(C, δ)α
n(f, x) = (Aδ

n)−1
n∑

k=0

Aδ
n−kf̂α(k)Lα

k (x)

is discussed in a number of papers by Askey and Wainger [2], Muckenhoupt [16],
Poiani [17], Markett [12], and Görlich and Markett [9] ; e.g. there holds for α ≥ 0
and δ ≥ 0

‖ (C, δ)α
nf ‖Lp

w(γ)
≤ C ‖ f ‖Lp

w(γ)
, δ >

{
2|1

p
− 1

2 | − 1
2 if γ = αp/2

(2α + 2)|1
p

− 1
2 | − 1

2 if γ = α
(1)

uniformly in n; by interpolation one easily gets results also for other γ-values. By
Trebels [20, p.21] this implies in particular that any sequence {mk}, converging to
zero and being sufficiently smooth, is a multiplier on Lp

w(γ), more precisely,

‖
∞∑

k=0

mkf̂α(k)Lα
k ‖Lp

w(γ)
≤ C

∞∑
k=0

Aδ
k|∆δ+1mk| ‖ f ‖Lp

w(γ)
(2)
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for all polynomials f when δ and γ satisfy the conditions in (1). Here the fractional
difference of order δ is defined by

∆δmk =
∞∑

j=0
A−δ−1

j mk+j

whenever the sum converges. Within the setting of the Lp
w(α)-spaces our main result

reads

Theorem 1.1 If f ∈ Lp
w(α), 1 ≤ p ≤ 2, and α > −1, then

sup
k

|(k + 1)λ+(α+1)/q∆λf̂α(k)| ≤ C ‖ f ‖Lp
w(α)

,

provided

a) 0 < λ ≤ (2α + 4
3)
(

1
p

− 1
2

)
− 1

3 if 1 ≤ p < 4
3 ,

b) 0 < λ < (2α + 2)
(

1
p

− 1
2

)
− 1

2 if 4
3 ≤ p < 2.

This theorem and an extension of it are proved in Section 2. The proof relies heavily
on the particularly simple formula for fractional differences of the Rα

n polynomials

∆λRα
k (x) =

Γ(α + 1)
Γ(α + λ+ 1)

xλRα+λ
k (x), x > 0, λ > −(α + 1/2)/2, (3)

which is just formula 6.15(4) in [4] when setting c = α+1, c′ = α+λ+1 and observing
that Rα

k (x) = 1F1(−k;α + 1; x) = Φ(−k, α + 1; x).

Corollary 1.1 Let 1 ≤ p ≤ 2, λ > 0, and {mk} be a Fourier Laguerre multiplier
sequence on Lp

w(α). Then

sup
k

|(k + 1)λ∆λmk| ≤ C ‖ {mk} ‖Mp
w(α)

,

provided λ satisfies the conditions in Theorem 1.1.

Remarks. 1) This result is best possible for p = 1 and α ≥ 0 in the sense that
there is a uniformly bounded multiplier family which satisfies the above necessary
condition only for λ ≤ α+1/3. For consider the multiplier sequence {mk(t)},mk(t) =
e−t/2Rα

k (t), which is uniformly bounded in t > 0 (see [9]). By (3) it follows that

|kλ∆λmk(t)| = C|kλtλe−t/2Rα+λ
k (t)| ≈ |k−αtλe−t/2Lα+λ

k (t)|.
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The sup-norm over t of the last expression behaves like kλ−α−1/3 by the fourth case
of Markett’s Lemma 1 in [14], hence it diverges when λ > α + 1/3.

2) Corollary 1.1 gives unboundedness of the Cesàro means in the p interval 1 ≤
p < 4/3 only for δ < (2α + 4/3)(1/p− 1/2) − 1/3, whereas the correct critical index
δc at which still divergence happens is δc = (2α + 2)(1/p − 1/2) − 1/2 (see [9]), i.e.,
there is a considerable gap between the real range of unboundedness and the one
given by Corollary 1.1 in the case 1 ≤ p < 4/3 for the Cesàro test multiplier. This
is in contrast to the Jacobi and Hankel multiplier case (see [6], [7]) where, except for
the endpoint, the correct range for the unboundedness of the Cesàro means is given
by the general necessary conditions. We note that for 4/3 ≤ p ≤ 2 Corollary 1.1 gives
divergence for δ < δc with the right divergence order.

