THE H-PRINCIPLE, LECTURE 11: THE H-PRINCIPLE FOR DIFFERENTIAL RELATIONS

J. FRANCIS

1. Gromov’s generalization of the Hirsch-Smale theorem

During our extended treatment of the proof of \(\operatorname{Imm}(\mathcal{M}, \mathcal{N}) \simeq \operatorname{Imm}(\mathcal{M}, \mathcal{N}) \), we made frequent comment as to the generality of our reasoning and how little use we made of the fact that sheaf \(\mathcal{I} \) on the source manifold \(\mathcal{M} \) was in fact the sheaf \(\mathcal{I} = \operatorname{Imm}(-, \mathcal{N}) \) of immersions into \(\mathcal{N} \). The salient features we used were the following:

- \(\mathcal{I}(K) \subset \operatorname{Map}_{\text{sm}}(K, \mathcal{N}) \) is an open subspace, for \(K \subset \mathcal{M} \) compact, and \(\operatorname{Map}_{\text{sm}}(-, \mathcal{N}) \) is a flexible sheaf (i.e., \(\operatorname{Map}_{\text{sm}}(K, \mathcal{N}) \to \operatorname{Map}_{\text{sm}}(K_0, \mathcal{N}) \) is a Serre fibration for \(K_0 \hookrightarrow K \) a closed inclusion);
- The group \(\text{Diff}(\mathcal{M}) \) of diffeomorphisms of \(\mathcal{M} \) acts on \(\operatorname{Map}_{\text{sm}}(\mathcal{M}, \mathcal{N}) \), and it preserves the subspace \(\operatorname{Imm}(\mathcal{M}, \mathcal{N}) \). Further, by embedding \(\mathcal{M} \hookrightarrow V \) as the zero section of a bundle, then \(\text{Diff}(V, \partial V) \) acts transitively on a small enough neighborhood of a point \(f \in \mathcal{I}(\mathcal{M}) \subset \operatorname{Map}_{\text{sm}}(\mathcal{M}, \mathcal{N}) \).

The proof of the weak homotopy equivalence \(\operatorname{Imm}(\mathcal{M}, \mathcal{N}) \to \operatorname{Imm}(\mathcal{M}, \mathcal{N}) \) then proceeds by induction on handle decomposition of \(\mathcal{M} \). The key part of the inductive step is to show that the restriction map \(\mathcal{I}(U + \varphi q) \to \mathcal{I}(U) \) is a Serre fibration, where \(U + \varphi q \cong U \sqcup_{S^{q-1} \times D^{n-q}} D^q \times D^{n-q} \) is \(U \) with a handle of index \(q \) attached. The necessary lifting could be constructed by maneuvering collar neighborhoods, using the features above, but required that the index \(q \) is less than \(n \) (and thus the proof only worked when \(\mathcal{M} \) is an open manifold).

These features enable, mutatis mutandis, the proof of the following generalization: Let \(E \to \mathcal{M} \) be a smooth fiber bundle with an action of \(\text{Diff}(\mathcal{M}) \) lifting the canonical action of \(\text{Diff}(\mathcal{M}) \) on \(\mathcal{M} \). Let \(E^{(k)} \to \mathcal{M} \) be the bundle of \(k \)-jets of \(E \), which inherits an action of \(\text{Diff}(\mathcal{M}) \), and let \(\mathcal{R} \subset E^{(k)} \) be a subspace (i.e., \(\mathcal{R} \) is a differential relation). Gromov proved the following h-principle:

Theorem 1.1 (Gromov). If \(\mathcal{M} \) is an open manifold and the relation \(\mathcal{R} \subset E^{(k)} \) is an open subspace which is preserved by the action of \(\text{Diff}(\mathcal{M}) \) on \(E^{(k)} \), then the \(k \)-jet prolongation map

\[
\tilde{j}^{(k)} : \operatorname{Sol}_\mathcal{R}(\mathcal{M}) \longrightarrow \Gamma(\mathcal{R})
\]

is a weak homotopy equivalence, where the space of solutions \(\operatorname{Sol}_\mathcal{R}(\mathcal{M}) \) consists of those smooth sections of \(E \) whose \(k \)-jet lies in \(\mathcal{R} \).

