
Notes on the K-theory of Finite Fields 

hy Steve 

The purpose of these notes is to give a complete proof, accessible to graduate stu-
dents in algebraic topology, of Quillen's theorem on the K-theory of finite fields. Quillen's 
proof is long, intricate, and beautiful, and draws on a wide range of subjects and tech-
niques. There is no way to avoid assuming a substantial background on the part of the 
reader-for example, the Serre spectral sequence, classifying spaces, K-theory, homological 
algebra. etc. However I have tried to avoid any assumption that the reader is an expert on 
these background topics. The arguments are therefore presented in substantially greater 
detail than would appear in a typical research paper. In addition, there are eight appen-
dices elaborating on some of the methods and results used in the proof. For example, I 
have included complete proofs of "localization at the fixed point set" for Z / p-actions and 
Nakaoka·s theorem on the homology of extended powers. Many of these techniques will 
be useful to any aspiring algebraic topologist. whether specializing in K -theory or not. 
Quillen·s theorem provides an opportunity to see the techniques "in action." 

Here is the statement of Quillen's theorem in its simplest algebraic form. Let IFq 
denote the field with q elements, where q = pd, P prime. 

This computation is deduced from an even more remarkable theorem that explicitly 
identifies the space BGLF/;. Let 1jJq denote the Adams operation in K-theory, and let F1jJq 
denote the homotopy fibre of 1jJq - 1 : BU -+ BU. 

MAIN THEORDI. Tllere is a homotopy equivalence B : BGLIFt --; F1jJq. 

Since the homotopy groups of F1jJq are easily computed from Bott periodicity, the 
above calculation is an immediate corollary. 'Ve proceed to outline the proof of the main 
theorem. 

(0.1) LDIMA. BGLF/; and F'ljJq are homotopy associative and commutative H -spaces. 

In particular both spaces are simple, so by Whitehead's theorem it is enough to show: 

(0.2). There is a map B : BGLF/; -+ F'ljJq inducing an isomorphism on integral homology. 

The map B is constructed by an ingenious application of representation theory (§2). 
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:\ OTE: Throughout this paper. I denotes a pnme distinct from the characteristic 
pnme p. 

By elementary facts from homology theory, it is then enough to show: 

(0.3). () induces an isomorphism on for R = Q,Zlp,Zlf. 

The cases R = Q, Zip are settled by the next two theorems. 
- -THEOREM 1. H.(Fi,q; Q) = 0 = H.(Ft/Jq; Zip). 

This is an easy consequence of Serre's "mode" theory. 

THEOREM 3.1. ii.(BGLFt; Q) = 0 = ii.(BGLFt; Zip). 

The first equality is an easy application of the "transfer" in group cohomology. The 
second is much harder. The proof given in §3 is somewhat different from Quillen's originai 
proof and is due to [Friedlander] (see also [Fiedoriwicz-Priddy]). The remaining and most 
difficult step is then: 

THEOREM 4.1. () induces an isomorphism on H.( ; Zlf). 

This step has its own outline in §4. The hardest parts are postponed to §5, 6, 7. 
The proof involves explicitly calculating the mod f homology rings of both spaces. This 
calculation of the homology of GL'Fq is of great interest in its own right. 

Our approach to H. (F'ljJq ; z I 1) is to first reduce to the case 1 I q - 1 and then use the 
Serre spectral sequence. The original argument was based on the Eilenberg-Moore spectral 
sequence. 

The reader may wish to focus initially on §2, 4, 6; these sections contain the conceptual 
core of the argument. The lemma of §5 is a bit technical; §7 deals with the eccentricities 
of the prime 2. In§8 we give some further results on the cohomology of GLn'Fq (these are 
not required for the main theorem). 

I do assume that the reader is familiar with Quillen's "plus" construction. However 
everything we need is contained in the following three theorems. 

(0.4) THEOREM. Let R be a ring . . Then there is a CW-complex BGLR+ and a map 
1] : BGLR -+ BGLR+ such that 
(a) 7l'1 (1]) is the abelianization: 

7.}BGLR = GLR -+ GLRI[GLR,GLR] = 7l'1 BGLR+ 

(b) For any local coefficient system A on BGLR+, 1] induces an isomorphism 
H.(BGLR, 71· A) -+ H.(BGLR+, A). 

"" 
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(0.5) THEOREM PROPERTY). Let Y be a space with abelian fundamental 
group. Then for any map f : BGLR - Y there is a map g such that 

BGLR __ '7_) BGLR+ 

Il 
y 

commutes. Furthermore g is unique up to homotopy. 

(0.6) THEOREM. BGLR+ is a homotopy associative and commutative H-space. 

For further information see Chapter Iof [Loday] or its English reproduction in [Srini-
vas]. In fact we only need the case of O.4b with A an ordinary coefficient group, and the 
case of (0.5) with Y a simple space. In (0.6), the multiplication map m has the property 
that the following diagrams are homotopy commutative: 

BGLR+ x BGLR+ BGLR+ m 

where the unlabelled maps are the obvious ones. See also Appendix 2. 
We will frequently and 'without comment make use of Whitehead's theorem asserting 

that a weak equivalence of C'V-spaces is a homotopy equivalence. This is justified because 
none of our constructions lead outside the category of CW-spaces (i.e., spaces of the ho-
motopy type of a CvV-complex). Alternatively, it is possible to take the viewpoint that a 
weak equivalence is good enough; for example, weak equivalences suffice for all homotopy 
and homology calculations. 

A word on notation: to avoid a tedious proliferation of definitions and symbols, certain 
letters will be used generically in the following way. Maps labelled i, i'i etc. are obvious 
inclusions or are induced by obvious inclusions. Maps labelled m, m', etc. are H -space 
multiplications. Maps which aren't labelled at all are supposed to be obvious. 

Contents 
1. The space F'lj;q. Vanishing of the modp and rational homology of F'lj;q. F'lj;q IS an 
H -space. F'lj;q as homotopy fixed-point set. 

2. The Brauer lift. E-theory of BG, Atiyah's theorem. Brauer characters and the 
Brauer lift. The Brauer lift is an H-map. Behavior of the Brauer lift under field extension. 
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3. Vanishing of the rational and modp homology of BGLFq • 

4. :'.Iod I homology. Reduction to the case when I divides q - 1. Sketch of the mod I 
homolog;y of Yl{,q and BGLFq. 

5. Proof of Lemma 4.7. 

6. Quillen's detection theorem. Detecting families. Localization at the fixed point 
set. Extended power constructions. Detecting the cohomology of wreath products. 

7. :vlod2 Cohomology of GL2 Fq• 

AI. The transfer in group cohomology. Multiplication by the index. The double 
coset formula and the stable element theorem. 

A2. The transfer in algebraic I{-theory. 

A3. Milnor's liml sequence. Vanishing of lim l for inverse systems of compact groups. 
Profinite topologies on [X, Y] and applications. 

A4. Localization of spaces. 

AS. Graded algebras, co-algebras and Hopf algebras. Tensor, symmetric and strict 
symmetric algebras. Cohomology of BV. Indecomposables. Co-algebras and primitives. 
Hopf algebras. Examples. 

A6. Localization at the fixed point set. Equivariant cohomology of G-spaces. G-
GW-complexes. ZIp-actions. 

A 7. Homology of extended powers. Equivariant homology of G-chain complexes. 
The extended power construction EG )( G X n , G C 

A8. Miscellaneous Representation Theory. Representations of abelian groups. Be-
havior of representations under field extension. Brauer induction and Green's theorem. 

Recall that BU is a homotopy associative and commutative H-space. In fact by Bott 
periodicity BU is a double-loop space. but the H-space structure can be obtained in a 
more elementary way as follows. For any connected finite complex X, [X, BU] = K X. 

00 

\Vrite BU = U X n, where the Xn are finite subcomplexes. Then there is an exact Milnor 
n=l sequence 

o -+ x X n , U] -+ [BU x BU, BU] -+ lim[Xn x X n , BUJ -+ O. 
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---- ---
The natural transformation tB : ]\ X x J{ X -+ ]\ X is therefore realized by a map m : 
BU x BC -+ BU. Furthermore, the Xn can be taken to have only even-dimensional cells, 
so ]\1(Xn X Xn) = 0 (see e.g. [Atiyah 1]). Hence the above limi term vanishes and m is 
unique. The same lim I-argument shows that m is homotopy associative and commutative. 

Similarly, there are maps X : BU ----. BU and 1jJq : BU -+ BU, unique up to homotopy, 
which realize the natural transformations a I---t -a and a 1--+ !/Jq a, respectively. So we can 
form the difference 1jJ q - 1: 

BU x BU BU x BU BU 

and F1jJq is the homotopy fibre of this map. 

(1.1) PROPOSITION. F'tj,q is path-connected and 

PROOF: Recall that 1jJq acts on 7r2nBU Z as multiplication by qn. The proposition 
then follows immediately from the long exact homotopy sequence of the fibre sequence 

BU. 

(1.2) PROPOSITION. F1jJq is a simple space. 

PROOF: Let E -+ B be any fibration with fibre F, where F, B path-connected. Then the 
action of "1 F on 7rn F is induced from an action of 7rl E on 7T n F, and hence is trivial if E 
is simply connected. 

- -(1.3) PROPOSITION. H.(F1jJq;Q) = 0 = H.(F1jJq;zlp). 

PROOF: The homotopy groups of F1jJq lie in the Serre class of S-torsion groups, where 
S = {primes £ : £ =I- p}. Since F1jJq is simple, Serre's theory implies that the integral 
homology groups are also S-torsion. Hence if A = H.(Fw q; Z), we have A 8z Q = 
A.0z Zip = Tor(A., Zip) = 0, and the result follows from the universal coefficient theorem. 
o 

(1.4) PROPOSITION. F1jJq is a homotopy associative and commutative H -space. and j 
F1jJq -+ BU is an H -map. 

PROOF: To prove the first assertion we will show that F'l};q is in fact a double-loop space. 
For a simple space X, let X -+ LX denote the localization of X away from p, in the 
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sense of Sulli,"an (:-\4). Thus X ---- LX induces isomorphisms 7r.X @ Z 7r.LX and 

H.X 0 Z [*] H.LX. Consider the homotopy commutative diagram of fibre sequences 

FljJq ---+) BU ----+) BU 

gl 1 j 
'1 ) LEU h. ) LEU 

where h = L( !-.q -1) and g IS chJ.,en so that the dIagram commutes up to homotopy. 
Since (7r .FljJq) ::::: Z = 7r. FljJq, and ( - ) 0 Z is an exact functor, a simple argument 
with the 5-lemma shows that g is a homotopy equivalence. Thus it will be enough to show 
that F is a double-loop space, and for this it is enough to show that h is a double-loop 
map. (Unfortunately. c q - 1 itself is not a double-loop map-that is why we are forced to 
localize. ) 

Observe that the Bott periodicity isomorphism j3 : KX ---- K(S2 /\ X) does not com-
C>t 

mute with the :\dams operations. In fact we have the formula ljJq(j3a) = qj3(ljJqa), because 
Ba = b x a with b E K S2 and ljJq is multiplicative. But in the localization LEU, multipli-
cation by q (in the H-space structure) is an equivalence q : LEU ---- LEU. Hence we can ... 
form the diagram 

LEU _---=...:.h_-+) LEU 

LD.6BU -----+) LD.6 BU 

5 II 511 

D.6 LBU 2 I ) n h 
where h' = (Lu q ) . q-l - 1. To see that Ehe diagram is homotopy commutative, it is 
enough by another liml argument to check that the two ways around the diagram yield 
the same natural transformation q-l KX ____ q-I K(S2/\ X), X a finite complex. But going 
around the right-hand side yields a 1--+ (3a - j3a, and around the left-hand side we get 
j3( ljJq a - a). These agree by our earlier formula. Since L(3 is an equivalence, this shows h 
is a double-loop map, as desired. 

So FljJq is an H-space as claimed, and it remains to show that j is an H-map. 
hI, h2 denote the two ways around the 

J x J ) BU x BU 

j 
FljJq ------+) BU 

J 
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where the vertical maps are the multiplications. We want to show that hi - h2 rv O. Now 
dearly 9 and j' are H-maps. so hi - h2 becomes null in LBU and so lifts to the homotopy-
fibre Y of BU ----+ LEU. But Y is a simple space whose homotopy groups are all p-torsion, 
and it then follows from (l.3) that H*(F1jJq x F1jJq; 7rnY) = 0 for all n. So the lift is null 
hy obstruction theory, and hi - h2 rv O. This completes the proof of 0.4). 0 

We conclude this section with an alternate description of F1jJq that is enlightening 
and will be used in §5. Let X be any homotopy associative and commutative H -space, 
f : X ----+ X a self-map. Let F be the homotopy fibre of 1 - f. Then it is natural to think 
of F as a sort of "fixed-point set" of the map j, by analogy with the situation where X is 
an abelian group and F is the kernel of 1 - f. The actual fixed point set of f is precisely 
the pullback of the diagram 

X 

X (l,f)XXX 

In practice however the map f is only defined up to homotopy, so it makes no sense to 
talk about the actual fixed point set. Instead we consider the homotopy fixed-point set F' 
defined as the homotopy pullback of the above diagram-that is, convert to a fibration 
and then form the pullback. F' is at least well-defined up to homotopy equivalence. 

(1.5) PROPOSITION. Given X, f as above, F is homotopy equivalent to F'. 

PROOF: Given any pullback diagram or "fibre square" 

B' ---=---+) B 
9 

in which 7r (and hence also "I) is a fibration, there is an exact "Mayer-Vietoris" sequence 

To see this form the ladder of exact sequences given by the fibrations 7r /, 7r; any such 
ladder yields a Mayer-Vietoris sequence by a trivial diagram chase. Now F is the homotopy 
pullback of the diagram 
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and if d : X x X ---+ X is the difference map for the H -space structure. the diagrams 

x X 
(1,f) )X xX 

=j ld 
XxX X X lX d I-f 

are homotopy commutative. So. after (implicitly) converting and * ---+ X to fibrations 
we get a map of fibre squares 

F' . X F----+l * 
1 1 1 
X Xxx (1. f) X 

where by "map" we mean a cube of maps with the squares above as front and back faces, 
and with the four remaining sides homotopy commutative. In particular we obtain a ladder 
of Mayer-Vietoris sequences 

) 7rn F' ) 7rn X C 7r n X k ) 7rn X EB 7rn X ) J.n-l F ' 

j j j 1 
) 7rn F ) ii n..tY' ) 7rn X ) J.n-l F ' 

It is easy to check that k is an isomorphism on the kernels of the vertical maps. It follows 
(in effect, by the 5-lemma) that "n F' 11 n F is an isomorphism for all n. o 
(1.6) COROLLARY. F'ljJq is the homotopy fixed-point set of 'ljJq. That is, there is a homo-
topy pullback diagram 

F1b q -----+) BU 

1 
BU ) BU x BU (1, 'ljJq 

2. The Brauer lift. 

We begin with a general discussion of K* BG, G a finite group. Here we stress that 
for infinite complexes X, KO X is defined to be [X, BU x Z]; similarly Kl X = [X, U]. 

Suppose given a finite-dimensional complex representation V of G. Then the Borel 
construction yields a complex vector bundle = EG Xa V over the classifying space BG. 
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It is easy to check that this construction takes isomorphic representations to isomorphic 
bundles. and that it commutes with direct sums, tensor products, and exterior powers. In 
particuiar, letting Rep( G. C) denote the set of isomorphism classes of such representations, 
we a homomorphism of semirings 

Rep( G, C) -+ KO BG. 

The representation ring of Gover C, denoted ReG, is the group completion of Rep( G, C). 
Thus the above map factors uniquely through a ring homomorphism 

ReG KO BG = lBG, BU x Ill. 
The map .p is compatible with the evident augmentations: 

(e.g. (;' ( [v]) = dim V) and so induces a map 

IG -+ KBG = [BG, BU] 

where IG = Kerf' is the "augmentation ideal." We may also view IG as R:GjZ, where 
Z R:G is generated by the trivial representation-provided we bear in mind that this 
only makes sense as groups, not rings. 