3) In summability theory for numerical series the following result is well known
(see [22, p. 105]): The factor sequence {mk} maps each Cδ summable series

∑
uk into

a Cδ summable series
∑
mk uk if and only if the sequence is bounded and

∞∑
k=0

Aδ
k|∆δ+1mk| < ∞.

If one wants to discuss this problem in a Banach space setting (see [20]) one may
decompose the Banach space X when assuming the existence of a sequence of pro-
jections {Pk}k∈N0 ⊂ [X], where [X] is the space of all bounded linear operators from
X to X, with the following properties:

i) the projections are mutually orthogonal: PkPj = δj,kPk,

ii) they are total: Pkf = 0 for all k implies f = 0,

iii) the linear span of the ranges Pk(X) is dense in X.

iv) the Cesàro means

(C, δ)nf = (Aδ
n)−1

n∑
k=0

Aδ
n−kPkf

are uniformly bounded for some δ ≥ 0 :

‖ (C, δ)nf ‖≤ C ‖ f ‖ ∀f ∈ X. (4)

If we introduce multipliers analogous to the above Laguerre case, then an analog to the
sufficient direction holds for such Cesàro bounded expansions (see [20, p. 21]). But
one cannot expect that the converse is also true since concrete orthogonal expansions
in general satisfy additional properties, e.g. they are (C, δ) bounded for all δ greater
than a critical index but not for the critical index itself. Nevertheless, motivated by
the case of Jacobi expansions (or Hankel transforms) one may look at the following
problem in the above Banach space setting:
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Suppose that

a) (4) holds for all δ > δc > 0,

b) for some f ∈ X one has

lim sup
n→∞

‖ (C, δc)nf ‖= ∞.

Is it true that the multiplier norm of a sequence {mk} can, up to a constant,
be estimated from below by supk |kλ∆λmk| for all λ, 0 < λ < δc?

Corollary 1.1 answers this question with no: the (C, α+ 1/2)α
n means of the above

Laguerre expansion are not uniformly bounded (see [9]) so that according to (1) the
critical index in L1

w(α) is α+1/2, whereas only λ ≤ α+1/3 is admitted by the example
in Remark 1.

4) According to a written communication of C. Markett there exists, apart from
the obvious sufficient condition of type (2), the following unpublished result due to
V. Dietrich, E. Görlich, G. Hinsen, and C. Markett

‖
∞∑

k=0

mkf̂α(k)Lα
k ‖Lp

w(α)
≤ C

sup
k

|mk| + sup
n

( 2n∑
k=n

|Aγ
k∆γmk|2 1

k

)1/2
 ‖ f ‖Lp

w(α)

provided 1 < p < ∞ and γ ≥ α + 1 ≥ 1. This condition is comparable with the
necessary one in Corollary 1.1 (see [5]); in particular, their combination gives

Corollary 1.2 If the sequence {mk} ∈ Mp
w(α) for all α ≥ 0 and some fixed p 6= 2,

then {mk} ∈ Mp
w(α) for all α ≥ 0 and for all p, 1 < p < ∞.

For the proof observe that by duality one can assume without loss of generality that
1 < p < 2. For fixed p < 2 and fixed α′ ≥ 0 the necessary condition guarantees for
the multiplier sequence in question a λ smoothness of order greater than α′ + 1 since
by hypothesis α may be chosen sufficiently large, and so application of the sufficient
condition with respect to the parameter α′ gives the assertion.

Better sufficient conditions would allow better transplantation theorems for mul-
tipliers with respect to Laguerre expansions of different parameters.

5) Corollary 1.1 may be extended by considering multipliers acting on Lp
w(α) into

Lr
w(α), p ≤ r, i.e., more precisely, we say m ∈ Mp,r

w(α) if

‖
∞∑

k=0

mkf̂α(k)Lα
k ‖Lr

w(α)
≤ C ‖ f ‖Lp

w(α)

for all polynomials f , and define ‖ m ‖Mp,r
w(α)

to be the smallest constant C for which
the preceding inequality holds.
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Corollary 1.3 Let 1 ≤ p ≤ r ≤ 2, λ > 0, and {mk} ∈ Mp,r
w(α). Then

sup
k

|(k + 1)λ+σ∆λmk| ≤ C ‖ {mk} ‖Mp,r
w(α)

,

where 1/r = 1/p− σ/(α + 1) and

a) 0 < λ ≤ (2α + 4
3)
(

1
r

− 1
2

)
− 1

3 if 1 ≤ r < 4
3 ,

b) 0 < λ < (2α + 2)
(

1
r

− 1
2

)
− 1

2 if 4
3 ≤ r < 2.

