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Last time: We defined a foliation of a manifold Mn as a family of codimension-q submanifolds
{Mf ⊂ M} such that every point was contained in a small ball with a diffeomorphism to Rn such
that the image of the components of the leaves were of the form {x} × Rn−q. Although this is a
very concrete description, it would be nicer to have a purely local description so as to more directly
apply topological techniques.

1. More background on foliations

We introduce an alternative definition.

Definition 1.1. A codimension-q foliation F on an n-manifold M is an atlas {φα : Uα
∼=→ Rn}

such that the composite map φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) has the form (x, y) ∈

Rq ×Rn−1 7→ (ψ1(x), ψ2(x, y)). In other words, the first q coordinates in the source determined the
first q coordinates in the target.

Note that we construct the family of leaves {Mf ⊂ M} as follows. Start with some point p in
some chart Uα and let φα(p) = (x, y) ∈ Rq ×Rn−q. Then p lives on φ−1

α ({x}×Rn−1), which is part
of the leaf for p. Now consider the points where this codimension-q submanifold intersects other
charts and repeat this process (take preimage of the codimension-q slice for the point), gluing these
submanifolds together by the transition functions. You will construct a codimension-q submanifold,
which is a leaf.

Remark 1.2. The role of the atlas is totally analogous to its role in defining manifolds. There is a
natural notion of “equivalence of foliations” by the induced collection of leaves, and we identify two
atlases if they induce the same collection of leaves.

Remark 1.3. We could also define a foliation F as a subsheaf OF
M of the sheaf of smooth functions

OM such that there exists an atlas so that on each chart Uα, the vector space OF
M (Uα) consists of

functions that are locally constant along leaves.

We now address the question: What kind of structure results from a foliation?
Observe that F = {Mf ⊂M} defines a subspace TF of the tangent bundle TM by saying that a

point v is in some fiber TpF ⊂ TpM if v ∈ TpMf for the leaf containing p ∈Mf. This space consists
of the “tangents along leaves.” As should be obvious, TF is a subbundle such that TF|Mf

∼= TMf.

Example 1.4. A fiber bundle π : M → N is equipped with a foliation by fibers of π. The “tangents
along the fibers” is the relative tangent bundle TM |N , which is the kernel of the differential of the
projection map dπ : TM → π∗TN .

This construction TF should suggest that we get another canonical bundle from a foliation,
namely the normal bundle NF, which is the cokernel of the inclusion TF ↪→ TM . To make this
construction more concrete, pick a Riemannian metric on M so that we can identify NF with the
subbundle of TM that is complementary to TF.

These two bundles from a foliation provide us with some great structure. Here’s a simple conse-
quence of this easy work.
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Example 1.5. Because the tangent bundle of S2 has no 1-dimensional subbundles, we see that there
is no codimension-1 foliation of S2!

We now recall a powerful theorem that gives yet another characterization of foliations.

Theorem 1.6 (Frobenius). Let V be a subbundle of the tangent bundle TM . Then V ∼= TF for
a foliation F if and only if the space Γsm(V ) of smooth sections of V is a Lie subalgebra of vector
fields on M , i.e., if Γsm(V ) ⊂ Γsm(TM) is closed under the Lie bracket.

This theorem lets us relate constructions in geometry to algebra. For instance, Frobenius’ theorem
tells us that giving a foliation (a geometric object) corresponds to a Lie subalgebra of the tangent
sheaf. Similarly, the very nice foliation arising from a submersion π : M → N (by fibers) induces a
Lie ideal in the tangent sheaf of M , and hence sections of the normal bundle Γsm(NF) form a Lie
algebra.

On the other hand, the algebraic viewpoint ought to let us translate into homotopy theory. For
instance, just the structure of a subbundle V of the tangent bundle TM corresponds to factoring the
classifying map gTM : M → BO(n) through a classifying map gV⊕V ⊥ : M → BO(q)× BO(n− q).
We’d like to find similar descriptions of the Lie subalgebras and Lie ideals of the tangent sheaf.

Our new question is thus: What structure in homotopy or bundle theory corresponds to a folia-
tion?

2. Haefliger structures

We are headed to constructing a kind of classifying space for codimension-q foliations, but the
construction is slightly more involved than the construction of the classifying space BG for G-
bundles. First, we need a topological groupoid, not just a group.

Definition 2.1. Γq is the topological groupoid of germs of local diffeomorphisms of Rn. That
is, the space of objects of Γq is Rq, and the space of morphisms MapΓq

(x, y) is a quotient of the

discrete group Diff(Rq)δ (where the “δ” indicates the discrete topology), where two maps f ∼ g
are identified if they agree on a sufficiently small open neighborhood of x. The space of morphisms
(which we also denote Γq), is thus the space of local diffeomorphisms of Rn, with topology induced
from Rn ×Diff(Rq)δ.

We now define what it means to have a kind of bundle with structure group Γq.

Definition 2.2. A (Haefliger) Γq structure on an n-manifold consists of a cover {Uα} with transition
maps φαβ : Uα ∩Uβ → Γq satisfying the cocycle condition. A Γq foliation of M is a Γq structure for
which the maps φαα : Uα → Rq are submersions.

Why did this strange space appear? Notice that a codimension-q foliation on Mn gives a Γq
foliation on M . This assertion follows from unwinding our definition of foliation in terms of charts:
given φα : Uα → Rq × Rn−q, the projection onto the Rq factor is a submersion, and the transition
maps φ−1

β ◦ φα give the germ of a diffeomorphism of Rq at each point x ∈ Uα ∩Uβ . By refining the

cover {Uα} of a Γq foliation, you can go backward to obtain a codimension-q foliation.
This definition breaks down the structure of a foliation into two parts (Γq structures and sub-

mersions), both of which seem more homotopy-theoretic than the original definition. We have the
following homotopy-theoretic notion of equivalence of foliations:

Definition 2.3. A homotopy of codimension-q foliations between F0 and F1 on M consists of a
codimension-q foliation F on M × [0, 1] for which F|M×{0} ∼= F0 and F|M×{1} ∼= F1.

Definition 2.4. A homotopy of foliations is integrable if F is transverse to M ×{t} for all t ∈ [0, 1].
In particular, F|M×{t} defines a foliation on M × {t} for each t.

Γq structures are determined by the homotopy type of M : Namely, H1(M,Γq) is equivalent to
[M,BΓq], where BΓq is the classifying space of Γq (for this, see [1] or [3]). Further, by the Phillips-
Gromov theorem on submersions, for open manifolds M submersions out of M are equivalent to
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surjective bundle maps out of TM ; this is a homotopy invariant of the map gTM : M → BO(n).
Thus, at least for open manifolds M , one might optimistically think that you could classify foliations
on M (up to integrable homotopy) using algebraic topology, and only using the homotopy type of
M and of the map M → BO(n).

Next time we’ll discuss just such a theorem, due to Haefliger, using the h-principle.
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