It is natural to ask how far r.p is from being an isomorphism. The striking answer is 
the following deep Theorem of Atiyah, which the reader should be aware of even though 
only part (b) is ever used in these notes. 

(2.1) THEOREM [ATIYAH], SEE ALSO [ATIYAH-SEGALj. 

(aJ .,: factors tbrougb an isomorpbism (ReG)" J{0 BG, wbere (ReG)" is tbe IG-adic 
completion li.;3 ReG j(IG)n. 

(b) J{l BG = O. 

Let us now turn to the problem of constructing a good map () : BG LJB7 --. F1!.,q. We 
will do this in two steps. 
Step 1. Construction of a map (j : BGLrFt -+ BU 
Step 2. (1jJq - 1) 0 () is nullhomotopic, so (j lifts to a map () : BGLJFt -+ FtiJ q. (We will 

see shortly that the lift is necessarily unique). 
For Step 1 we first observe: 
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PROOF: Since B[" is simple, the universal property of the plus construction shows that 
[BGLJF;i,BUj = [BGLlF'q, BUj. Since BGLlF'q = UBGLnlF'q and [BGLnlF'q,U] 0 by 
Atiyah's theorem. the lemma follows from Milnor's exact sequence. o 

Now suppose we had a sequence Vn of representations of GLnlF'q, compatible under 
restriction. The construction V 1-+ clearly commutes with restriction to subgroups, 
so this would yield an element of BU] and hence a map BGLlF'q BU. 
However the only obvious representations in sight are the natural representations of GLnlF'q 
on (IF'q)n. We are going to "lift" these representations to virtual representations over C. 

.Recall that the character Xv of a complex representation V is defined by xv(g) = 
trace( cpv(g)) where cpv : G --+ Aut V. Representations are determined up to isomorphism 
by their characters. and V 1-+ xv defines an injective ring homomorphism from ReG 
to the ring C(G) of complex-valued class functions on G. One can define characters of 
representations O\"er IF'q in the same way, but they are not so useful-for example, the 
(n xn) identity matrix over IF'q has trace zero if P In. Instead we proceed as follows. Let 
lFq denote the algebraic closure of IF'q, and fix, once and for all, an injective homomorphism 
IF; ex. (Recall that 1F';n = Zj(qn - 1), so IF; is isomorphic to the group of roots of 
unity in ex which have order prime to p). Suppose W is a representation of Gover IF'q. 
The Brauer character xw is defined by xw(g) = L: i( a), where Sg IF; is the set of 

oESg 

eigenvalues (with multiplicity) of cpw(g) E Aut W. Then xw is a class function on G. 

(2.3) THEOREM (GREEN). For any finite group G and representation W over IF'q, the 
Brauer character is a virtual complex character of G-that is. it is the character of a 
virtual complex representation of G. D 

For a proof of Green's theorem from the Brauer induction theorem, see AS. 
We may now define the "Brauer lift" Ii : BGLJF;i BU. Let Xn denote the Brauer 

character of the standard representation of GLnlFq on r,;" Clearly XnIGL n _ 1 = Xn-l, 
so by Green's theorem the Xn define a compatible family of virtual complex representa-
tions. As remarked earlier, this yields an element of lim[BGLnlF'q, BU] and hence a map 

+-

BGLJF7 !.. BU. \Ve reiterate that jj depends on the choice of embedding ex, but 
that this choice is fixed once and for all . 

. For Step 2. we first observe that the lift (j is unique (up to homotopy) if it exists: 

(2.4) [BGLJF7, U] = O. 

PROOF: By Atiyah's Theorem (b) and the Milnor exact sequence, it is enough to show 
liml [BGLnlF'q, BUl = O. This follows from a general fact proved in Appendix 3. 0 
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Now observe that since ReG J{u BG is a ring homomorphism that commutes with 
exterior powers, it automatically commutes with Adams operations. 

Here the Adams operations are defined on ReG exactly as for f{ -theory, using ex-
terior powers. In particular 'ljJk is a ring homomorphism, and if L is a one-dimensional 
representation then v k L is the k-fold tensor power Lk. 

Identifying ReG with the ring of virtual characters x, we can define 'lj;k on such 
characters. Here there is a very simple formula. 

(2.5) PROPOSITIO:;. Let X be a virtual character ofG. Then ('lj;kX)(g) 

9 E G. 

PROOF: Let (}kX be defined by ((}kX)(g) = X(gk). If X = XL with L one-dimensional, then 
\ is actually a homomorphism G --+ ex , so 

Since 'lj;k and (}k are additive, it follows that 'lb k XV = (}k XV whenever V is a direct sum 
of one-dimensional representations. But if G is cyclic, any F has this form, so'lj;k and (}k 
agree for cyclic groups. The general case follows immediately by restricting 'lj;k, (}k to the 
various cyclic subgroups (g). o 
(2.6) COROLLARY. Suppose '( 1S the Brauer character of a representation W over IFq . 

Then 'lj;qx = x· 

PROOF: Fix 9 E G. Then 5g = 5gq. To see this, recall that the eigenvalues of any linear 
transformation lie in a finite Galois extension K and are permuted by the Galois group 
(cf. AS). Here Gal( K jJFq ) will be cyclic, generated by the Frobenius 0- I-t o-q. Hence 
5gq = {o-q : 0- E 5g } = 5g . The corollary then follows immediately from the definition of 
the Brauer character. 0 

We may now complete Step 2 and construct the desired map () BGLlFJ' --+ F'lj;q. 
Consider the composite 

j tjJq-1 
BGLnlFq --+ BU --+ BU. 

By (2.6), 'lj;q j "'" j so (l)q - l)j is nullhomotopic. Since lim1 [BGLnlFq, U] = 0, this implies 
the composite 

,.,...... B tjJq-1 
BGLlFq --+ BGLJr q --+ BU --+ BU 

is null. By the universal property of the plus construction, it follows that ('lj;q - 1) 0 iJ is 
null. Hence there is a unique lift (), as desired. 

(2.7) PROPOSITIOi\. The Brauer lift is an H -map. 
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PROOF: We must show the following diagram is homotopy commutative: 

BGLJB7 / BGLJB7 

BG LJB7 ---(}------+) F1/Jq 

:\"ow [BGLJft x BGLJft, U] = O. by an argument identical to the proof of (2.4). So it is 
enough to show jm'( B x B) '" jBm where j : F1/Jq ---+ BU. In other words, it is enough to 
show iJ is an H-map. Using an argument which by now should be routine (liml, universal 
property ... ), this in turn reduces to showing the following homotopy commutes: 

BGLm /. BGLn'Fq ------+) BU x BU 

j 

t 1 
BGLmxn'Fq BU 

But it is clear on inspection that each composite is given by the Brauer lift of the natural 
representation of GLm x GLn on lE7+ n . 0 

We conclude this section by recording for future reference the behaviour of () with 
respect to field extension. We assume that at this point the reader can fill in the part of 
the argument involving liml = 0, the universal property of the plus construction, etc. We 
will refer to this as "our usual argument." 

Consider the diagram 

BG --(}--+) P1/Jq _---'-J_-+ )BU 

i1 I 

o 
I 

h: 
I 
I 
o 

V 

II =1 
)BU BG Llli7r --(}-:-, --+) F1/J qr ----+ j' 

1/Jq - 1 )BU 

III iN 
1/J'Ir - 1 

)BU 

. r-l 
where i is induced by the inclusion 'Fq C 'Fqr and N = 1 + 1/Jq + ... + 1/Jq ("+" with 
respect to the H-space structure on BU, of course). Since 1/Jj o1/Jk = 1/Jjk, the square III 
homotopy commutes and hence there exists a map h such that the square II homotopy 
commutes. 

(2.8) PROPOSITION. For any choice of h, the square I homotopy commutes. 

PROOF: By our usual argument. it is enough to show j'(}'i '" j8 after restriction to 
BGLn'Fq. Thus we have two maps BGLn'Fq ---+ BU, each of which is obtained from 
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the Brauer lift of some representation O\'er ?g. But it is clear that the two representations 
are the same-namely, each is given by CLn"fq C GLnFq, 0 

"Xow consider the diagram 

0' ---'---+) Fl-' q 

I 

j' )BU 

II N1 
IBU B G LJF7 --0--+) F v g -----:-J --+ 

1/;qr - 1 
)BU 

III 1= 
1/;q - 1 I BU 

where r is the transfer (Appendix 2). As before, III homotopy commutes, so there exists 
a map t such that II homotopy commutes. 

(2.9) PROPOSITION. For any choice oft. the square I homotopy commutes. 

PROOF: By our usual argument, it is enough to show j ()r '" N j' ()' after restriction to 
BGLnFqr. As in (2.8), this amounts to showing two representations agree, but in this case 
it's not quite so clear what the representations are. Let X denote the Brauer character of 
the standard representation V of G LnFqr. Then N jf ()f corresponds to the virtual character 
X' = X -+ uqX + ... + 1/; qr-l X by definition of ()' and N. On the other hand j()T corresponds 
to the Brauer character X" of the representation V 0 Fq IFqr; this follows by inspecting the 
definition of T given in Appendix 2. By :\8.2, V 0lFq IFqr = V EB VIT EB ' .. ffi V crr - 1 , where 
a is the Frobenius. But the Brauer character Xi of VITi is given by Xi(g) = x(ai(g)) = 
X(gqi) = (l./;qi X)(g). Hence X' = X", as desired. 0 

REMARK: Once the main theorem is proved, we will know that [F1/;q, UJ = 0 for all q. 
Hence t he maps hand t above are in fact unique. 

3. Rational and modp homology of BGLIFq• 

(3.1) PROPOSITION. H*(GLIFq : Q) = O. 

PROOF: Since homology commutes with direct limits, it's enough to show H*( GLnIFq, Q) = 
O. But this is true for any finite group, by a simple. argument with the transfer (Appendix 
1 ). o 

Recall that p is the characteristic of IF q : q = pd. 

(3.2) THEOREM. H*(BGLIFq; Zip) = O. 

(3.3) LDIMA. Hi(BGLnIFq; Zip) = 0 for i < d(p -1), all n. 
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PROO F 0 F (3.2): Choose r prime to p and consider 

BGLFt BGLJr;i. -:. BGLFt 

where r is the transfer in algebraic K-theory (Appendix 2). Now let ( )(p) denote Sullivan 
localization at p. Then (ri)(p) is an equivalence, since 7r.(ri)(p) is multiplication by rand· 
r is prime to p. Hence H.(rij Z(p» is an isomorphism and therefore also H.(ri: Zjp) is 
an isomorphism. But applying (3.3) to IFqr shows that Hn(ri, Zjp) is the zero map for 
n < dr(p - 1). So iin(BGLIFqi Zip) = 0 for n < dr(p - 1), and since r was arbitrary this 
completes the proof. 0 

It remains to prove the lemma. Let Bn GLnIFq denote the subgroup of upper 
triangular matrices and let Hn = {b E Bn : bii = 1.1 i n}. 

(3.4) LEMMA. Hn is a p-Sylow subgroup of GLnfq • 

PROOF: Clearly IHnl '. so Hn is a p-subgroup. On the other hand it is easy to show 

n-l n 

IGLnIFql = II (qn - qi) = II(qi -1). o 
i=O i=l 

(3.5) COROLLARY. The restriction map H·(GLn'Fqj Zip) -+ H·(Bni Zip) is injective. 
(See Appendix 1). 

Thus lemma (3.3) follows from 

(3.6) HiBn = 0 for i < d(p-1). 

We proceed by induction on rio For n ,= 1 'we have Bl - IF:. Hence pllB11 so 
HiB! = 0 for all i. At the inductive step consider the evident group extension 

where An is the ··top row" subgroup. 

(3.7) LEMMA. Hi.4-n = 0 for i < d(p - 1). 

Assuming this, it follows that the terms E;,q of the Hochschild-Serre spectral sequence 
of the above group extension vanish for 0 < p + q < d(p - 1). Hence the same is true for 

proving (3.6). 

PROOF OF (3.7): It is enough to prove the analogous statement in cohomology. The group 
An is a semidirect product of the form 
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where F is the additive group of a vector space over IFq , and IF; acts on F by scalar 
multiplication. Since p 1 1 IF; I, the cohomology spectral sequence of this extension collapses 
to its vertical axis (see Appendix 1). so H* .4.n is the ring of invariants (H*V)lJ':. Fix 
a E IF; and regard a as an IFp-linear endomorphism of 'V. Then the eigenvalues of a 
are the Galois conjugates of a-namely a, n:P, ... ,apd -

1
, (Each eigemralue occurs with 

multiplicity dimlJ'q F = n - 1, but we won't use this.) Now recall that by the Kiinneth 
theorem H*V is the symmetric algebra S(V*) if p = 2 or S(V* EB if p odd (cf. A5). 
Hence if W = V* 0lFp IFg we have H*(V; lFg) = SeW) or sew EB Now suppose p odd; 
the case p = 2 is similar. Choose bases Xi, Yi of eigenvectors for the action of Q on W, 
respectively. Then H*(V,IFg) = lFg[Yl, ... ,Ym] 0lFg(Xl, ... ,xm) where m = den - 1). 
Hence H*(V, lFq ) itself has a basis of eigenvectors, namely the monomials in the Yi, Xi. It 

-
is then clear that the minimal dimension s such that (H*y)tq is nonzero can be described 
as follows: let A = {(ao .... , ad-d : ai 2:: 0 and = 0 = modpd - I}. Then s is the 
minimal value of the function on the set A. Note (p-1. ... ,p-1) E A.. so s ::; d(p-1). 
Now suppose (ao, . .. ,ad-I) has minimal. If ai 2:: p for some i, replace ai by ai - P 
and ai+l by ai+l + 1 (where ad = ao). This decreases contradicting the assumption 
of minimality. So aj ::; p - 1 for all i, and this trivially forces ai = p - 1 for all i. Hence 
s = d(p - 1). This completes the proof of (3.7). 0 

4. Mod [ homology. 

In this section we outline the proofs of the following theorems 4.1 and 4.2 below, 
postponing the three hardest steps to later sections. All homology and cohomology groups 
have Z / 1 coefficients. 1 fixed. For unexplained terms involving symmetric algebras, Hopf 
algebras, etc., see Appendix 5. 

(4.1) THEOREM. (}: BGLTE1- F'ljJg induces an isomorphism on H*( ;Z/l). 

As explained in the introduction, this will complete the proof of the main theorem. 
Let r be minimal such that [ I qr - 1. Thus r is the order of q in the group Z / [X, 

so r 1 [ - 1. Let a be maximal such that [a I qr - 1. Then if J.tl" denotes the [n-th roots 
of unity, lFq (J.tl) = lFqr and J.t = J.t14 is the [-torsion subgroup of IF;'. Now let Cq denote 
the subgroup of GLrlFg generated by J.t and the Galois group G(lFqr /lFq). Here we have 
identified (lFq r with lFqr. The Galois group is cyclic of order r, generated by the Frobenius 
0". Thus Cq fits into a split extension 
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with 0' acting on J-l by 0"( ex) = ex q . Recall that H· J-l = Z II[y] ® ZII(x) with IYI = 2, Ixl = 1, 
except in the case I = 2 a = 1 when H·Z/2 = Z/2[x]. However for the next lemma we 
need only consider I odd. 

LEMMA. H·Cq -S H·(J-l),il/r = Z/I[yr] 0 ZI1(xyr-1) if I odd or a > 1. If 1= 2 and a = 1. 
H*Z/2 = Z/2[x]. 