Corollary 1.3 nicely indicates how fractional integration (with multiplier sequence
{(k + 1)−σ}) should work.

Theorem 1.1, Corollary 1.1, and Corollary 1.3 are proved in Section 2 along with
some extensions. In Section 3 expansions with respect to the orthonormalized La-
guerre functions

Lα
n(x) = (n!/Γ(n+ α + 1))1/2xα/2e−x/2Lα

n(x)

will be considered. We define modified Fourier Laguerre coefficients

f̂n =
∫ ∞

0
f(x)Lα

n(x)xα/2e−x/2 dx

(whenever the integrals exist, e.g., when f ∈ Lp
u(α), 1 ≤ p < ∞, α ≥ 0) and have the

expansion

f(x)xα/2e−x/2 ∼
∞∑

n=0
f̂nLα

n(x).

Since f̂n = (Aα
n/Γ(α + 1))1/2f̂α(n) we may state the standard Parseval formula in the

following form

1
Γ(α + 1)

∞∑
k=0

Aα
k |f̂α(k)|2 =

∞∑
k=0

|f̂k|2 =
∫ ∞

0
|f(x)u(x, α)|2 dx =

∫ ∞

0
|f(x)e−x/2|2xα dx

(5)
whenever f ∈ L2

u(α) = L2
w(α). In Section 3 it is shown that even though the associated

multiplier spaces Mp
u(α) and Mp

u(α) for expansions of functions in Lp
u(α) with respect

to Lα
n and, respectively, to Lα

n coincide, there is an interesting different L1
u(α) behavior

of the Cesàro kernel χα,δ
n (x) in (7) and the modified Cesàro kernel kα,δ

n (x) defined in
Section 3.
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2 Proofs and extensions

Theorem 1.1 is an immediate consequence of the γ = α case of the following basic

Lemma 2.1 Let α > −1, f ∈ Lp
w(γ), 1 ≤ p ≤ 2, and γ > (α + 1)p/2 − 2/3. Then

a)

sup
k

|(k + 1)γ/p+1/(3p)∆(2γ+4/3)/p−(α+1)f̂α(k)| ≤ C ‖ f ‖Lp
w(γ)

, 1 ≤ p < 4/3,

provided γ ≥ −1/3 if p = 1 or γ > −1/3 if 1 < p < 4/3.

b)
sup

k
|(k + 1)α+λ+1−(γ+1)/p∆λf̂α(k)| ≤ C ‖ f ‖Lp

w(γ)
, 1 ≤ p ≤ 2,

provided

0 < λ <
{

(2γ + 4/3)/p− (α + 1) if 1 ≤ p < 4/3
(2γ + 2)/p− (α + 3/2) if 4/3 ≤ p ≤ 2.

Proof. By the definition of the Fourier Laguerre coefficients, formula (3), and
Hölder’s inequality it follows that (1/p+ 1/q = 1)

∆λf̂α(k) =
∫ ∞

0
f(t)∆λRα

k (t)e−ttα dt

= C
∫ ∞

0
f(t)Rα+λ

k (t)e−ttα+λ dt
(
= Cf̂α+λ(k)

)
≤ C ‖ f ‖Lp

w(γ)


(∫∞

0 |Rα+λ
k (t)e−t/2tα+λ−γ|qtγ dt

)1/q
if p > 1

supt>0 |Rα+λ
k (t)e−t/2tα+λ−γ| if p = 1 .

The observation that Rα+λ
k = Lα+λ

k /Aα+λ
k and a direct application of Lemma 1 in [14]

now give for λ ≥ 0

|∆λf̂α(k)| ≤ C ‖ f ‖Lp
w(γ)

× (6)

×



k−γ/p−1/(3p) if λ ≥ (2γ + 4/3)/p− (α + 1), 1 ≤ p < 4/3
k−(α+λ+1)+(γ+1)/p if λ < (2γ + 4/3)/p− (α + 1), 1 ≤ p < 4/3
k1/2−(γ+1)/p if λ > (2γ + 2)/p− (α + 3/2), 4/3 < p ≤ ∞
k1/2−(γ+1)/p(log k)1−1/p if λ = (2γ + 2)/p− (α + 3/2), 4/3 ≤ p ≤ ∞
k−(α+λ+1)+(γ+1)/p if λ < (2γ + 2)/p− (α + 3/2), 4/3 ≤ p ≤ ∞,

where, as usual, k and log k on the right hand side are replaced by positive constants
when k = 0 or 1. The assertion of the Lemma is now evident.

