
THE H-PRINCIPLE, LECTURE 14: HAEFLIGER’S THEOREM CLASSIFYING

FOLIATIONS ON OPEN MANIFOLDS

J. FRANCIS, NOTES BY M. HOYOIS

In this lecture we prove the following theorem:

Theorem 0.1 (Haefliger). If M is an open manifold, there is a bijection between

(1) codimension q foliations on M up to integral homotopy and
(2) homotopy classes of fibrewise surjective vector bundle maps TM → NΓq.

1. Defining the map

Recall that Γq is the topological groupoid of germs of local diffeomorphisms of Rq, the topology
being that of the étalé space of the discrete sheaf of local diffeomorphisms. The space BΓq carries
a Γq-structure U with the following universal property: for any space X, f 7→ f−1(U) induces a
bijection between homotopy classes of maps [X,BΓq] and Γq-structures on X up to homotopy.

To define the map in Haefliger’s theorem, we need to promote this bijection at least to an
equivalence of groupoids, following the general theory of classifying spaces. To any Γq-structure
F on a space X is associated a map f : X → BΓq together with a homotopy H from f−1(U) to
F. This data is canonically defined up to homotopy: given (f0,H0) corresponding to F0, (f1,H1)
corresponding to F1, we can associate to any homotopy F from F0 to F1 a homotopy f from f0 to
f1 and a Γq-structure K on X × [0, 1]2 with restrictions given by

H0

F

H1K

f−1(U)

and the homotopy type of this data depends only on the homotopy type of F.
There is a map of topological groupoids d : Γq → GLq given by (x, g) 7→ dg. For any Γq-structure

F with classifying map f , we define its normal bundle NF to be the vector bundle classified by
Bd ◦ f . In other words, if NΓq is the pullback by Bd of the universal bundle on BGLq, then
NF = f∗(NΓq). If f0 and f1 are part of different classifying data for F, then they are related by a
canonical homotopy class of homotopy, so there exists a canonical homotopy class of isomorphisms
f∗0 (NΓq) ∼= f∗1 (NΓq). By definition, the normal bundle is functorial in that Nr−1(F) = r∗(NF) for r
a continuous map.

Let now M be a manifold. A Γq-structure on M is called smooth if it is represented by a cocycle
{Uα, φαβ} in which the maps φα : Uα → Rq are smooth. If F is a smooth Γq-structure, we can define
a bundle map TM → NF over the covering {Uα} as follows:

TUα //___

��

dφα

**
NF|Uα //

��

TRq

��
Uα Uα

φα

// Rq,
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where the right-hand square is a pullback by definition of NF. By construction, this bundle map is
natural in M : if r : N → M is a smooth map, then the Γq-structure r−1(F) is represented by the
cocycle {r−1(Uα), φαβ ◦ r}, so we have a commutative square

TN
dr //

��

TM

��
Nr−1(F) // NF.

Our goal is now to classify Γq-foliations on M , the set of which we denote by Folq(M). These
are the smooth Γq-structures on M whose associated bundle map TM → NF is fibrewise surjective.
Thus to any F ∈ Folq(M) we can associate an element

TM
F // //

��

NΓq

��
M

f
// BΓq

in the space Mapsurj
Vect(TM,NΓq) of fibrewise surjective bundle maps. We wish to show that this

gives a well-defined map

(1) Folq(M)→ π0 Mapsurj
Vect(TM,NΓq).

Suppose that (f0,H0) and (f1,H1) are two choices of classifying data for F, defining bundles maps
(f0, F0) and (f1, F1), and let (f,K) be associated to the identity homotopy p−1(F) of F, where
p : M × [0, 1] → M is the projection. Then NK is a bundle on M × [0, 1]2 that restricts to the
normal bundles of p−1(F) and f−1(U) on the top and bottom sides. By homotopy invariance of
vector bundles this gives an isomorphism Np−1(F)

∼= Nf−1(U) = f∗(NΓq), and hence a path

TM × [0, 1] // //

��

NF × [0, 1] ∼= Np−1(F)
∼= f∗(NΓq) //

��

NΓq

��
M × [0, 1] M × [0, 1]

f
// BΓq

in Mapsurj
Vect(TM,NΓq) between (f0, F0) and (f1, F1).