PROOF: We can assume 1 odd. since for I = 2 Cq is just J-l. Since r is prime to I, the 
Hochschild-Serre spectral sequence of the above extension collapses to its vertical edge 
and the first isomorphism is immediate. On the other hand HI J-l = H2 J-l = Z II with 
(J acting as multiplication by q. This is clear for HI J-l = Hom(J-l, ZI1). For H2 J-l, use 
r he Bockstein isomorphism 3 : HI f1 -; H2 J-l defined by f3( a) = r( b). where la -1 b = Da, 
h E H2 (f1; Z), 'r is reduction mod I and 8 is the coboundary associated to the coefficient 
sequence 0 ---+ Z ---+ Z ---+ Z II ---. o. The naturality of f3 shows in particular that f3 commutes 
with the O'-action. Then for example O"(yn) = qnyn so O'(yn) = yn if and only if r divides 
n. Similarly 0"( xyn) = xyn if and only if r divides n + 1. 0 

Now the inclusion Cq C GLrFq induces a map BCq ---+ and hence a map 
H.BCq ---+ H.BGLIFt'. Since is a homotopy associative and commutative H-
space, this map in turn extends to a ring homomorphism S(ii.BCq )- H.BGLIFt' , where 
S( -) denotes the symmetric algebra. Let S'( -) denote the strict symmetric algebra-that 
is. the quotient of the symmetric algebra obtained by factoring out the ideal generated by 
all a2 with lal odd. This refinement is only relevant when 1= 2, since for I odd S = S'. 

(4:.2) THEOREM. The natural map S(ii.BCq ) ---+ H.BGLFi induces an isomorphism 
S'(ii.BCq ) --;: 

It is convenient to begin by reducing to the case I I q - 1. Among other things, this 
simplifies the notation in the computational part of the argument. ::\ote also that Cq is 
just J-l14. 

(4.3) LEMMA. Suppose Theorems (4.1) and (4.2) are true when II (q -1). Then they are 
true for all q. 

PROOF: Of course we can assume I odd. Now consider the commutative diagrams of §2.· 
Applying 7r.( -) ® Z(l) to the diagrams of 2.8, 2.9 and using A2.3 shows that if Or is an 
isomorphism on 7r.(-) ® Z(I) so is O. Hence Theorem (4.1) in the case II (q -1) implies' 
the general case (using Appendix 4). Next consider Theorem 4.2. 

11 
r.t tt) i'i6 

v\·? 
i "Yr 01 U o 

vVe have a commutative 



Bp. ) BGLJE7r 

T'l 
) 

iT 
Be, 

) 
) BGLJF;i 

The map 7' is the obvious inclusion, and induces a surjection on homology. Hence j induces 
a surjection SCH.BCq ) SU) H*BGLlF'1; (since 7 is an H-map and j' is a generating complex 

by hypothesis). To see that S(J') is injective. consider the composite map k 

:\"ow the map j' is induced by a one-dimensional representation A of p. over F7 ,. It follows 
from the definition of the transfer that k is induced by the r-dimensional representation 
,\ -= ,\<1 -= ... EB ,\<1'-1 (see Appendix 2 and Appendix S). This in turn implies that if 
I E HnBp. is a generator. 

k.x = j.(x + (J'X + ... + Q"r-lx) mod decomposables. 

So if Q"X = x, k.x = rj.x =I- 0 mod decomposables. It follows that H.Cij) is injective mod 
decomposables and hence S(J') is injective. 

For the rest of this section, we assume I divides q - 1. 
The first step is to compute the homology of F'lj;q. 

o 

(-l.-l) LDIMA. The homology spectral sequence of the fibre sequence U -+ FL,q -+ BU is 
a spectral sequence of commutative Z Ii-algebras. 

PROOF: By §1 there is a map of fibre sequences 

U ) F0 q 

1 .j. 1 
U(l) )F ----+) B U(l) 

The vertical maps all induce isomorphisms on mod 1-homology (and the base spaces are 
simply-connected), so we get an isomorphism of spectral sequences. On the other hand 
the bottom row, as we've seen, can be "delooped"-i.e. has the form nA DB nc for 
some fibre sequence ALB C. This proves the lemma. 0 

(4.5) LEMMA. If [I (q - 1), H.F'lj;q H.'L" 0 H.BU as algebras. 
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(,zv' 

PROOF: \Ve have a commutative diagram (using I I q - 1) 

B JL __ J"------>, F ti, q 

11 j 
cpoo , BU 

where J is the composite BJL BGLFt F0q and f is induced by our fixed inclusion 
11 C 51 C <C x . It follows that the homology generators bn of H.BU are permanent cycles, 
because the map B JL L <cpoo is an isomorphism on homology in even degrees. So (4.4) 
the spectral sequence collapses and E oo H.U 2 H.BU. Here H.U '" '!l/Z(Xl' X2' ... ) 

I:' >' with I:r i I = 2i - L But there is no extension problem when l = 2, because the map 
H.U -- H.Fli,q is a ring homomorphism by (4.4). o 
REMARK: If ll(q - 1), BJL must be replaced by Be in the above diagram. Then Hnf is 
no longer surjective, and the spectral sequence does not in fact collapse. 

The result of (4.5) looks rather complete, but it is not good enough. \Ve need to know 
that B JL is a generating complex. 

(4.6) THEOREM. Tbe map j induces an isomorpbism 

Write bi (resp. ei) for generators of H2iBJL (resp. H2i-lBJL), and for simplicity write 
bi also for J.b i , etc. The next lemma is crucial. Its rather technical proof is deferred to 

(4.7) LEMMA. Ei is indecomposable in H.Fw q . 

PROOF OF 4.6: By Lemma (4.5), the two rings in (4.6) are abstractly isomorphic. More-
over each has finite type over '!lIZ, so it is enough to show the given map is surjective. For 
this, we need only show H.BJL = Q5'H.B/-L -- QH.F'ljJq is surjective. This amounts to 
showing the elements bn, en are indecomposable in H. F'ljJq. For bn this assertion is obvious 
from the diagram in (4.5) (bn is indecomposable in H.BU). For en this is (4.7). 0 

The next result is perhaps the key insight of the entire proof. It will be proved in 
1 

(4.8) THEOREM. Let Dn C GLnFq denote tbe subgroup of diagonal matrices. Tben i· 
H·GLnFq H· Dn is injective. 

REMARK: We are still assuming llq - l--otherwise, Dn has order prime to I and (4.8) 
would be absurd. 
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(4.9) COROLLARY. BIl -. BGLJF;i induces a surjection 

S(ii.Bp,) 

PROOF OF (4.9): \\"e have a commutative diagram 

n n 

II Bp, l 

i=l i=l 

k 1m 
BGLnIFq 

where f is induced by the composite IIp,-S IIIF; = Dn C GLnFq . So it is enough, clearly. 
to show H.! is surjective. But H.i' is an isomorphism, so this is immediate by dualizing 
(4.8). 

We may now prove Theorems 4.1. 4.2 when l is odd (the point being that S = S' for 
lodd). Consider the maps 

By (4.6) B.'P is an isomorphism, so 'P is injective. By (4.9) 'P is then an isomorphism. 
proving (4.2). Then also B. is an isomorphism, proving (4.1). 

For 1 = 2 we need one more lemma. which will be proved in §7. 

(4.10) LEMMA. c; = 0 in H.BGLIF7, i 2: 1. 

Of course the lemma is trivial for 1 odd. For I = 2 the result of (4.10) is that the 
surjection of (4.9) factors through the strict symmetric algebra S'(H.Bj.L). The argument 
for I odd then goes through verbatim for l . 2. This completes the proof of Theorems 4.1 
and 4.2. 

5. Proof of Lemma 4.7. 

In this section we will prove: 

(5.1) THEOREM. Suppose I divides q - 1. Tben tbe map 'P Be F1jJq induces an 
isomorpbism H.BC ----t QH.F1jJq. 
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Here Q( -) denotes the quotient IF/-vector space of indecomposable elements (see Ap-
pendix 5). It is clear that (5.1) implies 4.7. We will prove the dual form of (5.1), namely: 

( 5.2) 

is an isomorphism, where P( ) denotes the subspace of primitives. 1 

In even degrees (5.1) is obvious, so we may restrict our attention to odd degrees. Now 
by (4.5) the cohomology Serre spectral sequence of the fibre sequence U ---+ F1jJq ---+ BU 
collapses. Hence H* F1jJq has an associated graded algebra of the form ZI1[cI' C2,"'] 0 
Z II (II, 12, ... ). Here the Ci'S are the Chern classes of the map Pli,q ---+ BU, and so are 
actually elements of H* F1jJQ. However if we choose elements ei E H* F1jJq that reduce 
to the Ii modulo Serre filtration one, there is no guarantee that e; = 0 unless I is odd. 
Furthermore even for I odd there is little hope of "identifying" the primitives in H* F1jJq 
without some canonical choice of the ei. The next lemma is the key to (5.1). 

(5.3) LEMMA. There are classes ei E H2i- 1 F1jJq satisfying 

(a) m*en = L:: ei 0 Cj + Ci 0 ej 
j+j=n 

(b) t.p*e n is nonzero if and only ifn = 1. 

Assuming this, we may easily prove (5.2) as follows. The formula (a) can be written 
compactly in the form m*e = e 0c+c0 e, where e = el + e2 + ... and C = 1 +CI + C2 + .... 
So m * (%) = (e 0 c + c 0 e) I c 0 c = % 0 1 + 1 0 %. Hence, writing % = PI + P2 + ... , the 
elements Pi are primitive. Since c.p*Cj = 0 for i > 1, and t.p*ei = 0 for 1 > 1 by 5.3b, we have 

* e * H * (l)n-1 n-l * B 53b *. r 11 ..p -;:: = c.p I+Cl' ence t.p pn = - C1 Y el· Y . ,c.p pn IS nonzero lor a n. 
This shows !.p* : P H* F1jJq ---+ H* Be is nonzero in odd degrees and hence an isomorphism, 
as desired. 

We now turn to the construction of the en. Here we follow [Quillen 2] essentially 
verbatim. We use the following general device. By a square r we mean a commutative 
diagram of spaces 

X' --:---+1 Y' 
f' 

IThis section has its own notation as we are working exclusively in cohomology. In par-
ticular the cohomology classes ej defined here should not be confused with the homology 
classes ej occuring in (4.7). 
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t hat is. a morphism f f' in the category of maps. Given two squares r 1, r 2. a morphi3m 
of squares r 1 -t r 2 consists of maps X -. Xl, Y -t }"l, etc. such that t he four new 
faces of the resulting cube are homotopy commutative (picture r 1 , f2 as the front and 
back faces of the cube). We may also form the product r x f' of two squares by taking 
cartesian products of spaces and maps. ::\OW for any map f : X -t Y, let H*[J] denote 
the cohomology of the pair (If, X). where If is the mapping cylinder. Given a square f 
we then get a commutative diagram with exact rows 

H i - 1 X' 5' ) HI:!,] ) Hi(y') (f' )* ) Hi(X') 

k g* lh' k 
H i - 1 X HI',] ) , 

b ) H'(Y) ) Hi(X) 
f* ) 

::\ow let Mr = Ker(Hiy, HI X' EO Hiy) and let = Cokert H i - 1 Y ED 

H i - 1 X' rif H i - 1 X). Then there is a homomorphism Dr : Alf -t obtained by a 
diagram chase: Given u E 1'v1r, w E HI [J'] with j' w = H. Then ij*w = Iv for some 
v and we set Dr( H) = [v]. It is clear that Dr is natural with respect to morphisms of 
squares. and that Dr is a map of H*Y'-modules (since all the maps in the diagram are 
maps of H*Y'-modules). 

Kow take f to be the square gi\-1ng our alternate definition of F1jJq: 

Ft·'/. __ BU 

ji 1(1, ,pq) 

Be ----+) BU x BU 

(5.4) LEMMA. Let cn E H2n(BU.:) denote the integral Chern class. Then (1jJq)*cn 

PROOF: The total characteristic classes ()q = 1 + qCl + q2 C2 + . .. and c( v g ) are both 
multiplicative. By the splitting principle it is then enough to show that ()q (L) = c( 1jJq L) 
for line bundles L. But c(1jJQL) = c! L1) = 1 + cl(Lq) = 1 + qCl(L). 0 

Thus if Hi = Ci ® 1 - 1 ® Ci, (1. L· g )*(u) = (qn - l)ci = 0 since l I q - 1. Obviously 
6. *( Ui) = 0, so Hi E M'fi. Furthermore Nfi-l is just H 2i - 1 F1jJQ, since Hodd BU = O. So 
we define ei = Dr( Hi). 

PROOF OF 5.3A: All of the maps in the square r are maps of H-spaces. It follows that 
there is a morphism of squares r 2 = f x r r, using the H -space multiplications. By 
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naturality of the operation D we have 

where: 

and primes \ resp. double primes) refer to inverse images under the first (resp. second) 
projection r 2 -+ r. Here we have identified (BU x BU)2 = BU2 x BU2 • Now write 

Then, using naturality of D with respect to the two projections, as well as the fact that 
D is linear oyer H*(BU 2 x BU 2 ), we obtain 

o 

Before proving 5.3b we need two more lemmas. 

(5.5) LEMMA. Let f : X -+ Y be a map, and consider the long exact sequence 

Suppose u E Hi[J;Z] and ju = dv, dE Z. Choose w E H i - 1 (X;Zjd) such that 
bw = ii. where C) denotes reduction modd. Then f3w = -f*vmodf3f*Hi - 1 IY;Zjd), 
where f3: HI-l( ,Zjd) Hi( ,Z) is the Bockstein. 

PROOF: :\"ote w exists since ju = Omodd. Clearly f3w modf3f* H i- 1(y; Zjd) is indepen-
dent of the choice of w; we'll choose w so that f3w = - f*v precisely. Replacing Y by the 
mapping cylinder, we may assume f : X--+ Y is an embedding. Represent u by a cocycle 
x that vanishes on X and let y be a co cycle representing v. Then x = dy + 8' z for some 
(i - l)-cochain z on Y, where 8' is the coboundaryon cochains. By the definition of 8, we 
may then take w = f* z. Then by the definition of B we have 

f3w = f* z) = - dy)) = - f*y. o 

Let an denote the Bockstein associated to Z j ( q n - 1), and let r n : Z j q n - 1 -+ Z j 1 
denote the natural reduction. 
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(3.6) LEMMA. There are classes ei E H1.i-l(F1jJQ:Z/ql - 1) such that ri(ei) 
diei = Ci. 

ei and 

PROOF: Consider once again the diagram used to define Dr, but using Z-coefficients: 

Again we have z: 1 - 1 (9 Ci) = 0, but now 

It follows that there is a unique class ei E H 2i - 1 (Fw q : Z/qi - 1) such that bei = gz where 
j' z = Ci (9 1 - 1 (9 Cj. It is immediate from the definitions that rj(ei) = ei, and by Lemma 

5 - -O. fJiej = Cj. o 
Since I I q - 1. 3n : H2n-l(C, Z/(qn - 1)) --+ H2n(c; Z) is an isomorphism for all n; 

both groups are isomorphic to Z/la. Since <p*(cn) is zero for n > 1 and is a generator for 
n = 1, we conclude the same for <p*en by (5.6). Hence <p*en is nonzero if and only if n = l. 
D 

6. Quillen's Detection Theorem 

We assume throughout this section that I I q - 1. and VI( q - 1) = a. All cohomology 
grou ps have Z / I coefficients. Our goal is to prove: 

(4.8) THEOREM. Let Dn denote the subgroup of diagonal matrices in GLn'Fq . Then (if 
I I q - 1), i* : H*GLnFQ --+ H* Dn is injective. 

We have already noted that it is often necessary to separate the cases I odd and 1 = 2. 
Occasionally it is also necessary to isolate the case I = 2 and q = 3 mod 4. We call this 
the exceptional case. The other case, 1 odd or 1 = 2 and q = 1 mod 4 is the typical case. 
The following elementary lemma, which arises frequently in number theory and homotopy 
theory, is the main source of this distinction. Let VI( n) denote the number of powers of I 
in the integer n. 