In order to deduce necessary multiplier conditions from Lemma 2.1 we need on
the one hand boundedness of the multipliers involved and on the other control over
suitable test functions; the latter will be guaranteed by
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Lemma 2.2 Let 1 ≤ p ≤ 2, γ > −1, and let N be a fixed integer greater than
2(γ + 1)/p− (α + 3/2). If {gk} ∈ l∞ has compact support and g(x) =

∑∞
k=0 gkL

α
k (x),

then

‖ g ‖Lp
w(γ)

≤ C
∞∑

k=0

(k + 1)N+(α+1)−(γ+1)/p|∆N+1gk|.

Proof. Start with the Cesàro kernel given by

χα,δ
n (x) = (Aδ

nΓ(α + 1))−1
n∑

k=0

Aδ
n−kL

α
k (x) = (Aδ

nΓ(α + 1))−1Lα+δ+1
n (x). (7)

Then g may be represented as

g(x) = Γ(α + 1)
∞∑

k=0

AN
k (∆N+1gk)χα,N

k (x).

Since the third case of Lemma 1 in [14] gives

‖ χα,δ
k ‖Lp

w(γ)
≤ C (k + 1)(α+1)−(γ+1)/p, δ > 2(γ + 1)/p− (α + 3/2), (8)

when 1 ≤ p ≤ 2, α + δ > −2, and γ > −1, Lemma 2.2 follows after taking the
Lp

w(γ)-norm of g(x).

Consider a monotone decreasing C∞-function φ(x) with

φ(x) =
{

1 if 0 ≤ x ≤ 2
0 if x ≥ 4

, φi(x) = φ(x/2i).

Then ∞∑
j=0

(j + 1)N+(α+1)−(γ+1)/p|∆N+1φi(j)| ≤ C (2i)(α+1)−(γ+1)/p,

which can be easily verified by using a slight modification of Lemma 3.6 in [20], and
it follows by applying Lemma 2.2 to the function

Φ(i)(x) =
∞∑

j=0
φi(j)Lα

j (x)

that
‖ Φ(i) ‖Lp

w(γ)
≤ C (2i)(α+1)−(γ+1)/p (9)

when 1 ≤ p ≤ 2, α > −1 and γ > −1.

Let us turn to the problem of dominating the l∞-norm of the multiplier sequence
in question by its multiplier norm. First observe that by the second and fifth case of
formula (6) there holds

|f̂α(k)| ≤ C(k + 1)(γ+1)/p−(α+1) ‖ f ‖Lp
w(γ)
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if γ > (α + 1)p/2 − 2/3 when 1 ≤ p < 4/3, and if γ > (α + 3/2)p/2 − 1 when
4/3 ≤ p ≤ 2. So if one considers m = {mk} ∈ Mp

w(γ) and replaces f̂α(k) by mkφi(k)
one obtains by the previous estimate and (9) that

sup
k≤2i+1

|mk| ≤ sup
k

|mkφi(k)| ≤ C ‖ m ‖Mp
w(γ)

with constant independent of i, thus

Mp
w(γ) ⊂ l∞ when γ >

{
(α + 1)p/2 − 2/3 if 1 ≤ p < 4/3
(α + 3/2)p/2 − 1 if 4/3 ≤ p ≤ 2 (10)

in the sense of continuous embedding.

Lemma 2.3 If α > −1 and m ∈ Mp
w(γ), 1 ≤ p ≤ 2, then

a) supk |(k + 1)(2γ+4/3)/p−(α+1)∆(2γ+4/3)/p−(α+1)mk| ≤ C ‖ m ‖Mp
w(γ)

when 1 ≤ p < 4/3 and γ > (α + 1)p/2 − 2/3, and

b) supk |(k + 1)λ∆λmk| ≤ C ‖ m ‖Mp
w(γ)

when λ satisfies the conditions of Lemma 2.1 and γ those of (10) .

Proof. Set λ = (2γ + 4/3)/p − (α + 1). From Part a) of Lemma 2.1, it follows
that

C(2i)(α+1)−(γ+1)/p ‖ m ‖Mp
w(γ)

≥ C ‖ ∑mkφi(k)Lα
k ‖Lp

w(γ)

≥ sup
2i−1≤k≤2i

|kγ/p+1/3p∆λ(mkφi(k))| ≥ sup
2i−1≤k≤2i

|kγ/p+1/3p∆λmk|

− sup
2i−1≤k≤2i

|kγ/p+1/3p
∞∑

j=2i

A−λ−1
j {φi(k + j) − 1}mk+j|.

