
THE H-PRINCIPLE, LECTURE 13: CLASSIFYING FOLIATIONS

J. FRANCIS, NOTES BY T. MATSUOKA

Recall the following definitions from the last lecture.

Definition 0.1. Γq is the topological groupoid of germs of local diffeomorphisms of Rq. Its space of
objects is Rq, and the space of morphisms Γq consists of germs of diffeomorphisms, (x, U)→ (y, V ),
for all x, y ∈ Rq. The topology of Γq is induced from that of Rq × Diff(Rq)δ, where Diff(Rq)δ has
the discrete topology.

Definition 0.2. A Haefliger Γq-structure on M consists of {Uα ⊂ M} a cover of M , and maps
ϕαβ : Uαβ → Γq satisfying the cocycle condition.

Let us further introduce the following.

Definition 0.3. Γq-foliation of M is a Haefliger Γq-structure on M for which each of the composites

projs ◦ ϕαβ : Uαβ −→ Γq −→ Rq,

where projs is the projection taking the sources of the morphisms, are submersions. (For this, it is
in fact enough that projs ◦ ϕαα are submersions.)

Note that a foliation of M of codimension-q gives rise to a structure of Γq-foliation. Indeed, the

transition functions for the foliated charts Uα
∼=−→ Rq × Rn−q descends to local diffeomorphisms of

Rq. One can

For classifying foliations, we want to encode the data of Γq-foliations in terms of Γq-structures.
The value of this will be from the fact that Γq-structures are determined by homotopy theory. For
example, we have H1(M,Γq) ∼= [M,BΓq], where BΓq is the classifying space of the topological
groupoid Γq, constructed e.g. as the suitable quotient∐

i

(Γq)i ×∆i/ ∼,

where (Γq)i is the space of length i chain of composable morphisms, namely

Γq ×Rq Γq ×Rq · · · ×Rq Γq.

There is one basic difference between Γq-structures and Γq-foliations. Observe first that Γq-
structures pull back. That is, for any map f : M → E and F = {Uα ⊂ E,ϕαβ} a Γq-structure on
E, we obtain a Γq-structure

f−1F = {f−1Uα, f
−1Uαβ → Uαβ

ϕαβ−−→ Γq}
on M .

However, Γq-foliations do not pull back for arbitrary maps. For example, foliate R2 by lines and
consider a submanifold which looks as in Figure 1. Then the restriction of the Γq-foliation to the
submanifold is not a Γq-foliation.

You don’t genuinely understand a structure until you’ve pinned down its functoriality. This begs
the question:

Question 0.4. For what class of maps can you pull back a foliation?
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Figure 1. Green: leaves. Red: submanifold

Answers will be, in increasing order of generality:

• Open embeddings;
• Submersions;
• Maps transversal to the foliation.

The last notion is defined as follows.

Definition 0.5 (Intuitive (i.e.,, in terms of leaves)). A map f : M → E is transversal to F, a
foliation of E, if for every leaf Eα ⊂ E, the map f is transversal to Eα: f t Eα. I.e., for every
x ∈ f−1(Eα), the composite

Tf(x)Eα ⊕ TxM −→ Tf(x)E

is surjective, or equivalently, the composite

TxM −→ Tf(x)E −→ NF|f(x)

is surjective.

Here’s an equivalent definition.

Definition 0.6. The map f : M → E is transversal to F, a Γq-foliation of E, if the composite map

f−1Uα → Uα
projsϕαα−−−−−−→ Rq

is a submersion for each Uα.

Exercise: Check that these definitions are equivalent.

Definition 0.7. The space of maps M → E transversal to F, a Γq-foliation of E, denoted

MaptF(M,E)

is the subspace of smooth maps Mapsm(M,E) formed by all f such that the composite

TM
df−→ TE −→ NF

is surjective on every fiber.

Observe that this last condition is a differential relation! That is, we can choose R ⊂ (M ×E)(1)

(bundle of 1-jets on M) to be the subspace whose fiber at a point x ∈ M consists of those linear
maps TxM → TyE which TxM surjects onto NF|y, and then we have the equalities

MaptF(M,E) = SolR(M),

Mapsurj
Vect(TM , TE) := ΓM (R).

Theorem 0.8 (Gromov, Phillips). If M is an open n-manifold, then the map

MaptF(M,E) −→ Mapsurj
Vect(TM , NF)

is a weak homotopy equivalence.
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Remark 0.9. If the foliation F is that by points of E, then MaptF(M,E) = Subm(M,E) is the

space of submersions, Mapsurj
Vect(TM , NNF

) = Submf(M,E) is the space of formal submersions (since
NF = TE in this case), and the theorem above reduces to the previously seen case of the Gromov-
Phillips theorem for submersions out of an open manifold.

Proof. We apply Gromov’s theorem that h-principle holds for open, diffeomorphism-invariant, dif-
ferential relations on open manifolds (see Lecture 11). So all we need do is verify openness and
invariance of R.

Openness of R in the space of all 1-jets is obvious: This is a parametrized version of observation
that Homsurj(V,W ) ⊂ Hom(V,W ) is an open subspace for any vector spaces V , W over R.

Diffeomorphism invariance, that Diff(M) preserves R, is also obvious, since precomposition of a
map with a diffeomorphism doesn’t change the surjectivity condition above. �

Observe that differentiation of local diffeomorphisms defines a functor

d : (Rq,Γq) −→ (∗, GLq).
Using the map Bd induced from this functor on the classifying spaces, we can pull back the universal
dimension q vector bundle over BGLq to over BΓq. Let us call this vector bundle NΓq .

Given a Γq-foliation F, observe that the submersion Uα → Rq identifies ϕ−1
ααTRq with NF|Uα .

Therefore, if we identify F with the map M → BΓq classifying it as a Γq-structure, then NF will be
F∗NΓq .

Theorem 0.10 (Haefliger). Let M be an open n-manifold. Then Folq(M)/∼, the set of codimension-
q foliations of M modulo integrable homotopy, is naturally in bijection with the components of the
space of surjective bundle maps Mapsurj

Vect(TM , NΓq ):

Folq(M)/∼ ∼= π0 Mapsurj
Vect(TM , NΓq ).

These sets are also in bijection with π0 of the space of all lifts

BΓq ×BGLn−q

��
BGLq ×BGLn−q

��
M
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t TM // BGLn.

The proof will be given next time.
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