(6.1) LEMMA. Let x be an integer such that x = 1modl, and let a = Vt(x -1). Then if 
either I is odd or I = 2 and a > 1, VI(Xn - 1) = vt(n) + a. 
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The problem when I = :.2 and a = 1 is that 1'1( xn - 1) can jump by more than VI( n). 
For example, 3 i= 1 mod 4 but 32 = 1 mod 8. 

The argument will read more smoothly if we focus on the typical case first. The 
modifications required for the exceptional case will be discussed later. So assume that we 
are in the typical case, and let N denote the subgroup of GLn'Fq generated by Dn and the 
permutation matrices Thus N is the semi-direct product xDn, where acts on 
Dn = by permuting the factors. 

(6.2) LEMMA (TYPICAL CASE, I I q - 1). N contains an I-Sylow subgroup of GLn'Fq. 
Hence (see Ai) H*GLn'Fq -. H* N is injective. 

PROOF: We must show vllSI = vtlGLnFql. We have vllNI = vI(n!) + na and vIIGLnl = 
VI(qi - 1). Since by assumption either I is odd or a > 1, VI(ql - 1) = v/(i) + a by 

(6.1) and the lemma follows. 0 

N ow for any finite group G and family of subgroups {H Q }, we say that {H Q} IS 

a detecting family, or that {H Q} detects H* G, if the evident map H* G ---t IIH* H Q IS 

injective. We call G la -good if the family consisting of abelian subgroups of exponent [a is 
a detecting family. 

(6.3) LEMMA. N is [a_good . 

. Assuming this, we may now prove Theorem 4.5. Consider the inclusions 

11 12 GL m' Dn ---t N ---t nlr q 

with i = i 2 i 1 , and suppose i· x = 0, x E H*GLn'Fq. Since la I q - I, any abelian subgroup 
A of exponent la in GLn'Fq is conjugate to a subgroup of Dn (see Appendix 8). Since 
inner automorphisms of a group induce the identity map on group cohomology, it follows 
that x restricts to zero on eYery such subgroup A. So i;x = 0 by Lemma 6.3, and since N 
contains an I-Sylow subgroup x = 0 as desired. 

REMARK: Note that this argument does not imply that i1 is injective (it isn't). 

It remains to prove Lemma 6.3, and this is the hardest step. The key ingredient is 
Theorem (6.7) below, which will require a lengthy digression to explain. 

Let X be a space with Z/l-action. Then H*(EZ/I XZ/l X) is a module over H* BZ/I. 
If y E H2 BZ / I is a generator. then for any graded H* BZ / I-module M we can form the 
localized module y-l M. Finally, note that for any G-space X there is an equivariant 
inclusion X G ---t X, which induces a map rJ : BG X X G = EG x G XG ---t EG x G X. 
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i 6.-1-) THEOREM ("LOCALIZATION AT THE FIXED POINT SET"). Let X he a compact 

Hausdorff Zjt-space. Then 7J induces an isomorphism 

This is a special case of Theorem 4.2 of [Quillen 3] (the reference given in [Quillen 
11 is a misprint). A proof of 6.4 (under an additional hypothesis on X that suffices for 
Theorem 6.7) is given in Appendix 6. However one can give a quick intuitive explanation 
of (6.4) as follows. There are two key observations. First, if the graded H'" BZjZ-module 
.\1 is bounded above (i.e. Jvh = 0 for k > > 0) then obviously y-l J\f = 0, for y-l M = 
lim( .'vl M .!!..:, .l\l1 --+ •.. ). Second, if Y is a finite complex and a principal G-space, then 
H*( EG Xc Y) is bounded above. Here "principal" means the action is free and Y --+ YjG 
is a principal G-bundle. hence a coyering map. It follows that the natural projection 
EG Xc Y --+ YjG is a fibre bundle with contractible fibre EG. Since YjG is a finite 
complex, H"'(EG Xo Y) is bounded above as claimed. Returning to G = Zjl. this shows 
that y-lH*(EZjZ XZ/l Y) is zero if}- is a free ZjZ-space as above. Since X - X Z/ l is 
always a free ZjZ-space, this gives a strong plausibility argument for (6.4). 

let X be any CvV-complex and let ZjZ act on Xl by permuting the factors. Then 
(with a fixed I understood) rx denotes the I-th extended power EZjl XZ/l Xl. 

16.5) THEOREM (NAKAOKA; 
H*rX H*(Zjl, H*XI). 

SEE A 7). There 15 a natural isomorphism 

The right-hand side of (6.5) is precisely the E 2 -term of the Serre spectral sequence of 
the fibre sequence 

So we obtain as a corollary: 

(6.6) COROLLARY. The Serre spectral sequence off X collapses. 

PROOF: It is enough to show the homology spectral sequence collapses, since the coho-
mology spectral sequence is dual. By a direct limit argument we then reduce to the case 
X a finite complex. If the spectral sequence does not collapse, then 

contradicting (6.5). D 

RDIARK: The reader may be wondering why (6.6) is a corollary of (6.5) rather than 
YICe versa. Our proof of (6.5) does use an algebraic version of the Serre spectral sequence. 
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However (6.5) is much stronger than (6.6), for it asserts a natural isomorphism on the nose 
as opposed to merely an isomorphism of associated graded objects. This subtle distinction 
is not important for our present purposes. but it plays a role in other applications (see the 
last paragraph of A 7). 

Let us pause to compute H*(ZII; H*XI). To avoid confusing the permutation group 
Z 11 with the coefficient ring Z 11, we temporarily let G denote the former. Fix a basis {e a } 

for H* X, so rz;l H* X has basis {e a1 ® .. ·0ea /}. The Kiinneth isomorphism H* Xl e/H* X 
is G-equivariant, and G acts on ®I H* X by cyclically permuting the factors. So G permutes 
the basis vectors {e al ® ... ® ear}, and since G has prime order every orbit of this action 
is either fixed or free. Hence H* X' . M ffi N. where M is a free Z/l[G]-module and N is 
a trivial module (spanned by the eoe 0 eoe · .. ':) eo). Finally 

H*(G, H* Xl) = H*(G, 1\1) (f) H*(G, N), 

where HP( G: _\I) = 0 for p > 0 and H*( G, N) = (H*G) ® N. In particular H*( G: A1) is a 
triviC!-1 H*G-rnodule and H*(G; N) is a free H*G-module. Note also that H*CG; AI) = M C 

injects into H"XI under the edge homomorphism H*fX ---+ H"X'. 
We now arrive at a key result. 

(6.7) THEOREM [QUILLEN 1]. The restriction map 

rt* x i* : H*fX ---+ H*(BZ/l x X) x H*CX') 

is injective. 

PROOF: As in (6.6), we easily reduce to the case X finite. Suppose x E H*rX and i*x = O. 
Then by definition x E Fl, where F O .2 Fl .2 F2 .2 ... is the Serre filtration. On the other 
hand the aboye description of H*(Zll; H* Xl) shows that the associated graded module of 
Fl-i.e. EB a torsion-free Zll[y]-module. So Fl is also torsion-free and T]*IFl IS 

p>o 
injective by (6.4). Hence if 1J*x = 0 = i*x, x = O. 0 

We will need the following special case. Let G be a subgroup of Ijn, H any group. 
Then the wreath product G J H is the semi direct product G X Hn, where G acts on Hn 
by permuting the factors. There is an inclusion G x H ---+ G J H obtained by embedding 
H in H n via the diagonal map. Now observe that if H is discrete then EG Xc (BH)n, 
where G acts on (BH)n by permuting the factors, is a KCG J H, 1) and hence a model for 
Be G J H). This yields the next corollary. 

(6.8) COROLLARY. If H is a finite group, {ZII x H, HI} is a detecting family for ZIZ J H. 
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We return at last to (6.3). 

(6.9) LEMMA. IfG and H are la_good. so is G X H. 

PROOF: This is an exercise with the Kiinneth theorem (hint-consider first the case when 
one of the factors is itself abelian of exponent [a). 

(6.10) LEMMA. If H is [a_good. so is Zjl J H. 

PROOF: This follows at once from (6.8) and (6.9). 

(6.11) LEMMA. If H is [a_good, 56 is En f H. 

PROOF: vVe use induction on n, the case n = 1 being trivial. At the inductive step there 
are two cases. 

f\ 
Case 1: [ is prime to n. Consider the subgroup E n - 1 xH = (E n - 1 I H) x H in En I H. 

It has index n so the restriction map in cohomology is injective. Hence this case 
follows by inductive hypothesis and (6.9). 

Case 2: n = 1m. In this case En contains a subgroup G = Em f Zjl defined as follows. 
Divide the set {l, 2, ... , n} into m blocks of I elements each. The subgroup 
G' of all permutations which permute the blocks is Em f Ell and we take G to 
be the subgroup which permutes the elements of an individual block cyclically. 
Now by a trivial calculation the index of G in En is prime to l, and this is 
the index of G f H in En f H. So it is enough to show G f H is [a_good. But 
G f H = ::'m f(Zjl J H). So Zjl f H is [a_good by (6.10) and G J H is [a_good 
by inductiye hypothesis. c 

Since N is precisely En J IF;, this completes the proof of (4.8) in the typical case. 
In the exceptional case-i.e. I = 2, q = 3 mod 4-some parts of the argument require a 
slight modification. The main point is that the definition of N given in (6.2) doesn't work. 
Instead we define.Y = Em J GL2IFq if n = 2m and N = (Em J GL2IFq) X Zj2 if n = 2m+ 1. 
Here when n = 2m . .v is embedded as the group of (2 x 2) block matrices generated by 
Em (permuting coordinates in pairs e2i-ll e2i) and the block diagonal matrices n;:1 GL 2 . 

If n = 2m + 1 there is an extra Z j2-factor on the diagonal in the (n, n) position. 

(6.12) LEMMA (EXCEPTIONAL CASE). N contains a 2-Sylowsubgroup ofGLnlFq • 

PROOF: Suppose n = 2m and let b = 'V2(q2 - 1). Then v2!N! = v2(m!) + m(b + 1) and 
v2!GL n IFq ! = 2::7=1 L'2(qi -1) = m+ 2::7=1 V2(q2 j -1) = m+mb+v2m!' The case n = 2m+l 
follows immediately. [J 

(6.13) LEMMA . .Y is 2-good2-i.e. H* N is detected by subgroups of the form (Zj2)k. 

2This may seem 2-good to be true. 
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Assuming this, Theorem 4.8 follows from 6.13 exactly as before. The final lemma 
requires special treatment; its proof is deferred to §7. 

(6.14) LEMMA (EXCEPTIONAL CASE). Tllerestriction map H*GL2IFq ---+ H*(Z/2)2, wbere 

(77/2)'2 D (±1 0")... . 
IL.J C 2 as 0 ±1 . 1S lll]ect1ve. 

In particular GL2 IFq is 2-good. Then (6.13) follows from (6.11). This completes the 
proof in the exceptional case. modulo (6.14). 

7. :vIod2 Cohomology of GL2 IFq 

In this section, I = 2 and all homology and cohomology groups have Z /2-coefficients. 
Our goal is to prove: 

LEMMA 4.10. = 0 in H*BGLIFq. 

LEMMA 6.14. H*GL2IFq ---+ H* D2 is injective. 

The proofs will be based on the following theorem. 

THEOREM 7.1. H* SL2IFq Z/2[y] @ Z/2(x), wbere Iyl = 4, Ixl = 3. 

Let V denote the second symmetric power of the unreduced homology H * BZ /2 a . 

Thus V has a basis consisting of bibj (0 S; i S; j), biej (0 S; i.l S; j), ejej (1 S; i S; j), 
where bo = 1 E Ho. Let W denote the subspace spanned by this basis with the e; removed. 
Since V is isomorphic as graded vector space to a polynomial algebra on two generators 
of degrees 1, 2, the Poincare series of V is P(V, t) = (1-t)(1-t 2 )' Hence W has Poincare 
senes 

1 
peW, t) = -( I---t-)(-1---t2-) 

Now consider the commutative diagram 

V/(e;) -----h-------+) H*F'ljJq 

where the maps are as usual and the bottom arrow exists by (4.5). Let U = H*BGL2IFq. 

1+t3 (7.2) LEMMA. P(U, t) S; (1-t)(1-t 4) 
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PROOF: Consider the Serre spectral sequence of the group extension 

:-\ote that by Theorem (7.1), the action of IF; on H* SL2IFq is necessarily trivial and 
hence (by 7.1 again) the E 2-term has Poincare series exactly Since P(U, t) = 
P( Ex, t) ::; P(E2' t), the lemma follows. 0 

On the other hand the map h in the above diagram is injective by (4.6). This forces 
flw injective and hence P(U, t) 2: We conclude that equality holds in (7.2) 
and that f is onto. In particular this proves Lemma 6.14 (by dualizing). 

Finally we prove Lemma 4.10. As we have just seen, flw is an isomorphism. Hence if 
f(fn =f. 0 there is a nonzero tv E 'VV such that few) = fed). But then the above diagram 
shows h7r(w) = 0, contradicting the fact that h7rlw is injective. 

This completes the proof of 4.10 and 6.14. It remains to prove Theorem 7.1. We begin 
by determining the 2-Sylow subgroups of SL2 IFq . 

(/'.2) LEMMA. The 2-Sylow subgroups of SL2IFq are generalized quaternion groups Qn, 
where n + 1 = V2(q2 - 1). 

PROOF: By definition Qn has presentation 

(n 2: 2) 

and fits into a nonsplit extension Z/2 n -- Qn -- 1../2. 

Case 1: q = 1 mod 4. Let H be the subgroup generated by matrices with 

0: a 2-primary root of unity. and the matrix 1 ). Then H is generalized 

quaternion and has the correct order, hence is a 2-Sylow subgroup. 
Case 2: q = 3 mod 4. We first construct a 2-Sylow subgroup of GL2 IFq. Identify (IFq)2 

with the field IFq2 = IFq( H). This defines an inclusion IF;2 C GL2IFq, and in 
particular we get a cyclic subgroup A of order 2n +1 (note n 2: 2 here). Let H' 
denote the subgroup generated by A and the Frobenius a. Then H' fits into a 
split extension 

A. -- H' -- 7l/2 

in which a generates the 1../2 and a acts on A by 0: I--i' a q • Since n = V2(q + 1), it 
follows that q = 2n - 1 mod 2n+l, so we can write the action as 0: I--i' 0:2n -1 (this 
group is usually called the semi-dihedral group). Xow det a = -1 (use the basis 
1,.J=I) and det 0: = 0: . ao: = o:q+l. Hence if a generates A, det 0: = -1 and the 
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subgroup H of H' generated by fJ = 0: 2 and T = Q(j lies in 5L2 Fq • It is clear on 
inspection that H is generalized quaternion (e.g. Tj3T- 1 = fJ2 n -l .3- 1 . etc.), 
and since H has the correct order 2n +1 this completes the proof. 0 

The cohomology of Qn can be computed by purely algebraic means, using the Hoch-
schild-Serre spectral sequence of a suitable extension. Here we'll compute it by a more 
topological method that is amusing and instructive. Recall that the 3-sphere 53 can be 
identified with the group of unit quaternions. The group Qn can be identified with the 
subgroup generated by the 2n-th roots of unity in 51 C 53 and the element j.- In particular 
we get a canonical map BQn L. B53 • 

(7.4) LDfMA. H* B53 '" Zj2[y], Iyl = 4. 

PROOF: This follows immediately from the Serre spectral sequence of the fibre sequence 
53 _ E53 ---. B53 (in fact one could use Z-coefficients here). 0 

By a general fact about classifying spaces, there is a fibre sequence 

We will compute H* BQn from the associated Serre spectral sequence. 

k = L2 
k=3 
k>3 

by Poincare duality, since 53 jQn is 3-manifold. 

Thus the only possible nonzero differential is d4 , but: 

(7.6) LEMMA. f*y i= O. 

o 

PROOF: Consider the group inclusions Zj2 C Qn C 53. C 0(4), where Zj2 C 53 as ±1 
and the last inclusion comes from the natural action of 53 on lffi = lR. 4 . Take classifying 
spaces to get 

BZj2 - BQn - B53 - BO(4). 