Hence
‖ m ‖Mp

w(γ)
≥ C2iλ sup

2i−1≤k≤2i

|∆λmk| − C sup
k

|mk|

and therefore, by (10) ,

sup
2i−1≤k≤2i

|kλ∆λmk| ≤ C ‖ m ‖Mp
w(γ)

uniformly in i, whence Part a); Part b) follows analogously.
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Remarks. 1) Corollary 1.1 is the γ = α case of Lemma 2.3. Corollary 1.3 can be
derived analogously from Lemma 2.1 (with γ = α) and (9) when observing that

sup
k

|(k + 1)λ+α+1−(α+1)/r∆λ(mkφi(k))|
≤ C ‖ m ‖Mp,r

w(α)
‖ Φ(i) ‖Lp

w(α)
≤ C(2i)α+1−(α+1)/p ‖ m ‖Mp,r

w(α)
.

For historical reasons (e.g., see the convolution structure in [8]) and for later use we
state a special case (γ = αp/2) of Lemmas 2.1 and 2.3 (using the notation Mp

u(α) :=
Mp

w(αp/2) and 1/p+ 1/q = 1)

Corollary 2.4 If α > −1 and 1 ≤ p < 4/3, then

a) supk |(k + 1)λ+α/2+1/q∆λf̂α(k)| ≤ C ‖ f ‖Lp
u(α)

, 0 < λ ≤ 1
3 − 4

3q
,

b) supk |(k + 1)λ∆λmk| ≤ C ‖ m ‖Mp
u(α)

, 0 < λ ≤ 1
3 − 4

3q
.

For sufficient multiplier conditions on Lp
u(α) comparable with (of the same type as) the

necessary ones, see the Corollary for n = 1 in D lugosz [3]. Using the transplantation
result of Kanjin [10] one can improve D lugosz’s result to

‖
∞∑

k=0

mkf̂(k)Lα
k ‖Lp

u(α)
≤ C

sup
k

|mk| + sup
n

( 2n∑
k=n

|(k + 1)∆1mk|2 1
k

)1/2
 ‖ f ‖Lp

u(α)
.

for all α ≥ 0 and 1 < p < ∞; namely, Kanjin’s result implies

Mp
u(α) = Mp

u(0) = Mp
w(0), α ≥ 0, 1 < p < ∞,

and the assertion follows by the above mentioned result of Dietrich, Görlich, Hinsen,
and Markett.

2) There arises the question whether Lemma 2.3 can be improved by interpolation.
Observe that from Lemma 2.1 with p = 1, γ = (α + λ)/2 − 1/6 and λ > 0, we have

sup
k

|
√
Aα+λ

k (k + 1)1/6∆λf̂α(k)| ≤ C
∫ ∞

0
|f(x)e−x/2x(α+λ)/2−1/6| dx,

and from (5) with α replaced by α+ λ and the formula in the first lines of the proof
to Lemma 2.1 we have( ∞∑

k=0

|
√
Aα+λ

k ∆λf̂α(k)|2
)1/2

≤ C
(∫ ∞

0
|f(x)e−x/2x(α+λ)/2|2 dx

)1/2
.

Then application of the Stein and Weiss interpolation theorem (see [18]), where we
set Tf = {Tf(k)}, T f(k) =

√
Aα+λ

k ∆λf̂α(k), gives( ∞∑
k=0

|(k + 1)(2/p−1)/6Tf(k)|q
)1/q

≤ C
(∫ ∞

0
|f(x)e−x/2x(α+λ)/2−(2/p−1)/6|p dx

)1/p

.

In particular this implies Part a) of the following
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Corollary 2.5 Let α > 0 , 1 ≤ p ≤ 2, and (α + 1)(1/p − 1/2) > 1/4. Then, with
λ = (2α + 2/3)(1/p− 1/2),

a)
(∑∞

k=0 |(k + 1)λ+α/q∆λf̂α(k)|q
)1/q ≤ C ‖ f ‖Lp

w(α)
,

b) supn

(∑2n
k=n |(k + 1)λ∆λmk|q 1

k

)1/q ≤ C ‖ m ‖Mp
w(α)

.

