THE H-PRINCIPLE, LECTURE 13: CLASSIFYING FOLIATIONS

J. FRANCIS, NOTES BY T. MATSUOKA

Recall the following definitions from the last lecture.

Definition 0.1. Γ_q is the topological groupoid of germs of local diffeomorphisms of \mathbb{R}^q . Its space of objects is \mathbb{R}^q , and the space of morphisms Γ_q consists of germs of diffeomorphisms, $(x, U) \to (y, V)$, for all $x, y \in \mathbb{R}^q$. The topology of Γ_q is induced from that of $\mathbb{R}^q \times \text{Diff}(\mathbb{R}^q)^{\delta}$, where $\text{Diff}(\mathbb{R}^q)^{\delta}$ has the discrete topology.

Definition 0.2. A Haefliger Γ_q -structure on M consists of $\{U_{\alpha} \subset M\}$ a cover of M, and maps $\varphi_{\alpha\beta} : U_{\alpha\beta} \to \Gamma_q$ satisfying the cocycle condition.

Let us further introduce the following.

Definition 0.3. Γ_q -foliation of M is a Haefliger Γ_q -structure on M for which each of the composites

$$\operatorname{proj}_{\mathrm{s}} \circ \varphi_{\alpha\beta} \colon U_{\alpha\beta} \longrightarrow \Gamma_q \longrightarrow \mathbb{R}^q,$$

where proj_{s} is the projection taking the sources of the morphisms, are submersions. (For this, it is in fact enough that $\text{proj}_{s} \circ \varphi_{\alpha\alpha}$ are submersions.)

Note that a foliation of M of codimension-q gives rise to a structure of Γ_q -foliation. Indeed, the transition functions for the foliated charts $U_{\alpha} \xrightarrow{\cong} \mathbb{R}^q \times \mathbb{R}^{n-q}$ descends to local diffeomorphisms of \mathbb{R}^q . One can

For classifying foliations, we want to encode the data of Γ_q -foliations in terms of Γ_q -structures. The value of this will be from the fact that Γ_q -structures are determined by homotopy theory. For example, we have $H^1(M, \Gamma_q) \cong [M, B\Gamma_q]$, where $B\Gamma_q$ is the classifying space of the topological groupoid Γ_q , constructed e.g. as the suitable quotient

$$\coprod_i (\Gamma_q)_i \times \Delta^i / \sim,$$

where $(\Gamma_q)_i$ is the space of length *i* chain of composable morphisms, namely

$$\Gamma_q \times_{\mathbb{R}^q} \Gamma_q \times_{\mathbb{R}^q} \cdots \times_{\mathbb{R}^q} \Gamma_q.$$

There is one basic difference between Γ_q -structures and Γ_q -foliations. Observe first that Γ_q structures pull back. That is, for any map $f: M \to E$ and $\mathfrak{F} = \{U_\alpha \subset E, \varphi_{\alpha\beta}\}$ a Γ_q -structure on E, we obtain a Γ_q -structure

$$f^{-1}\mathfrak{F} = \{ f^{-1}U_{\alpha}, f^{-1}U_{\alpha\beta} \to U_{\alpha\beta} \xrightarrow{\varphi_{\alpha\beta}} \Gamma_q \}$$

on M.

However, Γ_q -foliations do not pull back for arbitrary maps. For example, foliate \mathbb{R}^2 by lines and consider a submanifold which looks as in Figure 1. Then the restriction of the Γ_q -foliation to the submanifold is not a Γ_q -foliation.

You don't genuinely understand a structure until you've pinned down its functoriality. This begs the question:

Question 0.4. For what class of maps can you pull back a foliation?

Date: Lecture February 11, 2010. Last edited on February 14, 2010.

FIGURE 1. Green: leaves. Red: submanifold

Answers will be, in increasing order of generality:

- Open embeddings;
- Submersions;
- Maps transversal to the foliation.

The last notion is defined as follows.

Definition 0.5 (Intuitive (i.e.,, in terms of leaves)). A map $f: M \to E$ is transversal to \mathfrak{F} , a foliation of E, if for every leaf $E_{\alpha} \subset E$, the map f is transversal to E_{α} : $f \pitchfork E_{\alpha}$. I.e., for every $x \in f^{-1}(E_{\alpha})$, the composite

$$T_{f(x)}E_{\alpha} \oplus T_xM \longrightarrow T_{f(x)}E$$

is surjective, or equivalently, the composite

$$T_x M \longrightarrow T_{f(x)} E \longrightarrow N_{\mathfrak{F}}|_{f(x)}$$

is surjective.

Here's an equivalent definition.

Definition 0.6. The map $f: M \to E$ is transversal to \mathfrak{F} , a Γ_q -foliation of E, if the composite map

$$f^{-1}U_{\alpha} \to U_{\alpha} \xrightarrow{\operatorname{proj}_{s}\varphi_{\alpha\alpha}} \mathbb{R}^{q}$$

is a submersion for each U_{α} .

Exercise: Check that these definitions are equivalent.