The composite map 9 : BZj2 - BO(4) classifies ,\ EB A EB A EB A. where A is the canonical 
line bundle. Hence by the Whitney sum formula! g*(W4) i= 0 (W4 = 4-th universal Stiefel-
Whitney class). Clearly this forces f*y i= O. 0 

Thus the spectral sequence collapses. Identifying y with f* y, and using the fact that 
the spectral sequence is a spectral sequence of H* B53-modules, we arrive at the following 
result: 
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(7.7) PROPOSITIO:\. A.s 1F2 [y]-module, H*BQnis isomorpbicto 1F2[Y] 0 V, wbere V 
H*(S3/Qn) bas Poincare polynomial! + 2t + 2t2 + t3. 

REMARK: It is possible to determine the complete ring structure, but we won't need that 
here. Note that in particular multiplication by y gives an isomorphism 

k 2 o. 
One says that Qn has periodic cohomology with period 4. 
(7.8) LEMMA. Let G be any finite group with 2-Sylow subgroup a generalized quaternion 
group Qn. Then H*G is periodic with period [our, and H 3 G = H 4G = 7l/2. 

PROOF: By the stable element theorem (see AI), H*G can be identified with the subring 
of stable elements in H*Qn. ;.Jow if 1\ is any subgroup of Qn, then 1\ is either cyclic or 
generalized quaternion. In particular if 1\ is nontrivial then H 3 1< = H41\ = 7l /2. Hence 
y E H 4 Qn and the e;enerator x E H3Qn are necessarily stable. Finally we must check that 
multiplication by y : HnG Hn+4G is bijective for all n 2 O. Since y is not a zero-divisor 
in H*Qn, the injectiyity is clear. Similarly the definition of stable element shows that if 
yz is stable then so is z, proving the surjectivity. o 
PROOF OF THEORDI 7.1: By Lemma 7.8, it only remains to show that HISL2IFq = 0 = 
H2 SL2'IFq. If 1< is any field, an exercise in linear algebra shows that SL21< is generated 

by the elements a E K. When K = IFq these elements have order p. 

Since p is odd, we conclude HI SL2IFq = Hom(SL2IFq, 7l/2) = O. 
To see that H2 = 0, we consider the exact sequences 

arising from the long exact coefficient sequence associated to 0 7l 7l 7l /2 O. Here 
2.4. = {a E A : 2a = O} for an abelian group A. ;;-ow Y E 1m r, __ __ 
in H* BS3 . In particular the finite 2-group H4(SL2IFq; 7l) is nonzero. Taking n = 3 in the ", 
above sequence then forces@'3(SL 2 IFq;71l O. Taking n = 1 forces(H 2 (SL 2 lFq ;71Y= 0, ! 

(,-:' i C.:) ; 

and then taking n = 2 shows H2 SL2 'IFq = 0 as desired.3 \1-
U C' f! ,,::, (X, ([ ! 

"(' 

8. Further results ,I.J 

Our homology and cohomology calculations were aimed directly at the proof of the 
main theorem. In this section we derive some further results of Quillen on the homology 

3The argument showing H2 = 0 can be done more systematically using the "Bockstein 
spectral sequence." 
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and cohomology of G L n F q' The proofs are occasionally much sketchier than in previous 
sections. All cohomology groups have Z/l-coefficients until further notice. 

(8.1) THEOREM. 

(a) In the typical case 

where \Zi\ = 2ri - 1. 
(b) In the exceptional case 

H· BGLIF@ I"V Z/2[cI, C2, . .. ,db d2, .. . J/ I 
1.-

where \dil = 2i - 1 and I is the ideal generated by the relations elf = C2i-I + CIC2i-2 + 
... + Ci-I Ci· 

NOTE: Various choices of the Zi in (a) will be discussed below. The d i in (b) are unique. 

PROOF: 

(a) Suppose first that II q - 1, and consider the isomorphism of Hopf algebras 

H.BGLIFq I"V S'(ii.BC). 

The coproduct is determined by the formulas D..b = b ® b, D..e = e ® b + b ® e. 
Here b = 1 + bI + b2 + ... as usual and e = el + e2 + .... Note that our assertion 
D..b = b ® b uses the fact that we are in the typical case-in the exceptional case the 
even-dimensional part of H.BC is not a sub-coalgebra. As in §5 we have that the 
terms Pi of are primitive, and Pi = ei mod decomposables. Hence 

as Hopf algebras. Dualizing yields (a) when 1 I q - 1. The general case follows easily 
by considering the map 

which clearly splits as algebras (and also as Hopf algebras, but we don't need that). 
(b) Let S denote the Hopf algebra S(H.lR.P(X) and let an E HnlR.P(X) be a generator, 

n 1. Thus S = Z/2[a}, a2,"'] with diagonal D.an = l: ai ® aj or D.a = a ® a, 
i+j=n 

a = 1 + al + .... (In our earlier notation, a2n = bn and a2n-l = en.) Let r denote 
the ideal generated by the n odd. Then we have shown that s/r I"V H.BGLIFq as 
Hopf algebras. Hence if ReS· is the sub-Holf algebra with "annihilator I, we have 
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an isomorphism H* BGLTFq R. So it is now a purely algebraic problem to identify 
the sub algebra R. 
:\ote S* H* BO = Z/2[WI, U'2 .... J with diagonal map m*w = lL'2; w. where m is 

the multiplication S 0 S -+ S. Let Cn = and dn = W2n-1 + WI W2n-2 + ... + W n -l1.L'n. 

Let R' denote sub algebra of S* generated by Cn, dn , 11 2:: 1. Since = C2n-l + CIC2n-2 + 
... + Cn-l Cn it is enough to show 

,8.2) LEMMA. R = R'. For this we first observe: 

. (8.3) LEMMA. I is a Hopf ideal-that is, an ideal such that x E I implies D.X = I:xi 0 xi' 
with either xi or xi' in I for each i. 

PROOF: This is obvious since = L b: 0 bJ. 
l+j=n 

18.4) LEMMA. m*dn L Ci 0 d j -t- d i 0 Cj. In particular R' is a sub-Hopf algebra of 
i+j=n 

5*. 

PROOF: We may formally define a Hopf algebra A over Z that reduces mod 2 to 5*. Thus 
A. = Z[Wb tU2, ... J with .0.w = iV 0 w. etc. Then iV2 = c + 211 where c = I:ci, etc. and 
Vodd = J mw2 = (c + 21)) 0 (c + 21)) and m if = c 0 if + if 0 c + 2v v. Reducing mod 2 
and picking out the odd degree terms yields the desired result. 0 

(8.5) LEMMA. Suppose S, S* are any two dual Hopf algebras, I C 5 a Hopf ideal and 
R' c 5* a sub-Hopf algebra. Suppose (x, y) = 0 for all x, y ranging over a set of ideal 
generators of I and algebra generators of R' respectively. Then (x, y) = 0 for all x E I, 
y E R'. 

PROOF: This is a trivial exercise, exploiting formulae such as (xy, z) = (x 0 y, m* z), etc. 

PROOF OF 8.2: We have equalities of Poincare series f(R, t) = f(S / I. t) = f(R', t), where 
the first equality holds by definition of R and the second by direct inspection. So it is 
enough to show R' c R-i.e. I annihilates R'. By the preceeding lemmas we have only 
to check x) = 0 when n is odd and x is C m or dm for some m. This is trivial unless 
x = Cn , and then (b;, cn) = (bn 0 bn , 2:.wl 0 wl) = 0 since n odd. o 

This completes the proof of 8.1.b. 

There are two canonical choices of the exterior generators Zi in 8.1(a). Consider 
first the case I I q - 1. Recall that the Chern classes C n are dual to the elements bj.', 
with respect to the monomial basis in the bi'S. Similarly one may define dn as dual to 

with respect to the monomial basis in the bi, ei. In other words (dn , = 1 
and (dn , bI eJ ) = 0 for all other multi-indices I, J. Note dn is indecomposable because 
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(dn,Pn) = (_1)n-l :f. 0 (use the formula p = from the proof of (a)). Hence the dn 
provide one choice of exterior generators. An easy and purely algebraic exercise then 
shows that the coproduct is givenby m*d = c 0 d + d ® c. Hence if f = %, the elements 
f n are primitive and indecomposable, providing another choice of generators. Finally if 
llq - 1 we can use the elements drn or frn obtained by restriction from the natural map 
BGLIF'q BGLIF'qr. 

We next turn to the calculation of H*GLnIF'q for finite n. If I is odd, write n = Tm + f 
with 0 :::; € < T. Let Tn = (cq)m, embedded in GLnIF'q in the obvious way: (cq)m c 
(GLrIF'q)m C GLrmIF'q C GLnIF'q. 

(8.6) THEOREM. If I odd, H*GLnIF'q IV ZII[cr, C2r,'" 'cmr] ® Z/l(dr, d2r , ... ,dmr ). Fur-
tllermore tbe restriction map H*GLnIF'q H*Tn is an isomorphism onto (H*Tn)Em. 

PROOF: First of all i* is injective. When I I q - 1 this is Theorem 4.8. The general case 
is proved by an identical argument that will be left to the reader. Then the injection 
i* : H*GLnIF'q ---+ (H*Tn)Em is surjective because the dual map is injective by Theorem 
4.2. It follows that each inclusion GLn C GLn+1 induces a surjection on cohomology and 
hence the restriction H*GLIF'q ---+ H*GLnFq is surjective. On the other hand it is easily 
checked that Cjr and djr restrict to zero if j > m. Hence we have a surjective map 

Comparing Poincare series (using the isomorphism of graded vector spaces H*GLnIF'q 
(®m H*Cq)/E m) shows this map is an isomorphism. 0 

(8.7) RB1ARK: Implicit in the proof of (8.2) is a partly topological proof of the following 
purely algebraic fact: let S = Z/l[Yb'" . !1m] 0Z/I(xI, ... ,xm ), where IYil = 2, IXil = 1, 
and let Lm act on S by permuting the generators. Then 

where O"j is the i-th elementary symmetric function in the y's and Ti is the symmetrizatjon 
of the monomial Yl ... Ym-lXm' The point is that when 11 q - L S = H*Tn and i*di = Ti. 

Of couse the argument can also be carried out purely algebraically. 

(8.8) THEOREM. Let 1 = 2. Then 
(a) If q = 1 mod4, H*GLnIF'q IV Z/2[c}, ... ,cn] ® Z/2(db ... ,dn) 
(b) Ifq = 3mod4, H*GLnIF'q IV Z/2[c}, ... ,cn,d1 , ... ,dn]/I, where I is the ideal gener-
ated by tbe relations elf = C2i-l + CIC2i-2 + ... + Ci-ICi· 
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The proof is similar to that of (8.6). Here, however, the map i* : H*GLnFq 
is no longer onto. In case (a), i* is an isomorphism onto Z/2[0"1, ... ,O"n12 

Z/2(Tl, .... Tn) as in Remark 8.7. But this is not the full ring of invariants-the problem 
is that when I = 2 elements such as Xl ... In are fixed by En. In case (b), i· maps Cj to the 
i-th elementary symmetric function in the x; and maps d j to the symmetrization of the 
monomial xi ... xLI Xi. This latter assertion is easily proved using the coproduct formula 
m*d = c 0 d + d 2 c. 

Next we consider what happens when we pass to the algebraic closure lFq • Note that 
lFq = U lFqn, but the lattice of finite subfields lFqn is ordered by divisibility: lFqm C lFqn if 

n 
min. To get a linear ordering we write lFq --: UlFq(n!). Then BGLlFq = U BGLlFq(n') and 

n" 
we can use the ).Iilnor exact sequence to assemble the various Brauer lifts into a single 
map (j : BGLJFq ---, BU. 

(8.9) THEORDL 8 induces an isomorphism on modi homology: H.BGLFq "'-' H.BU. 

PROOF: Clearly H.( 8) is onto since it is onto when restricted to BGLlFqr. Since H.BGllFq = 
to show H.(8) is injective it will be enough to show the odd generators 

ej vanish in the limit. This in turn reduces to the fact that the inclusions Z/la C 7!./la+l 
induce the zero map on Hodd. 0 

Of course 8 is not an isomorphism on H.( -; R) for R = Zip or Q, since ii.(BU; R) 1= 
o. 

Observe that we have now computed H·(GLnlFq;R) for R = Q, Zip, or 7!./1 and n::; 
00, with one exception: H·(GLnlFq; Zip) when n < 00. When n = 00, we showed this coho-
mology is trivial (§3). It also follows immediately from Lemma 3.3 that ii*(GLnFq; Zip) = 
O. However the computation of H*(GLnlFq;Z/p) is an open problem. A few qualitative 
facts can be deduced from [Quillen 3], and some explicit computations have been done for 
n ::; 3. Beyond that. almost nothing is known. 
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AI. The transfer in group cohomology 

Let G be a discrete group. Recall that if M is a ZG-module. Hn( G: 1\1) = Extw(Z, M). 
So we may regard H*(G, -'1) as the right derived functors of the left exact functor M 1-+ 

Homw(Z,l\1) = MG. If H is a subgroup of G, there is a natural restriction map 
i*: H*( G; 1'11) ---+ H*(H;.\1) defined as follows: choose an injective resolution of ZG-
modules M ---+ T, so by definition H*( G; M) is the cohomology of the chain complex (T)G. 
Now any injective ZG-module is also injective as ZH-module. because the restriction func-
tor (ZG - Mod) ---+ (ZH - mod) has an exact left adjoint-namely, N 1-+ ZG@ZH N. So 
J' is also an injective resolution as ZH -modules, and i* is simply the map on cohomology 
induced by the inclusion of chain complexes (T)G C (T)H. 

Now suppose H has finite index in G. Then there is also a map T, called the "transfer", 
which goes the "wrong" way: H*( H; lY1) H*( G, M). To define it, let 91, ... ,9n be 
a set of left coset representatives of H in G. Then we have a natural transformation 
T : J\1 H ---+ 1\1G given by T( m) = 'L-9im. It is obvious that T is independent of the choice of 
coset representatives. To extend this definition to the derived functors, we simply apply it 
to the terms of a resolution. Explicitly, T is the map induced on cohomology by the map 
of cochain complexes T : (T) H ---+ (T)G. 

This simple construction is surprisingly powerful. 

(Al.l) PROPOSITION. Suppose H has finite index in G. Then the composite 

H*(G; M).s H*(H; 1\1) H*(G; ,\1) 

is multiplication by [G : H]. 

PROOF: Ti* is the map on cohomology induced by (T)G C (J')H But clearly for 
any G-module N, N G C N H N G is multiplication by [G : H]. 0 

(A1.2) COROLLARY. Suppose G is finite and M is a an RG-module, where IGI is a unit 
in R. Then Hn(G, M) = 0 for all n > O. 

PROOF: By assumption multiplication by IGI is an isomorphism (of ZG-modules) from M 
to itself. It follows that multiplication by IGI is an isomorphism on Hn( G; M) for all n. 
On the other hand, taking H to be the trivial subgroup in (1.1) shows multiplication by 
IGI is zero on H n when n > O. 0 

EXAMPLES: (a) For any finite group G, ii*(G;Q) O. (b) If G is finite and PAIGI, 
H*(G; Zip) = o. 

This corollary can be generalized: 
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.-\1.3) COROLLARY. Suppose H has finite index din G and M is a Z G-module. Then 
" : H*(G,AI) - H*(H,j\;1) is sphr injective. 

PROOF: The splitting map is . T. o 
EXAMPLE: Suppose G is finite and H is a subgroup which contains a p-Sylow subgroup 
of G. Then i* : H*(G; Zip) - H*( H: Zip) is injective. 

Of course there is also a transfer in homology. Recall that H. ( G; .\1) = (Z; M). 
These are the left-derived functors of M I--t Z 0w .LV! = MG. Here .LUG is the group 
of coinvariants M/(gm - m). Csing a projective resolution P. - lvI. we get maps i. : 
H.(H; M) - H*(G; .;\1) and r : H.(G; M) - H*(H; M) as before. 