Part b) follows along the lines of the proof of Lemma 2.3; observe that the restriction
on p comes from (10). Part b) does not contain Corollary 1.1 and vice versa, which
may be seen by the examples of the Cesàro multiplier family {Aδ

n−k/A
δ
n} (where, e.g.,

at p = 4/3 Corollary 1.1 gives a greater δ-domain where divergence happens) and se-
quences of type {eik/(k+1)ν} (where, e.g., at p = 4/3 Corollary 2.5 leads to a greater
ν-domain in which this sequence cannot be a multiplier). The embedding results in
[5] lead to the conjecture that λ = (2α + 1/3)(1/p− 1/2) + 1/6 for 1 < p < 4/3 and
λ = (2α + 1)(1/p − 1/2) for 4/3 ≤ p < 2 should be the best possible λ-parameters.
One possibility to get these is to try to improve the inequality in Corollary 2.5 a) at
the point p = 4/3.

3) Formula (3) is equivalent to the Laguerre expansion (9) in Askey [1] after the
latter is corrected by replacing the ratio Γ(n − k + γ − α + 1)/Γ(γ − α + 1) in it
by Γ(n − k + γ − α)/Γ(γ − α). By arguing as on pages 251 – 252 of Tricomi [21] it
can be shown that the fractional difference formula in (3) also holds for x > 0 when
λ > −1−min(α, α/2−1/4). When the more restrictive condition λ > −(α+1/2)/2 is
satisfied, the infinite series for the function ∆λRα

k (x) on the left side of (3) converges
absolutely for x > 0 .

3 Expansions with respect to the orthonormal-
ized Laguerre functions

The orthonormalized Laguerre functions were introduced at the end of the Introduc-
tion. A multiplier sequence in this new setting, notation {mk} ∈ Mp

u(α), satisfies

(∫ ∞

0
|

∞∑
k=0

mkf̂kLα
k (x)|p dx

)1/p

≤ C ‖ f ‖Lp
u(α)

for all polynomials f . Since Γ(α + 1)f̂kLα
k (x) = f̂α(k)Lα

k (x)u(x, α) it is clear that
Mp

u(α) = Mp
u(α) and thus, that Corollary 2.4 b) holds. But it is not obvious that

11



an analogue of Corollary 2.4 a) holds with f̂α(k) replaced by f̂k . For consider the
modified Cesàro kernel

kα,δ
n (x) = (Aδ

n)−1
n∑

j=0
Aδ

n−jLα
j (x)

which differs from (7), apart from the weight u(x, α), by the additional factor (Γ(α+
1)Aα

j )−1/2 inside the sum. Since (8) implies

sup
n

(Aα
n)−1/2 ‖ χα,δ

n ‖L1
u(α)

≤ C, δ > 1/2, (11)

the following lemma comes as a surprise.

Lemma 3.1 For α > 0 and δ ≥ 0 there holds

sup
n

∫ ∞

0
|kα,δ

n (x)| dx = ∞.

Observe however that on account of (1) there still holds {Aδ
n−j/A

δ
n} ∈ M1

u(α) =
M1

u(α) with its multiplier norm uniformly bounded in n. Let us first give an upper
bound for

∫∞
0 |kα,δ

n (x)| dx in the case δ ≥ 1. Since

kα,δ
n (x) =

n∑
k=0

(Aδ
n−k/A

δ
n)Lα

k (x)

=
n∑

k=0

mk(Aδ
n−k/A

δ
n)Lα

k (x)u(x, α),

with mk = (Γ(α + 1)Aα
k )−1/2, we have that

kα,δ
n (x) = Γ(α + 1)(Aδ

n)−1
n∑

k=0

A1
k∆2(mkA

δ
n−k)χα,1

k (x)u(x, α),

where χα,δ
n is defined by (7). Hence taking the L1(0,∞)-norm and observing (11)

leads to ∫ ∞

0
|kα,δ

n (x)| dx ≤ C(Aδ
n)−1

n∑
k=0

A1
k(k + 1)α/2|∆2(mkA

δ
n−k)|.

Leibniz’ formula for differences gives

|∆2(mkA
δ
n−k)| ≈ (k + 1)−α/2−2Aδ

n−k + (k + 1)−α/2−1Aδ−1
n−k + (k + 1)−α/2Aδ−2

n−k

and the hypothesis δ ≥ 1 guarantees that we have only positive terms. Split up the
resulting three sums into 0 ≤ k ≤ n/2 and n/2 ≤ k ≤ n summations. Then the first

12



term with summation over 0 ≤ k ≤ n/2 gives a log (n+ 1) contribution, and all other
terms only give (uniformly in n) bounded contributions. Hence, for δ ≥ 1,∫ ∞

0
|kα,δ

n (x)| dx ≤ C log (n+ 1).