To summarize: diffeomorphism invariant open differential relations adhere to the h-principle on open manifolds.

This theorem is ready to be put to use. We just need to find some examples, which will turn out to be plentiful.

1 More precisely: Choose an element \(\tilde{f} \in \mathcal{I}(V) \) which restricts to \(f \in \mathcal{I}(\mathcal{M}) \). Then, there exists a neighborhood \(U_f \) of \(f \) and a map \(U_f \to \text{Diff}(V, \partial V) \) such that the composite \(U_f \to \text{Diff}(V, \partial V) \to \mathcal{I}(V) \to \mathcal{I}(\mathcal{M}) \) is the inclusion of \(U_f \) in \(\mathcal{I}(\mathcal{M}) \), where the map \(\text{Diff}(V, \partial V) \to \mathcal{I}(V) \) is the composite \(\text{Diff}(V, \partial V) \times \{\tilde{f}\} \to \text{Diff}(V, \partial V) \times \mathcal{I}(V) \to \mathcal{I}(V) \).
2. Submersions

Definition 2.1. A smooth map \(f : M \to N \) is a submersion if the derivative map \(d_x f : T_x M \to T_{f(x)} N \) is surjective for every point \(x \) in \(M \). A formal submersion \(F \) is a bundle map \(T_M \to T_N \) which is surjective on each fiber. The space \(\text{Subm}(M,N) \) has the compact-open \(C^\infty \) topology, and \(\text{Subm}^f(M,N) \) has the compact-open topology.

The map \(\text{Subm}(M,N) \to \text{Subm}^f(M,N) \) is an example of a 1-jet prolongation map, where \(E \) is the product \(M \times N \). It is easy to see that the relation \(\mathcal{R} \subset E^{(1)} \) defining submersions is open and diffeomorphism invariant. We obtain the following theorem, the first published proof of which is in [4]:

Theorem 2.2 (Phillips). *If \(M \) is an open manifold, then the map*

\[
\text{Subm}(M,N) \to \text{Subm}^f(M,N)
\]

is a weak homotopy equivalence.

Proof. Apply Gromov’s theorem. \(\square \)

Remark 2.3. Submersions are a very familiar concept when the source \(M \) is closed: In this case, Ehresmann’s theorem states that the map \(M \to N \) is a fiber bundle, which is perhaps the most interesting kind of submersion. However, this is exactly the case in which Gromov’s theorem does not apply: There may exist formal submersions of \(M \) to \(N \) even when \(M \) does not fiber over \(N \) (for instance, if \(M \) is parallelizable and \(N \) is parallelizable and noncompact). However, even in the case of \(M \) closed, a formal submersion of \(M \) on \(N \) is clearly a good first step to obtain an actual submersion. Is there a systematic way of taking successive steps? We will discuss such issues later in this course. (Hint: Goodwillie calculus.)

3. Foliations

We now begin the next major topic of focus in our course, the theory of foliations. Before giving a formal definition, it is helpful to have an example and a rough picture. In geology, foliation of a rock consists of a division the rock into layers; in metalwork, to foliate a metal is to cut it into thin leaves. The same holds true in topology, but where “manifold” replaces “rock” and “metal.”

Example 3.1. One foliation of the space \(\mathbb{R}^n \) consists of the family of all submanifolds \(\{x_1, \ldots, x_q\} \times \mathbb{R}^{n-q} \), where \(\{x_1, \ldots, x_q\} \) is a point of \(\mathbb{R}^q \). This is a codimension \(q \) foliation. Note that every point of \(\mathbb{R}^n \) lies in exactly one of these submanifolds. The submanifolds \(\{x_1, \ldots, x_q\} \times \mathbb{R}^{n-q} \) are the leaves of the foliation.