Reflecting on Al.I, it is natural to ask for a formula for i*r as well. This is the 
"double coset formula". It looks somewhat complicated at first glance. but in fact it is 
easy to prove and easy to use. ""rite i( G. H) for the restriction H*( G: .'v1) - H*(H; M) 
and r(H,G) for the transfer. If x E G write Cx for the map H*(H;M) - H*(xHx-i,M) 
induced by conjugation by x-I xHx- 1 -t H. On the level of cochain complexes, Cx is 
represented by multiplication by x : I H -t IX H X-I. Finally, if K is another subgroup of G, 
the K - H double cosets in G are the orbits of the left K -action on G I H. These double 
cosets can be expressed in a more symmetrical form as K\ G I H (mod out by H on the 
right, K on the left), but for present purposes the first description is more relevant. 

(A1.4) PROPOSITION (DOUBLE COSET FORMULA). 

i(G,K) 0 r(H, G) = L.,xT(K n xHx- 1 ,K) 0 i(xHx- 1 ,K n xHx- 1 ) 0 Cx 

,·.-here x ranges over a set of representatives of the K -orbits of G I H. 

PROOF: We work on the cochain level. The left hand side is just [H _ [G C [K, where 
r 

:-10:) = 'E,gEG/HgCt. A typical term on the right is given by the composite 

. [H -t I xHx- 1 C [KnxHx- 1 _ [K 
x 

where rx(Ct) = L.,kkCt and the sum is over k E KI(K n xHx- 1 ). Hence the composite is 
given by Ct I--t I:(kx)Ct. But K n xHx- 1 is precisely the isotropy group in K of xH. So 
in this last sum kx is ranging over the elements of the orbit K xH I H. Since G I H is the 
disjoint union of the K -orbits, the result follows. 0 

As an application, fix a prime p and suppose [G : H] prime to p. By Al.l the restriction 
map i* : H*(G;Zlp) - H*(H;71lp) is injective and we wish to describe the image. Call 
0. E H*(H;Zlp) stable if for all x E G, i(H,H nxHx-l)Ct = i(xHx-1,H nxHx-1 ) OCxCt. 
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COROLLARY (STABLE ELEMENT THEORDt). Suppose pl[G: H]. Then a E H*(H; Zip) 
is in the image of i* if and only if a is stable. 

PROOF: Suppose a is stable and let p = ,( H, G)a. Take H = K in the ciouble coset 
formula. Then 

i*f3 = LT(H n xHx-1.H) 0 i(H,H n xHx-l)a 
x 

x 

= [G: H]a 

Hence a = i*([G : H]-l f3). The converse is a trivial consequence of the fact that conjuga-
tion by I induces the identity map on H*G. o 

A2. The transfer in algebraic K-theory 

Any ring homomorphism S induces a map on algebraic K-theory KnR KnS, 
n o. If n = 0 this map takes a finitely-generated projective R-module M to S 0R M. 
For n > 0, <p induces a group homomorphism G LR G LS, hence a map of spaces 
BGLR BGLS and hence a homotopy class of maps <p+ : BGLR+ BGLS+. Then 
KnR KnS is just the induced map on homotopy groups, n > O. 

If ReS as a subring, then under certain conditions one can define a ··wrong-way" 
homomorphism K.S K.R. This map is called the "transfer" because of a strong analogy 
with the transfer in group homology (for example, compare the homology version of Al.l 
with A2.3 below). 

Our goal here is only to give a quick and cheap construction of the transfer. sufficient 
for the purposes at hand. In particular we will only discuss the transfer for fields: we will 
leave it to the interested reader to imagine possible generalizations. 

So suppose FeE· is a finite field extension, of degree d. Then it is obvious how 
to define a transfer T : KoE KoF-. if V is a finite-dimensional E-vector space, set 
T([V]) = [VF], where VF is V regarded as F-vector space. It is equally obvious that 
,0 i. : KoF KoF is multiplication by d. 

A moment's reflection suggests an extension to higher K -groups. Fixing a basis for E 
over F determines compatible homomorphisms GLnE GLdnF and hence a homomor-
phism GLE GLF. This yields the transfer T : BGLE+ BGLF+. Of course we want 
to show the homotopy class of T is independent of the choice of basis made above. This 
follows immediately from a special case of a lemma from [Loday]: 
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# 

(A2.1) LEMMA. Let u : N --+ N be any permutation (which we regard as a permutation 
of the standard basis vectors in R'=). Then conjugation by u defines an automorphism of 
GLR. and the induced map u+ : BGLR+ --+ BGLR+ is homotopic to the identity. 

For any homotopy associative H -space X, let [d] denote the d-th power map: 

d 

i=l 

(A2.2) PROPOSITION. The composite BGLF+ -.:. BGLE+ BGLF+ is homotopic to [d]. 

PROOF: ri is induced by a certain group homomorphism GLF --+ GLE --+ GLF, described 
above. On the other hand [d] is also induced by a homomorphism. )ramely, one can 
use the composite GLF GLF where 1] may be defined using any partition of 
the basis N into d infinite subsets (using 2.1 again I. For a suitable choice of partition, the 
two homomorphisms are actually equal. o 

(A2.3) COROLLARY. 7r*(ri) is multiplication by d. 

PROOF: For any H-space X, the group structure on 7r*X inherited from the H-space 
structure on X agrees with the usual one. So 7r * [ei] is multiplication by d. 

(A2.4) PROPOSITION. The transfer is a map of H -spaces. 

PROOF: We must show the diagram 

r x r I BGLF+ x BGLF+ 

lmF 
BGLE+ BGLF+ r 

is homotopy commutative. But both m F 0 (r x r) and rom E are induced by group homo-
morphisms GLE x GLE --+ GLF. These homomorphisms differ by an infinite permutation 
as in (2.1). 0 

For completeness we record the behaviour of iT. 

(A2.5) PROPOSITION. Suppose E is Galois over F with group G. Then the composite 

is homotopic to L ()" (sum in the H -space structure of BG LE+ ). 
(TEG 
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It follows immediately from AS.2 that A2.5 holds after restriction to any BGLnE, 
n < (Xl. The complete result requires the technique of Loday's lemma A2.1. 

A3. Milnor's liml sequence. 

Consider an inverse system of abelian groups 

A ftAhA o+- I+- 2 +- ... 

Let T : ITA; ---+ ITA; denote the "shift" map 

Then Ker(l - T) is by definition which we will write as limo Ai. 'Ve define liml by 

liml Ai = Coker( 1 - T). 
The notation is justified by the fact that limo is a left exact functor {inverse systems} ---+ 

{abelian groups} and liml is the first right derived functor (it turns out that the higher 
derived functors are always zero). However we will not use this viewpoint here; we simply 
define lim 1 as above. 

(A3.1) PROPOSITION. Suppose 0 ---+ Ai ---+ Bi ---+ Gi ---+ 0 is a short exact sequence of 
inverse systems. Then there is an exact sequence 

0- limo Ai _ limo Bi ---+ limoG; 

- liml Ai ---+ liml B; ---+ liml Gi - 0 

PROOF: Map the exact sequence 

o ---+ ITAi ---+ ITB; ---+ ITG; ---+ 0 

to itself by 1 - T and apply the snake lemma. o 
The next theorem is Milnor's exact sequence. It can be generalized somewhat, but we 

will leave such generalizations to the interested reader. 

(A3.2) THEOREM. Let X be a pointed GW-complex, X o C Xl <;: ... eX = uXn a filtra-
11 12 

tion by pointed subcomplexes. Let Y be a homotopy associative H -space. Then there is a 
natural exact sequence of groups 
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\"OTE: [ j. denotes pointed maps, and Yj. is an abelian so the liml 
makes sense. In all examples considered in this paper, Y is homotopy commutative so all 
three groups are abelian. 

The proof is simple and may be sketched as follows. Let X' denote the reduced 
mapping; telescope of the sequence X n. Thus X' = U (X n x 1/ '" A 1) / ,....., where the 
equivalence relation is (xn, 1) '" (in .... ! (x n ), 0). One can show that X' is naturally homotopy 
equivalent to X, so we may replace X by X'. There is an obvious inclusion V X n ---+ T 
whose cofibre is V L:X n' So we get a cofibre sequence 

and then applying [ . Y]. we get an exact sequence 

One can check that 1m 'P is precisely limo [Xn' Yj., and that 'lj; is precisely 1 - T, proving 
t he theorem. 

It can be very difficult to determine whether the liml-term in :'1ilnor's sequence is 
zero or not (unless the groups [L:X n • Y] are all zero!). However there is one criterion that 
is easy to apply in practice. It is based on: 

(A3.3) PROPOSITION. Suppose Ai is an inverse system of compact Hausdorff topological 
groups, and the maps Ii are continuous. Then liml Ai = O. 

PROOF: By definition lim1 = 0 if and only if 1 - T is onto. This amounts to the assertion 
that for any {ad E I1 A. i , the infinite sequence of equations 

can always be solved for the Xi. Now clearly we can always solve the first (n+ 1) equations 
by setting Xn+l = 0 and working backwards. In other words (for any inverse system) the 
composites Ai I::}' Ai Ai are onto for all n. If we give n Ai the product 
topology, this trivially implies that ImO - T) is dense. But by Tychonoff's theorem, 
It:l Ai is compact. So lm{l - T) is both closed and dense, hence 1 - T is onto. 0 

Note the proposition applies to any inverse system of finite abelian groups (with the 
discrete topology). 

We will use the following hypotheses: 
( *) X is a connected CW -complex with finitely many cells in each dimension. 

("'*) Y is a connected homotopy associative and commutative H-space with finitely-generated 
homotopy groups. 
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(A3.4) PROPOSITION. Suppose X satisfies (*) and Y satisfies (**). Assume in addition 
that either/a) Hn(X;Z) is finite for all n > a or (b) 7rn }- is finite for all n. Then [X,Y] 
is profinite. and the profinite topology is natural in both variables. 

PROOF: Suppose (a) holds. 

LEMMA. If X is a finite complex, [X. Yj is finite. 

PROOF: For n 1 define sub complexes X n , with xn C Xn C xn+1 (xn = n-skeleton) 
and H*Xn finite, as follows: Hkxn is finite for k < n but Hnxn is free abelian of finite 
rank d, say. Since HnX is finite, the boundary map Cn+1X --+ CnX of the cellular chain 
complex must have rank exactly d. Hence by elementary linear algebra there are (n + 1)-
cells en! . ... ,eO/d such that Xn = xn U eO! U ... U eO/ d has the desired property. 

Now the cofibre sequences Xn ---+ X n +1 ---+ Xn+I/ Xn yield exact sequences 

so by induction we reduce to showing [Xn+dXn, Y] is finite. Since Xn+dXn has only 
(n + I)-cells and (n + 2)-cells (plus the zero-cell), there is a cofibre sequence 

d d d+1 d+1 V sn+1 LV sn+12 ---+ Xn+dXn --+ V sn+2 V sn+2 

with 9 = 'E.f. To see this, note the long exact homology sequence of the pair LYn+1,Xn) 
shows ii*(Xn+I/Xn) is torsion, which forces the number of (n + I)-cells. Furthermore 
Hn+1(f) is given by a (d x d)-matrix A over Z of rank d. Finally [Vd sn+1, YJ = -3d7rn+1Y 
and f* : [Vd 5 n+1 ,Y] --+ [Vd 5 n+1 ,YJ is also given by the matrix A (and similarly for 
'L-f). Hence (using (**) Ker f* and Coker('L-f)* are finite, which completes the proof of 
the lemma. o 

Returning to an arbitrary X satisfying (a), the lemma and its proof show we can 
always filter X by finite sub complexes Xn such that [Xn, Y] is finite for all n. Similarly 
[EXn, YJ is finite for all n, so lim1['L-Xn, Yj = a by (A3.3). Hence [X, Y] = limo [Xn' Y] is 
profinite. 

If X' is another such complex and f : X' --+ X a map. the naturality assertion is that 
f* : [X, YJ --+ [X', YJ is continuous with respect to the profinite topologies obtained from 
filtrations X n , To see this, it is enough to check that (f*)-l(U) is open when U ranges 
over a neighborhood base at zero in [X', Y]. But such a base is given by the subgroups 

= {g E [X', YJ : = a}, and by the cellular approximation theorem we can assume 
C X n+1 . Hence if h E = a-the coset neighborhood h+Un+1 
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of h is contained in [Note that taking f to be the identity map of X shows 
that the profinite Topology obtained is independent of the choice of filtration XnJ. The 
naturality in Y is similar. 

The proof under assumption (b) is similar but much easier; the point is that in the 
lemma we can just take Xn = xn. 
REMARK: In most cases of interest Y is an infinite loop space. For such Y, the reader 
who knows the Atiyah-Hirzebruch spectral sequence can prove the lemma instantly. 

EXAMPLE: X = BG, G finite, Y = BU or U. To see that BG satisfies (*), consider the 
Milnor construction for EG (using the weak topology on EG). It is the union of closed 
subspaces (EG)n = n-fold join G * G· .. * G. From this it is easy to show that EG is a free 
G-CW-complex (see A6) with n-skeleton (EG)n' Hence BG = EG/G is a CW-complex 
satisfying (*). Of course BG satisfies condition (a) of (A3.4) by Al (example (a) followine; 
A1.2). 

(A3.5) COROLLARY. Suppose X is a CW-complex :filtered by subcomplexes Xn such that 
each Xn satis:fies ("). Suppose Y satis:fies (**) and either each Xn has :finite homology 
groups or 7:"nY is :finite for all n. Then lim! [Xn, Y] = 0 and [X, Y] is pronnite. 

PROOF: By (A3.4) each [Xn , Y] is a compact topological group and the restriction maps 
are continuous, so we can apply (A3.3). 0 

EXAMPLE: Let G be a discrete group, filtered by finite subgroups Gn (e.g. GLfi'q). Take 
X = BG, Y = U or BU. 

A4. Localization of spaces. 

Let 5 be a set of primes, and let 5-1 Z denote the subring of Qgiven by {t : p I b => 
P E 5}. For any abelian group A, 5- 1 A = A @ 5-1 Z will be called the localization of A. 
away from S. :\ote the special cases 5 = {p} (localization away from p), 5 = {primes q i= 
p} (localization at p, also denoted A(p) and S = all primes (rationalization-5-1 Z = Q). 
It is easy to check that 5- 1 (-) is an exact functor and that S-1 A. = 0 if and only if A. is 
a torsion group haying p-primary torsion only for the primes in S. It is also easy to see: 

(A4.1) 

where if 5 is finite f n = TIpEs p for all n and if 5 = {PI, P2, ... } is infinite f n = PI ... pn. 
It is often convenient to localize homology or homotopy groups in this way. But 

even better is to somehow localize the underlying space (!); this idea is due to Dennis 
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Sullivan. Although Sullivan's localization functor has been refined and generalized over 
the years. we will present it in essentially its original form. All .'lpace.'l will be a.'l.'lumed 

to be path-connected .'limple CW-.'lpace.'l. For the rest of this section, a set of primes S as 
above is fixed. A map I : X Y is said to localize homotopy (resp. localize homology) 

if 1fn(f) induces an isomorphism S-1 1fn X 1fnY Crespo Hn(f) induces an isomorphism 
S-l H n (X; Z) H n (Y, Z»). We say that X is local if the identi ty map localizes homotopy-
in other words, 1f *X is already a module over S-IZ. 

(A4.2) THEOREM (SULLIVAN). The following are equivalent for a map I : X Y: 
(a) I localizes homotopy 
(b) I localizes homology 
( c) I has the universal property: Given any map g : X -+ Z with Z local. there is a map 

h, unique up to homotopy, such that the following diagram is homotopy commutative: 

Z 

In particular Y is unique up to a canonical equivalence. 

(A4.3) THEOREM (SULLIVAN). For any simple X as above, there exists a space Y and a 
map I : X Y satisfying the conditions of A4.2. 