Of course, this is no proof of Lemma 3.1; but by a similar argument its proof can be
reduced to the problem of showing that when α > 0 the modified Poisson kernel

pα
r (x) =

∞∑
j=0

rjLα
j (x) (12)

has no uniformly in r, 0 < r < 1, bounded L1(0,∞)-norm, i.e.

sup
0<r<1

∫ ∞

0
|pα

r (x)| dx = ∞, α > 0. (13)

Take (13) for the moment for granted and assume that Lemma 3.1 is not true for
some α and δ. Since

pα
r (x) =

∞∑
j=0

Aδ
j(∆

δ+1rj)kα,δ
j (x)

and
∑
Aδ

j |∆δ+1rj| ≤ C for all r, 0 < r < 1 (see Chapter 3 in [20]), we immediately
get a contradiction, for if we take L1(0,∞)-norms on both sides of the last equation,
the right hand side is uniformly bounded by assumption, whereas the left hand side
is not bounded.

In order to prove (13), we first observe that from the generating function [4,
10.12(17)]

∞∑
n=0

rnLα
n(x) = (1 − r)−α−1e−xr/(1−r), |r| < 1,

and the special case of the beta integral [4, 1.5(1)]

∫ 1

0
rn(1 − r)a−1dr =

Γ(n+ 1)Γ(a)
Γ(n+ a+ 1)

, a > 0, n ≥ 0,

it follows, formally, by termwise integration that

∞∑
n=0

(Aa
n)−1Lα

n(x) = a
∫ 1

0
(1 − r)a−α−2e−xr/(1−r)dr = ga,α(x)

with
ga,α(x) = aex

∫ ∞

1
tα−ae−xtdt = aexxa−α−1

∫ ∞

0
tα−ae−tdt,
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where x > 0 and 0 < a < α + 1. Notice that since, by use of the Laplace transform
[4, 10.12(32)],∫ ∞

0
ga,α(x)Lα

n(x)e−xxαdx = a
∫ ∞

1
tα−a(

∫ ∞

0
Lα

n(x)e−xtxαdx)dt

=
aΓ(n+ α + 1)

Γ(n+ 1)

∫ ∞

1
(t− 1)nt−a−n−1dt = Γ(α + 1)Aα

n/A
a
n

for x > 0 and 0 < a < α + 1, we have that

ga,α(x) ∼
∞∑

n=0
(Aa

n)−1Lα
n(x).

Also notice that, from the above integral representations for ga,α,

ga,α(x) = O(xa−α−1) as x → 0+,

and, by [4, 6.9(21)] and [11, 4.7(2)],

ga,α(x) = axa−α−1ψ(a− α, a− α; x) = O(1/x) as x → ∞.

From these estimates it follows that we have

Lemma 3.2 Let 0 < a < α + 1, c > 0, and 0 < p < ∞. Then∫ ∞

0
|ga,α(x)|pe−cxxγdx < ∞ if and only if γ > (1 + α− a)p− 1.

In particular, ga,α ∈ L1
u(α), i.e.∫ ∞

0
|ga,α(x)|e−x/2xα/2 dx < ∞,

if and only if a > α/2.

Let α > 0. We will now use Lemma 3.2 to show that
∞∑

n=0
(Γ(α + 1)Aα

n)−1/2Lα
n(x)

is the Laguerre series of a function gα that is not in L1
u(α). Observe that, by [4,

1.18(4)], Γ(α + 1)Aα
n ' nα and

(Γ(α + 1)Aα
n)−1/2 = (Γ(α/2 + 1)Aα/2

n )−1 + cα(Aα/2+1
n )−1 + Eα

n

14



with Eα
n = O((n + 1)−α/2−2). From the above lemma, the function gα

1 = (Γ(α/2 +
1))−1gα/2,α is in L1

w(α) , but it is not in L1
u(α). The function gα

2 = cαg
α/2+1,α is in both

L1
w(α) and L1

u(α), and a termwise use of [14, Lemma 1] shows that the function

gα
3 =

∞∑
n=0

Eα
nL

α
n(x)

is also in both L1
w(α) and L1

u(α). Hence, the function gα = gα
1 + gα

2 + gα
3 is in L1

w(α), it
has the Laguerre expansion

∞∑
n=0

(Γ(α + 1)Aα
n)−1/2Lα

n(x),

but it is not in L1
u(α). By Lemma 4 and Theorem 3 in Muckenhoupt [15], the Poisson

integral gα(r, x) of gα(x) has the Laguerre expansion

∞∑
n=0

rn(Γ(α + 1)Aα
n)−1/2Lα

n(x)

and tends to gα(x) almost everywhere as r → 1−. In view of Parseval’s formula (5),