Definition 0.7. The space of maps $M \to E$ transversal to \mathfrak{F} , a Γ_q -foliation of E, denoted

$$\operatorname{Map}_{\oplus \mathfrak{F}}(M, E)$$

is the subspace of smooth maps $\operatorname{Map}^{\operatorname{sm}}(M, E)$ formed by all f such that the composite

$$T_M \xrightarrow{df} T_E \longrightarrow N_{\mathfrak{F}}$$

is surjective on every fiber.

Observe that this last condition is a differential relation! That is, we can choose $\mathcal{R} \subset (M \times E)^{(1)}$ (bundle of 1-jets on M) to be the subspace whose fiber at a point $x \in M$ consists of those linear maps $T_x M \to T_y E$ which $T_x M$ surjects onto $N_{\mathfrak{F}}|_y$, and then we have the equalities

$$\operatorname{Map}_{\mathfrak{h}\mathfrak{F}}(M, E) = \operatorname{Sol}_{\mathcal{R}}(M),$$
$$\operatorname{Map}_{\operatorname{Vect}}^{\operatorname{surj}}(T_M, T_E) := \Gamma_M(\mathcal{R}).$$

Theorem 0.8 (Gromov, Phillips). If M is an open n-manifold, then the map

$$\operatorname{Map}_{\mathfrak{h}\mathfrak{F}}(M, E) \longrightarrow \operatorname{Map}_{\operatorname{Vect}}^{\operatorname{surj}}(T_M, N_{\mathfrak{F}})$$

is a weak homotopy equivalence.

Remark 0.9. If the foliation \mathfrak{F} is that by points of E, then $\operatorname{Map}_{\oplus\mathfrak{F}}(M, E) = \operatorname{Subm}(M, E)$ is the space of submersions, $\operatorname{Map}_{\operatorname{Vect}}^{\operatorname{surj}}(T_M, N_{N_{\mathfrak{F}}}) = \operatorname{Subm}^{\mathrm{f}}(M, E)$ is the space of formal submersions (since $N_{\mathfrak{F}} = T_E$ in this case), and the theorem above reduces to the previously seen case of the Gromov-Phillips theorem for submersions out of an open manifold.

Proof. We apply Gromov's theorem that h-principle holds for open, diffeomorphism-invariant, differential relations on open manifolds (see Lecture 11). So all we need do is verify openness and invariance of \mathcal{R} .

Openness of \mathcal{R} in the space of all 1-jets is obvious: This is a parametrized version of observation that $\operatorname{Hom}^{\operatorname{surj}}(V,W) \subset \operatorname{Hom}(V,W)$ is an open subspace for any vector spaces V, W over \mathbb{R} .

Diffeomorphism invariance, that Diff(M) preserves \mathcal{R} , is also obvious, since precomposition of a map with a diffeomorphism doesn't change the surjectivity condition above.

Observe that differentiation of local diffeomorphisms defines a functor

$$d: (\mathbb{R}^q, \Gamma_q) \longrightarrow (*, GL_q).$$

Using the map Bd induced from this functor on the classifying spaces, we can pull back the universal dimension q vector bundle over BGL_q to over $B\Gamma_q$. Let us call this vector bundle N_{Γ_q} .

Given a Γ_q -foliation \mathfrak{F} , observe that the submersion $U_{\alpha} \to \mathbb{R}^q$ identifies $\varphi_{\alpha\alpha}^{-1}T_{\mathbb{R}^q}$ with $N_{\mathfrak{F}}|_{U_{\alpha}}$. Therefore, if we identify \mathfrak{F} with the map $M \to B\Gamma_q$ classifying it as a Γ_q -structure, then $N_{\mathfrak{F}}$ will be $\mathfrak{F}^*N_{\Gamma_q}$.

Theorem 0.10 (Haefliger). Let M be an open n-manifold. Then $\operatorname{Fol}_q(M)/_{\sim}$, the set of codimensionq foliations of M modulo integrable homotopy, is naturally in bijection with the components of the space of surjective bundle maps $\operatorname{Map}_{\operatorname{Vect}}^{\operatorname{surj}}(T_M, N_{\Gamma_q})$:

$$\operatorname{Fol}_q(M)/_{\sim} \cong \pi_0 \operatorname{Map}_{\operatorname{Vect}}^{\operatorname{surj}}(T_M, N_{\Gamma_q}).$$

These sets are also in bijection with π_0 of the space of all lifts

The proof will be given next time.

References

- Gromov, Mikhael. Partial differential relations. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 9. Springer-Verlag, Berlin, 1986. x+363 pp.
- [2] Gromov, Mikhael. Thesis. Izv. Akad. Navk. SSSR 33 (1969) pp. 707-734.
- [3] Haefliger, André. Homotopy and integrability. Lecture Notes in Math., vol. 197, Springer-Verlag, Berlin and New York, 1971, pp. 133-163.
- [4] Lawson, Blaine. Foliations. Bull. Amer. Math. Soc. 80 (1974), 369-418.
- [5] Phillips, Anthony. Smooth maps transverse to a foliation. Bull. of AMS 76 (1970) pp. 792-797.