We call Y the localization of X away from S, denoted S-l X. If S is the complement 
of a single prime p, we also write this as X(p)-the localization of X at p. Property 
A4.2c shows S-l X is unique up to a canonical homotopy equivalence. If X is a homotopy 
associative H-space. there is a simple construction of S-lX, imitating A4.1: take S-lX 
to be the mapping telescope of the sequence 

... 

with In as in A4.1, using the H -space structure. It's easy to check that the natural map into 
the telescope localizes homotopy. Similarly if X = 2:X' with X' path-connected, one gets 
an easy construction by taking a mapping telescope as above. using the co-multiplication 
to define the In. In this case it is easy to check that f localizes homology. 

Localization is a functor on the appropriate homotopy category, and has many pleasant 
properties. For example, it is not hard to see (using only A4.2, 3) that the functor S-1 X 
commutes with fibre sequences and loop spaces. The precise statement and proof is left to 
the reader. Another sample property, used in these notes, is: 
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(.-\.4.4) PROPOSITION. If p 7:. S. X ---- S-I X induces an isomorphism on modp homology. 

The proof is a trivial exercise. 

A5. Graded algebras, co-algebras and Hopf algebras 

Let K be a field, V = EB l'n a graded vector space over K. We assume throughout this 
n>O 

section that all such V have finite type-i.e. each Vn is finite-dimensional. Then the dual 
F* = EBV; also has finite type, V** = F, and (V 0 W)* = V* 0 W*. This also allows us to 
define the Poincare series f (F. t) = l: ( dim Vn )t n. This formal power series is an extremely 
useful counting device. It has the obvious properties f(V EB W, t) = f(F, t) + feW, t) and 
f(V (,9 w, t) = feY, t)f(W, t). 

Now suppose A is a graded algebra over K. \Ve will always assume.4. is connected-i.e . 
.4.0 = K. We say that A is commutative if ba = (-l)lallblab for all homogeneous a, b E A, 
where I I denotes the grade. The suspension is defined by = Vn - I . vVe set 
Fev = EB Vn , vodd = EB 1'n, and 11 = EB Fn. 

n even n odd n>O 

(A5.1) EXAMPLE: Let V be a graded vector space, with Vo = O. The tensor algebra T(V) 
is defined by T(V) = EB ®iF. with multiplication given by juxtaposition of tensors. Note 

i>O 
T(V) is in fact bigraded-it inherits an "internal" grading from V but also has a grading 
by the "length" i. However for our purposes the internal grade is the primary one; thus 

IVI 0 .. · ® Vi I = IVII + ... + Il.'i I· 
IA5.2) EXAMPLE: The symmetric algebra S(V) is the quotient ofT(V) obtained by factor-
ing out the two-sided ideal generated by all ab - ( -1 )la11b l ba; a, b homogeneous elements of 
V. It is easy to see that S(VS = S(V)®S(W); in particular S(V) = s(vev)®s(vodd ), 
respectively then s(vev) is just the polynomial algebra K[?-I, a2, ... J and, if char K =f. 2, 
S (vodd) is just the exterior algebra K (b i , b2, ... ). If char K = 2, S (F) is a polynomial 
algebra. 

(A5.3) EXAMPLE: The strict symmetric algebra S'(V) is the quotient of S(V) obtained 
by factoring out the ideal generated by all a2 with lal odd, or equivalently just such 
elements with a E V. If char K i= 2 then S(V) = S'(V), so S'(V) is only of interest when 
char K = 2. 

All three examples are functorial in V; it is often advisable to avoid choosing a basis 
as in the second example. 

(A5.4) EXAMPLE: Let V be a vector space over lFp of dimension n. Grade V by declaring 
all elements to have grade one. Regarding V is an abelian group, we have the classifying 
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space BV with Hd BV: Zip) naturally isomorphic to V. Hence HI (BV; ZIP) is naturally 
isomorphic to V*. Then H*(BV; Zip) is naturally isomorphic to 5(V*) for p = 2 and to 
SO'· EV*) for p odd. In the latter case EV* is identified with ;3V" where f3 
is the Bockstein operation (i.e. the coboundary in the coefficient sequence associated to 
o - '2/ p -t Z I p2 --t 7l I p --t 0). The naturality implies in particular that the action of 
the general linear group GL(V) on BV induces the evident algebraic action on S(V .. ) or 
5n"· .:::- EV"). 

(---\5.5) REMARK: The functors T(-), S(-), and S'(-) are all left adjoints: we have for 
F = T. S, 5' that Hom(F(V), B) = HomK(V, B) where the first Hom is in the category 
of graded K -algebras, commutative graded K -algebras, or strictly commutative graded 
E-algebras. respectively, and the second Hom is in the category of graded vector spaces. 

If A. is a graded K -algebra then .4 is a two-sided ideal. If A is connected. as we 
are assuming, the elements of lP are called the decomposable elements. Thus a E A is 
decomposable if a E with lai I, Ibi 1 > O. The space of indecomposable elements is 
QA = .41 A2. Note the terminology is somewhat misleading since QA is a quotient of A, 
not a subspace. Since we are working over a field, the projection A --t QA ahvays splits-
but there are usually many choices of such a splitting. In examples (1)-(3) above there is 
a canonical (but certainly not unique) choice: for example, the composite V -t S(V) --t 

QS(1') is an isomorphism. 
Xow observe that the notion of a K-algebra A can be defined entirely in terms of 

diagrams. That is, a K-algebra consists of a (graded) vector space A together with multi-
plication and unit maps m : A 0 A --t A, T/ : K --t Ao c A such that the following diagrams 
commute: 

(i) 

( i i) 

A0A0A 

10ml . 
A ® A ...... ) A m 

A. 
A is commutative if the following commutes: 

( iii) 

A®A T )A®A 

A. 
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where T(a (:.,: b) = (-1 )Iallblb ® a. 

This suggests the obvious dualization. A co-algebra is a graded vector space C 
equipped with comultiplication (or "diagonaF') and co-unit maps 

: G --0 G 0) G. c : G --0 K 

such that the analogues of diagrams (i) and (ii) (reverse all arrows!) commute. Similarly 
a co-algebra is co-commutative if T = Again, we will only consider co-algebras which 
are connected-i.e. cleo IS an isomorphism-and of finite type. Thus if A is an algebra, 04.* 
is a co-algebra and conversely. Now given a co-algebra G, we have : G n --0 EB Gi 0 C j. 

i+j=n 
Hence if x E Gn, = EXij with each Xij of the form Eak 0 bk, ak E Gi, bk E Gj. For 
brevity we often write ux = 0) with the understood to be homogeneous. 
The co-unit axiom implies that for all x, = 1 12 x + x ® 1+ other terms, and our 
assumption C connected implies the other terms lie in G j 0 G j with i, j =1= O. We call x 
primitive if there are no other terms-that is, = 1 0 x + x 0) 1. The primitives form a 
K-subspace P(C). 

(A5.6) PROPOSITION. If A is a graded K-algebra, QA and P(A*) are dual vector spaces. 

PROOF: We must show that the annihilator in A* of j12 is precisely P(A*). This is 
immediate from the definitions, since the annihilator of A 0 A is K 0 A * EB A * 0 K 
A*0A*=(A0A)*. 

(A5.7) EXAMPLE: If X IS a path-connected space, then H*(X; K) is a connected co-
commutative co-algebra (possibly not of finite type) with diagonal map 

.6. = .6.* : H*X --0 H*(X x X) = H*X 0 H*X. 

For example if X = Cpoo, let bn E H 2nCpoo be defined by (cj\ bnl = 1. Then .6.bn = 
Li+j=n bi (:9 bj . Similarly if X = IRpoo and K = Z/2, and an E HnlRpoo is the non-zero 
element, = Li+j=n ai (:9 aj. Now suppose X = BZjza, with K = Zjl; if 1= 2 assume 
a > 1. Then we may similarly define generators bn E H 2nBZjla and en E' H 2n _ 1BZjza so 
that = Li+ j=n bi 0 bj and = Li+j=n ej 0 bj + bi (:9 ej. All of these formulae are 
easily proved by dualizing. Note that bn , an, en are primitive only for n = 1. 

A Hop! algebra is a graded algebra A which is also a co-algebra, such that the diagonal 
A A 0 A is an algebra. This is equivalent to requiring that the multiplication A (:9 A A 
be a co-algebra map (the definition of the co-algebra structure on A 0 A is left to the 
reader). Thus A* is again a Hopf algebra, with multiplication u* and diagonal m*. 

47 



(A5.8) EXAMPLE: If.Y is a path-connected homotopy associative H-space, H*(X, J{) is 
a connected co-commutative Hopf algebra (but possibly not of finite type). 

(A5. 9) EXAMPLE: Suppose V is a co-algebra over J{. Then the diagonal map on V extends 
in a natural way to T(V),S(V) and S'(V) (see Remark A5.5), so that these algebras are 
all Hopf algebras oYer K. The last two are bicommutative-that is, both commutative and 
co-commutative. 

Now suppose X is an H-space as in A5.8, and W L X a map. Then H.(I) : H* W --. 
H*X induces a map of Hopf algebras T(I) : T(H* W) -+ H*X. If this map is surjective we 
say that W is a generating complex for X( the map I and the coefficients J{ being under- . 
stood here). If X is homotopy commutative, or more generally if H.X is a commutative 
ring, T(I) factors through a map of Hopf algebras S(I) : S(H* W) -+ H.X. 

(A5.10) EXAMPLE: is a generating complex for BU, and S(H*CpOO) rv H*BU. 
Here we could even use Z-coefficients. Similarly if J{ = Z/2, IRpoo is a generating complex 
for BO, and 

Let X be a connected homotopy associative and commutative H -space, so that for 
any Y, [Y,X] is an abelian group.4 Given I,g : Y -+ X, 1r'.(f + g) = 1r'*1 + 1r'*g. However 
this is certainly false for homology. Instead we have, in the notation used earlier: 

(A5.11) If a E HnY, (f + g).a = where = ® 

PROOF: By definition. I + 9 is the composite 

fxg m Y -+ Y x Y -+ X x X -+ X. o 

(A5.12) COROLLARY. (f + g)*a = I.a + g*a mod decomposables. Also if a is primitive. 
(I + g)*a = I*a + g.a. 

A6. Localization at the Fixed Point Set 

Let X be a G-space, G a topological group. The Borel construction is the balanced 
product EG Xa X. The equivariant cohomology of X is HaX = H*(EG Xa X). (All 
cohomology in this section is with ZIp-coefficients.) Note that Ha(point)= H* BG, and 
that Ha( -) is a functor (G-spaces)-+(H· BG-modules). 

4 A theorem of James (see e.g. [Srinivas]) says that any connected homotopy associative 
H -space has a homotopy inverse; that is why [Y, Xl is a group. 
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i :\6.1) PROPOSITION. Suppose f : .Y. -1- Y is both a G-map and a homotopy equivalence. 
Then EG x c X I::} EG Xc y" is a llOmotopy equivalence. In particular Hc* Y [. Hc* ..tY. 

J J 

::\OTE: \Ve do not assume that the homotopy inverse is a G-map. 

PROOF: The 5-lemma shows that 1 x f is an isomorphism on homotopy groups. 0 

If A c X is a G-subspace, we define Ho(X,A) = H*(EG Xc X,EG Xc A). So 
there is a long exact sequence of the usual sort for the pair (X, A), and it is a sequence of 
H* BG-modules. 

N ow suppose G is discrete. There is a very simple and very convenient generalization 
of the notion of CW-complex to the equivariant setting. Briefly, we simply take the usual 
definition of a CW-complex and substitute "G-cell" for cell; of course we require that the 
attaching maps are equivariant. etc. Here a "G-cell" means G / H x en, where en is an 
n-ccll in the usual sense, H is a subgroup of G, and G acts on G / H x en by left translation 
on the discrete set Gj H. Such a G-space X will be called a G-G\V-complex. It is in 
particular a CW-complex in the ordinary sense, with [G : H] ordinary n-cells for every 
G-cell G / H x en. It is built up inductively by attaching G-cells G / H x Dn via equivariant 
attaching maps G/H x sn-l -1- x(n-l). Note that if X is a G-GW-complex, XC is a 
sub complex and XjG is a C\V-complex. 

EXAMPLES: (a) Let X be any GW-complex. Then the universal cover X receives a G-CW-
structure in an obvious way, where G = 7rlX, In this case every G-cell is a free G-cell-i.e. 
of the form G x en. 

(b) Let X = 151 be a simplicial complex with vertex set S. If G acts on S and preserves 
t he subsets which span simplices. then X becomes a G-space which one might wish to call 
a "simplicial G-complex". However X need not be a G-CW-complex. because XC may 
not be a subcomplex. For example if G = 'll./3 acts on X = 6,2 by permuting the vertices, 
XG is precisely the barycenter. which is not a vertex. But the solution to this difficulty is 
clear: simply pass to the barycentric subdivision. Thus the reader can easily prove that 
if lSI is a simplicial G-complex in the above sense, then so is the barycentric subdivision 
15(1) I, and IS(1) I is a G-CW-complex. 

(:-\6.2) THEOREM. Let X be a finite Z/p-CW-complex. Then the inclusion XZ/p --+ X 
induces an isomorphism y-l H:'/p.x -1- y-l Hi/ pXZ/ p. 

PROOF: We will proceed by induction over the number of free Zip-cells of X. If there 
are no free cells, then X = X Z/ p and the theorem is trivial. Now suppose the theorem 
is true for X', and X is obtained from X' by attaching a free cell 'll./ p X nn. Then it is 
enough to show that y-lHi/p(X,X') = 0 (apply the exact functor y-l( ) to the long 
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exact sequence of the pair). Now 

(EZ/p xZ/ p X)/(EZ/p xZ/ p X') = EZ/p xZ/p (Z/p x Dn)/EZ/p xZ/ p (Z/p x sn-l) 

= (EZ/p x Dn)/(EZ/p x sn-l) = EZ/p+ 1\ Sn. 

It follows that Hi/p(X,X') is in particular bounded above, so y-lHi/p(X,X') = O. 0 

To apply this to the extended power construction we need to ensure that XP (with 
permutation action) is a Z/p-CW-complex. One way to do this is as follows. Any finite 
CW-complex X has the homotopy type of a finite simplicial complex (see e.g. [:\1aunder], p. 
Exercise ). Choose an equivalence X .L Y with Y a simplicial complex; then r X _ ry 
is an equivalence by (A6.1). Hence we may assume X is simplicial. Then XP is also a 
simplicial complex and XP is a Z/p-C\Y-complex. 

Quillen proves a more general theorem on (Z/p)n-actions. The statement is 
the same. but with y a certain non-nilpotent element in H2(pn-l)B(Z/p)n. The crucial 
property of y is that y restricts to zero on BH for any proper subgroup H. Using only 
this fact. it is a nice exercise to extend the proof of (A6.2) to this more general situation. 

A 7. Homology of Extended Powers. 

Let G be a discrete group acting on a space X. We assume that X is a GW-complex 
and that the action is cellular in the sense that it preserves skeleta and maps "open" 
cells homeomorphically one to another. For example, the action on any G-GW -complex 
(see Appendix 6) is cellular, but this is a weaker notion. Let C.X denote the cellular 
chain complex with coefficients in a fixed commutative ring 1\. Then C.X is a complex of 
KG-modules. 

(A 7.1 i PROPOSITION. H.(EG xcX) is naturally isomorphic to the homology of the chain 
complex C.EG (i!)KG C.X. 