∞∑
n=0

rn(Γ(α + 1)Aα
n)−1/2Lα

n(x)

is the Laguerre series of an L2
u(α) function when 0 ≤ r < 1. Application of the

asymptotic formula [19, 8.22.1)] shows that the above series converges for x > 0 when
0 ≤ r < 1. Since, by L2 theory, it converges to gα(r, x) in the L2

u(α)-norm, it must also
converge to gα(r, x) almost everywhere when 0 ≤ r < 1. Then, using Fatou’s Lemma,

∞ =
∫ ∞

0
|gα(x)|e−x/2xα/2 dx ≤ lim inf

r→1−

∫ ∞

0
|pα

r (x)| dx ≤ sup
0<r<1

∫ ∞

0
|pα

r (x)| dx

when α > 0, which proves (13) and hence completes the proof of Lemma 3.1.
So it is not obvious that the following analogue of Corollary 2.4 a) holds.

Theorem 3.1 If f ∈ Lp
u(α), 1 ≤ p < 4/3, α ≥ 0 when p = 1, and α > 2/p − 2 when

p > 1, then (1/p+ 1/q = 1)

sup
n

|(n+ 1)λ+1/q∆λf̂n| ≤ C ‖ f ‖Lp
u(α)

, λ =
1
3

− 4
3q
.
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Proof. Use (3) to write

∆λf̂n =
∫ ∞

0
f(x)∆λLα

n(x)u(x, α) dx

= (Γ(α + 1))−1/2
∫ ∞

0
f(x)∆λ

(√
Aα

nR
α
n(x)

)
u2(x, α) dx

= C
∫ ∞

0
f(x)u(x, α)

∞∑
j=0

A−λ−1
j Rα

n+j(x)
√
Aα

n u(x, α) dx

+ C
∫ ∞

0
f(x)u(x, α)

∞∑
j=0

A−λ−1
j Rα

n+j(x)
(√

Aα
n+j −

√
Aα

n

)
u(x, α) dx

= I + II.

From (3) and Hölder’s inequality it follows that if 1 ≤ p < 4/3 and λ ≥ 1/3 − 4/3q
then

|I| ≤ C ‖ f ‖Lp
u(α)

√
Aα

n ‖ xλRα+λ
n (x) ‖Lq

u(α)

≤ C(n+ 1)−α/2−λ ‖ f ‖Lp
u(α)

‖ Lα+2λ−λ
n ‖Lq

u(α+2λ)

≤ C(n+ 1)−α/2−λ ‖ f ‖Lp
u(α)

(n+ 1)(α+2λ)/2−1/3+1/3q

where the latter inequality follows from the fourth case of Lemma 1 in Markett [14].
Hence, if f ∈ Lp

u(α), 1 ≤ p < 4/3 and λ ≥ 1/3 − 4/3q, then

|I| ≤ C(n+ 1)−1/3+1/3q ‖ f ‖Lp
u(α)

.

In order to estimate II first note that |
√
Aα

n+j −
√
Aα

n| ≈ j(n+ j + 1)α/2−1. Then, by
Hölder’s inequality and the fifth case of Lemma 1 in [14],

|II| ≤ C
∫ ∞

0
|f(x)|u(x, α)

∞∑
j=1

j−1−λ|Lα
n+j(x)|(n+ j)−α|

√
Aα

n+j −
√
Aα

n|u(x, α) dx

≤ C ‖ f ‖Lp
u(α)

∞∑
j=1

j−λ(n+ j)−α/2−1 ‖ Lα
n+j ‖Lq

u(α)

≤ C(n+ 1)−λ−1/q ‖ f ‖Lp
u(α)

.

If we now set λ = 1/3 − 4/3q, then the combination of the above inequalities com-
pletes the proof of Theorem 3.1.

There is the question in how far supplementary necessary conditions exist which
reflect a behavior as shown by the modified Cesàro kernel; this is closely connected
with the problem to gain control over additional test multipliers as one has, e.g., in
the case of radial Fourier multipliers.
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