Definition 3.2 (Intuitive version). A codimension \(q \) foliation \(\mathcal{F} \) of an \(n \)-manifold \(M \) consists of a collection of \((n-q) \)-dimensional manifolds with disjoint inclusions into \(M \), \(\{M_f \subset M\} \), and which looks locally like the above foliation of \(\mathbb{R}^n \).\(^2\)

We have a wealth of examples of foliations coming from fiber bundles:

Example 3.3. Let \(\pi : M \to N \) be a smooth fiber bundle, with fibers \(M_x := \pi^{-1}\{x\} \). Then the collection of fibers \(\mathcal{F} := \{M_x \subset M | x \in N\} \) foliates \(M \). The codimension of the foliation is equal to the dimension of \(N \).

This source of examples behaves, in some sense, too well. Namely, the following are true for a foliation of a bundle by its fibers bundle but do not hold in general:

- All of the fibers \(M_x \) are diffeomorphic;

\(^2\)I.e., every point \(x \) has a neighborhood \(U \) and a diffeomorphism \(g : U \to \mathbb{R}^n \) such that the inverse image of each leaf of \(\mathbb{R}^n \) is a component of a leaf of \(\mathcal{F} \) restricted to \(U: g^{-1}(\{x_1, \ldots, x_q\} \times \mathbb{R}^{n-q}) \subset M_f \cap U \), for some \(M_f \in \mathcal{F} \).
The leaf space of this foliation (i.e., the quotient M/\sim, where $x \sim y$ if they are contained in the same leaf) is actually a smooth manifold (namely, the base of the bundle), rather than some space with a gnarly topology;

If M is compact, then the fibers M_x are compact.

Let us conclude with examples to show that general foliations are more interesting and need not be so tidy.

Example 3.4 (The Kronecker foliation). Consider the torus $T^2 \cong \mathbb{R}^2/\mathbb{Z}^2$. Let a be any irrational real number, and define the subspace $M_t \subset T^2$ to be the image of the line $y = ax + t$. Then the collection $\mathcal{R} = \{M_t \subset T^2\}$ foliates T^2. Note that each leaf of the foliation is dense in T^2, and the topology of the leaf space is badly-behaved. Also, the leaves are noncompact, diffeomorphic to \mathbb{R}, although T^2 is compact.

Example 3.5 (Reeb foliation). We construct a foliation of S^{k+1} that has only a single compact leaf. First, we construct a foliation of $\mathbb{R} \times D^k$. Thinking of D^k as the unit disk in \mathbb{R}^k, choose a function $f(x)$ on the interior of D^k such $f(x)$ tends to ∞ as $|x|$ tends to 1. (E.g., $f(x) = \frac{1}{1 - |x|}$ works.) Define the foliation \mathcal{R} as having leaves $M_t \subset \mathbb{R} \times D^k$, where M_t is the graph of the function $f(x) + t$, $t \in \mathbb{R}$, and one final leaf given by the boundary $\partial \mathcal{R} \times D^k \subset \mathbb{R} \times D^k$. Since the foliation is invariant under translation in the \mathbb{R} direction, we can use the projection map $\pi : \mathbb{R} \times D^k \to \mathbb{R}/\mathbb{Z} \times \mathbb{R}^k$ to define a foliation \mathcal{R} on $S^1 \times D^k$, consisting of the manifolds $\pi(M_t) \subset S^1 \times D^k$ and the boundary $S^1 \times \partial D^k \subset S^1 \times D^k$. (Note $\pi(M_t) = \pi(M_{t+1})$.) I lifted the following pretty picture of this foliation from Wikipedia, which shows the case $k = 2$:

Now, using the decomposition of S^{k+1} as a union

$$S^{k+1} \cong S^1 \times D^k_0 \coprod_{S^1 \times S^{k-1}} S^1 \times D^k_1$$

the Reeb foliation of S^{k+1} is then defined by the union of the above foliations $\mathcal{R}_0 \cup \mathcal{R}_1$ on each subspace $S^1 \times D^k$. The foliation has one leaf diffeomorphic to $S^1 \times S^{k-1}$ and all others diffeomorphic to \mathbb{R}^k.

References