PROOF: EG x X, with the diagonal action, is a free G-CW-complex, and the projection 
EG x X - EG x G X is a covering map. The proposition follows eq.sily from this. 0 

This suggests an algebraic generalization. Let C. be any chain complex of K G-
modules. and let P. - K be a projective resolution of the trivial module. vVe define 
the equivariant homology H:C. by H:C. = H.(P. 0KC C.). The usual argument shows 
this is independent of the choice of P .. up to canonical isomorphism .. Note that by def-
inition H:C. is the total homology of a double complex Cp,q = Pp 0KCCq. Hence we 
automatically get two spectral sequences converging to H: C. 
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(A7.2) PROPOSITION. Tbere is a spectral sequence 

PROOF: Cse the spectral sequence associated to the filtration by columns. Thus is 
the of the complex Pp @KG C. (p fixed). Since Pp is projective and hence fiat. 
Pp ®KG (-. commutes with homology. So = Pp @KG HqC. Then the homology of 
P. @KG HqC (q fixed) is by definition Hp(G, HqC). 0 

REMARK: In the topological setting this is the Serre spectral sequence of EG xGX BG. 
The other spectral sequence is the Leray spectral sequence of the map (not a fibration!) 
EG x GX - X/G. We don't need this second spectral sequence here, but it is an instructive 
exercise to cietermine its El-term (take X a G-GW-complex for simplicity). 

\Ve obtain an analogue of A6.1. 

(A 7.3) PROPOSITION. Suppose J. : C. C; is a map of KG-cbain complexes such tbat 
H*(f) is an isomorpbism. Then H;>(f) : H;>(C.) is also an isomorphism. 

PROOF: There is an induced map of spectral sequences as in A7.2, Jr : E;,q -+ By 
assumption P is an isomorphism, so r is also an isomorphism for all r. Taking r = 00 

shows that He;' J is a map of filtered chain complexes which is an isomorphism on the 
associated graded objects. Since the filtration is increasing (or because the filtration is 
finite in each degree), this implies H;r (f) is itself an isomorphism. 0 

Call C. split if for all n the short exact sequence (cycles mod boundaries) 

splits as KG-modules. 

(A 7.4) PROPOSITION. If C. is split, tben 

H<;(C.) = EB Hp(G;HqC.). 
p+q=n 

PROOF: Regard H.C as a chain complex with boundary maps identically zero. Byassump-
tion there exists a map of KG-chain complexes H.C -+ C. which induces an isomorphism 
on homology. By A7.3, we get an isomorphism H;:(H.C) -+ H.GC. But by inspection 
He;'(H.C) is just H.(G, H*C). 0 

In fact it is rare for such a chain complex to be split. However there is one important 
situation where this always happens. 
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(A 7.5) PROPOSITIO\'. Suppose K is a field, G and C. has the form ®n A. for some 
complex of J( -modules A., with G acting by permutation (with the appropriate signs). 
Then C. is split. 

PROOF: By the Kiinneth theorem, there is a natural isomorphism of KG-modules 
H*A -+ H*C.. .\"ow the complex A. is trivially split as J(-modules. Fix splitting 

maps HkA. -+ ZkA. For each I = (i l , ... ,in) with i l + ... + in = m we get maps 

H 4,..0-. ..• .0-. H· A -+ Z· A.o-.··· r7 Z A C Z C 11" \61 VY In '1 \C:J '0 In _ m • 

Taking a direct sum over all such I yields a map H m C -+ Zm C which is clearly a map of 
J( G-modules and provides the desired splitting. 0 

This leads to our main result: 

(A 7.6) THEOREM. Suppose J( is a field G C and G acts on xn by permuting the 
factors. Then for all m 0 there is a natural isomorphism, 

Hm(EG Xc xn) = E9 Hj(G: Hjxn). 
i+j=m 

PROOF: The cellular chain complex of xn is isomorphic to ®nc*x as KG-modules. The 
theorem follows by combining (1), (4), and (5) above. 0 

(A7.7) COROLLARY. The Serre spectral sequence of EG Xc xn -+ BG collapses. 

The corollary is already implicit in A 7.4. However it also follows from the statement 
(as opposed to the proof) of A7.6. For one can immediately reduce to the case X a finite 
complex, and then a dimension count forces the collapse. 

The result used in §6 was the special case n = p, G = Zip. The spaces EG xcxn are 
sometimes called extended powers. They playa central role in the construction of Steenrod 
operations in cohomology, and of Dyer-Lashof operations in the homology of iterated loop 
spaces. Theorem A 7.6 is a key input for these constructions. 

A8. Miscellaneous Representation Theory. 

Recall that any representation of a finite abelian group G over an algebraically closed 
field is a direct sum of one-dimensional representations. The following generalization was 
used in §6. 

(AB.1) PROPOSITION. Let G be a finite abelian group with exponent n (i.e. nG = 0). Let 
J( be a field containing all n-th roots of unity, and with char K In. Then any representation 
of Gover K is a direct sum of one-dimensional representations. 
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PROOF: Since char ]{ fiGI. theorem shows KG is semi simple and every repre-
sentation is a direct sum of irreducible representations. The Artin- 'Wedderburn theorem 
implies that KG is a product of matrix rings and hence a product of fields since KG is 
commutative. Thus KG = IT Fi where the Fi are fields and are also precisely the irre-
ducible representations of G. But since KG - Fi is onto and G has exponent n, Pi is 
generated as a K -algebra by n-th roots of unity. So Pi = K for all i and every irreducible 
representation is one-dimensional. o 

Let G be any group, L I ]{ a finite field extension of degree n. There is a forgetful map 
Rep( G, L) Rep( G, K) and an extension of scalars map Rep( G, K) --=-. Rep( G, L). Here 
Rep( -, -) denotes the monoid under direct sum of isomorphism classes of representations; 
r(V) is just V regarded as J{G-module and e(V) = L 0]( V. It is clear that if V E 
Rep( G, K), then re(V) = n Our next goal is a formula for er(V), V E Rep( G, L), in 
the case when L is Galois oyer ]{. 

Let 1: denote the Galois group of LI K. For each a E 1: we can define a "twisted" 
version V'" of V as follows: ,'0' has the same K -module and G-module structure, but the 
L-module structure is twisted by a . v = a(a)v. If we choose a basis for V and regard the 
representation as a homomorphism p : G - GLm(L), this construction is equivalent to 
leaving the L-module structure on Lm alone but twisting the matrix coordinates peg )ij by 
a-I. 

(A8.2) PROPOSITION. Let L be a finite Galois extension of K, with group 1:. Then for 
any group G and V E Rep(G. L), er(V) = E9 VO'. 

crEB 

We need the following very useful lemma. The K -algebra L 0 K L is also an L-
bimodule-it has the obvious commuting module structures a . (a 0 b) = aa 0 band 
(a 0 b)a = a 0 ba. We also have an L-bimodule structure on TI".EB L : a . (a".) = (aaO') 
and (acr) . a = (acr a( a ) ). 

(A8.3) LEMMA. The map:; : L 0[( L - TI".EB L given by 'P(a 0 b) = D(aa(b))". 1S an 
isomorphism of L-bimodules and of ]{ -algebras. 

PROOF: The only nonobvious point is that 'P is an isomorphism. By field theory L '" 
K[x]lf(x) for some polynomial f that splits in f. Thus if a E L is one root of f, f(x) = 
IT".(x - aa) in L[x]. 

Now consider the composite rp' 

L 0K L = L ZK (K[x]j f(x)) = L[x]/ f(x) II L 
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'.';here 17(g(x)) = (g(O'(a))O'. By the Chinese Remainder Theorem 1] is an isomorphism 
'note 17 is in effect the map L[x]/ IT(x - ""0:') --+ IT(L[x]/(x - O'a)), so <p' is an isomorphism. 
Finally ..p' = '1', since both maps are bimodule maps and K -algebra maps. 0 

PROOF OF A8.2: 

0' 0' 

where we get yO' because in E9 L the right L-module structure is the twisted one. 0 
0' 

1.-\8.4) COROLLARY. Let V be an L-vector space of dimension n, a E L*. Regard scalar 
multiplication by a as an element of AutK V. Then 10a E AutL(L0K V) is diagonalizable 
n'ith eigenvalues O'a. 0' E I;, each witb multiplicity n. 

RDIARK: In particular we get an important result of basic Galois theory: regarding 0' E 

EndK L det a = IT O'a and trace a = I:uO:'. 

Our final topic is the Brauer induction theorem, and its application to the theorem 
of Green used in §2. The main reference here is the marvelous book [Serre]. vVe first need 
some elementary facts about induced representations. The reader should note the close 
analogy with the transfer (Al). 

Let G be a finite group, F a field. The representation ring 'RFG is Z Rep(G, F)/ "', 
. . 

where Rep(G, F) is the set of isomorphism classes of finite-dimensional FG-modules and 
we set [V] rv [V'] + [V"] whenever there is a short exact sequence 

a --+ V' --+ V --+ V" --+ o. 

If char F llGI, all such sequences split and 'RFG is just the group completion ofthe monoid 
Rep( G. F), but this is not true in general. The ring structure is tensor of rep-
1'esemations, with G acting diagonally. A homomorphism 'I' : H ---. G induces a ring 
homomorphism '1'* = RFG --+ RFH in the obvious way. In the case of an inclusion 
i : H c G we also write i(G, H) for i*. 

If H c G and W is an FH-module. the induced module is FG (g}FH W. Since FG is 
a free and hence flat right F H -module, it follows that induction is well-defined on 'RF H 
and yields a homomorphism of groups Ind(H, G) : 'RFH --+ 'RFG. 

(.-\8.5) PROPOSITION. Ind(H, G) 0 i( G. H) is multiplication by tbe permutation module 
:F(G/H)] on RFG. 

This property won't be used here but is included for completeness. The proof is an 
easy exerCIse. 
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" ... 
Let ]{ he another sub)!;roup and consider a typical double coset H x H in G. If W is 

an FH-module we )!;et a representation lFr of]{r = ]{nxHx- 1 by pulling back along the 
monomorphism ]{x ---> H given by conjugation by x-I. 

(A8.6) PROPOSITION.i(G.I{)oInd(H,G)(W) ffilnd(Kx,K)(Wx) where x ranges over 
I 

a set of ]{ - H double coset representatires. 

The proof is straightforward-see [Serre], p. 5S. 
Ind(H. C) is not a ring homomorphism. but rather IS a homomorphism of RFC-

modules (a similar assertion holds for the transfer, incidentally): 
, 

(A8.7) PROPOSITION. If W is an FH-module. HcG. and V IS an FG-module, 
Ind(H, C)(i* \' ::) W) = 0 Ind(H, G)(lF). 

Again the proof is an easy check. 

(A8.8) PROPOSITION. Suppose F = te, lV is an FH-module and V = CG 0CH W. Then 

where the sum is over all 9 E G such that g-lxg E H. 

PROOF: See [Serre], p. 30. One could also approach this using (A8.6). o 
(A8.9) REMARK: If we replace xw by an arbitrary class function on H in (AS.8), we still 
get a class function on G. Hence one may use A8.S to define Ind(H, G) on class functions. 
Alternatively. since the ring of class functions C( G) is generated by the characters (as 

. <C-vector space), one could simply extend Ind( H, G). In any event, both i( G, H) and 
Ind(H, G) extend to class functions, and the analogue of AS.7 remains valid. 

(A8.I0) LDL\IA. Suppose char F = p and G = H x K with Hap-group. Then every 
irreducible FG-module V is trivial as H -module. Hence V = 1T"*W for some F K -module 
W, where 1T" : G ---> K is the projection. 

PROOF: Since char F = p and H is a p-group, VH i= O. But VH is a G-submodule, so 
V H = V since F irreducible. o 

A representation of G is called monomial if it is induced from a one-dimensional 
representation: V = FG 0FH W for some H. with dim W = 1. 

(A8.II) PROPOSITION. If F is algebraically closed and G is nilpotent, every irreducible 
FG-module V is monomial. 
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PROOF: If char F liGI. the proof of Theorem 16 on p. 66 of [Serre] goes through un-
changed. .:Jow suppose char F = p and p I IGI. Since G is nilpotent. G is the direct 
product of its r-Sylow subgroups for various primes r. In particular G = G p x G' where 
Gp is the p-Sylow subgroup and pIIG'I. Then (AS.11) follows from the lemma and the 
case already proved. 

vVe say that G is r- elementary, r a prime, if G is the product of an r-group and a 

cyclic group of order prime to r. G is elementary if G is r-elementary for some r. Note 
that an elementary group is nilpotent. 

(A8.12) (BRAUER INDUCTION). Let G be a finite group, F an algebraically 
closed field, and let X denote the set of elementary subgroups of G. Then 

is surjective. 

Ind: EB RFH -+ RFG 
HEX 

We are only going to use the case F = <C. Note the theorem says that every represen-
tation of Gover <C is a Z-linear combination of representations induced from elementary 
subgroups. However it may not be possible to make the coefficients positive-see [Serre]. 
Exercise 10.5, p. 79. 

(A8.13) COROLLARY. In RFG, every representation is a Z-linear combination of mono-
mial representations. 

PROOF: Use .-\.8.11 and AS.12. C 

(A8.14) COROLLARY (F = C). Let f be a class function on G. Then f is a virtual 
character if and only if the restriction of f to each elementary subgroup H is a virtual 
character. 

PROOF: By Brauer induction we can write 1 E RccG C C( G) as 1 
where the Ho are elementary and Xo is a virtual character of Ho. So 

f = f· 1 = (Ind(Ho, G I Xo) = Ind(Ho , G)(Jo IHa 'Xo) (cf. Remark A8.9). 

The sum on the right is a virtual character by assumption. D 

We now turn to Green's theorem. Let V be a representation of Gover IF'q, with Brauer 
character X = X V .5 

50ur "Brauer character" is not what Serre calls a Brauer character on p. 147 of [Serre]. 
Our X is analogous to the class function l' defined in section lS.4 of [Serre] (Theorem 43(i) 
of that section is a more general version of Green's theorem). 
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· .. 
(A8.15) THEOREM (GREEN). \v isavirtualcomplexcllaracterofG. 

Before starting the proof we comment on the behaviour of Xv with respect to induc-
rion. Suppose V is a monomial representation, say V = IFq G «()Fq H "VV with dim W = 1. 
Then W = IFq with H acting via some homomorphism .\ : H -+ IF;. Let>: = i'\ where 
I : IF; c ex is our fixed embedding. Then>: defines a representation W of Hover e with - -
dim W = 1. and Xw = xw. Let V = CG ®CH W. Then it is not true in general that 
\: v = X v· For example if G is a p-group and H = {1}, V is the regular representation but 
xv is the character of the trivial representation of dimension IGI. 
PROOF OF A8.15: 
Case 1: G is a nilpotent group of order prime to p. We can assume V is irreducible, 

:nd hence monomial by (A8.11). In this case we actually have Xv = Xv with 
V as above. To see this, it suffices to show xv(g) = Xv(g) for each fixed g, 

so we restrict to the cyclic subgroup C = (g). By A8.6 both V and if split 
in parallel fashion as direct sums of C -modules U, U respectively, where U is a 
monomial representation IFq C ®JFq D IFq. Here D = (gd) for some d and D acts 
via .\ : D --+ IF;. It suffices to show xu(g) = Xu(g). Let a = .\(gd). Then 
the characteristic polynomial of 9 on U is Td - a. Since d is prime to p (by our 
assumption on G), there are d distinct d-th roots of a in IF; , say a1, ... ,ad. Then 
i(a1), ... ,i(ad) are precisely the eigenvalues of 9 acting on U, so xu(g) = Xu(g). 

Case 2: G is an arbitrary nilpotent group. Again we may assume V irreducible. Let 
G = Gp x G' as in AS. . Since Brauer characters obviously commute with 
pullbacks 71"*, Case 2 follows from Case 1 and Lemma AS.l1. 

Case 3: G is arbitrary. By Case 2, the restriction of Xv to each elementary subgroup H 
is a virtual character of H. So by Corollary A8.14, XV is a virtual character of 
G. o 

REMARK: Case 1 has a more elegant proof if one has available the Witt rings WIFq , which 
are complete local rings of characteristic zero with residue field IFq. Then for any G of 
order prime to p, nilpotent or not, representations over IFq can always be lifted to WFq • 

This yields a shorter proof along the lines of Theorem 43, p. 153 in [Serre]. 
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