Further, suppose that F is an integrable homotopy between F0 and F1, that is, F is a Γq-foliation
on M × [0, 1] whose restriction to M × {t} is a foliation for all t. If f : M × [0, 1] → BΓq is a

classifying map for F, we can choose ft as classifying maps for Ft = i−1t (F). Let (f, F ) be the
bundle map associated to f and (ft, Ft) that associated to ft. Then

TM × [0, 1] //

''PPPPPPPPPPPP
T (M × [0, 1])

F // //

��

NΓq

��
M × [0, 1]

f
// BΓq

is a path from (f0, F0) to (f1, F1) in Mapsurj
Vect(TM,NΓq), since for each t the restriction of the top

map to TM × {t} is F ◦ dit = Ft which is fibrewise surjective. So the map (1) descends to

Haef : Folq(M)/∼ → π0 Mapsurj
Vect(TM,NΓq)

where ∼ is the relation of integrable homotopy.
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2. Proof of the theorem

Suppose that M and E are manifolds and that F̃ is a Γq-foliation on E. Then MaptF̃(M,E)

denotes the space of smooth maps s : M → E that are transversal to F̃, i.e., such that the composite

TM
ds // TE

F̃ // // NΓq

is fiberwise surjective. This is just the bundle map associated to the smooth Γq-structure s−1(F̃),
so we have a map

(2) MaptF̃(M,E)→ Folq(M), s 7→ s−1(F̃).

What happens if we take homotopy classes? Suppose that

s : M × [0, 1]→ E

is a smooth homotopy such that st : M → E is transversal to F̃ for all t ∈ [0, 1]. Then s−1(F̃)

is a homotopy between s−10 (F̃) and s−11 (F̃), and we claim that it is an integrable homotopy. The

restriction of s−1(F̃) to M ×{t} is s−1t (F̃) which is a foliation by assumption, so it remains to show

that s−1(F̃) itself is a foliation, or equivalently that s is transversal to F̃. This follows from the the
transversality of all the st, since the composition

TM
dit // T (M × [0, 1])

ds // TE
F̃ // // NΓq

is fibrewise surjective and each fiber of T (M × [0, 1]) is accounted for in this way. Thus, the map
(2) descends to

π0 MaptF̃(M,E)→ Folq(M)/∼.
We can summarize the situation by the commutative square

(3) π0 MaptF̃(M,E) //

∼=
��

Folq(M)/∼

Haef

��
π0 Mapsurj

Vect(TM,NF̃) // π0 Mapsurj
Vect(TM,NΓq)

in which the left-hand map is a bijection when M is open, by the Gromov-Phillips theorem. This
square will be used to prove both the surjectivity and the injectivity of Haef, by using appropriate
pairs (s, F̃). These will be given by the following technical lemma.

Lemma 2.1. Let F be a Γq-structure on a manifold M . Then there exists a manifold E, a closed

embedding s : M ↪→ E, and a Γq-foliation F̃ on E such that s−1(F̃) = F.

Proof. Let F be represented by the cocycle {Uα, φαβ : Uαβ → Γq}. By paracompactness we can
assume that the cover {Uα} is locally finite. Consider the topological groupoid ΓMq of germs of
diffeomorphisms of M × Rq that are of locally the form (x, v) 7→ (x, γ(v)) where γ is a local
diffeomorphism of Rq, i.e., all germs are of the form id×g for some g ∈ Γq. The obvious map of
sheaves induces an inclusion i : Γq ↪→ ΓMq that sends a germ g to id×g.

Observe that the diagram

Γq
i // ΓMq

��
Uαβ

φαβ

OO

(id,φα)
// M × Rq.

is commutative. This means that i ◦ φαβ is a section of ΓMq over the graph of φα|Uαβ . Extending
the germs of this section at every point to a neighborhood and then using a partition of unity on
Uαβ×Rq, we can extend this section to a global section Uαβ×Rq → ΓMq . Such a section corresponds
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to a diffeomorphism Φαβ defined on Uαβ × Rq, locally of the form (x, v) 7→ (x, γ(v)), and whose
germ at (x, φα(x)) is id×φαβ(x) for any x ∈ Uαβ .

For x ∈M , denote by Vx ⊂M × Rq the set on which:

• Φαα is defined and the identity, whenever x ∈ Uα;
• Φ−1βαΦαβ is defined and the identity, whenever x ∈ Uαβ ;
• ΦβγΦαβ and Φαγ are defined and equal, whenever x ∈ Uαβγ .

Now because all these identites hold true of the germs at (x, φα(x)) and our cover is locally finite, Vx
is a neighborhood of (x, φα(x)). For each α, therefore, the set

⋃
x∈Uα Vx ⊂ Uα×R

q is a neighborhood
of the graph of φα : Uα → Rq; let Eα be an open subneighborhood.

Let

E =
∐
α

Eα/ ∼

where (α, x, v) ∼ (β, y, w) iff x = y in Uαβ and Φαβ(x, v) = (y, w). This is an equivalence relation
because of the way we constructed the neighborhoods Eα. Clearly there is an induced smooth map
π : E → M , [α, x, v] 7→ x. To make sure that E is actually a manifold, we must still check that it
is Hausdorff. So let [α, x, v], [β, y, w] ∈ E be distinct. If x 6= y, then the points are separated by π.
Otherwise, Φαβ(x, v) 6= (y, w), so in this case the points are separated by the second component of
the inclusion Eα ⊂ Uα × Rq.

Define s : M → E to be x 7→ [α, x, φα(x)] for x ∈ Uα. Finally, let F̃ be defined by the cocycle

{Eα, φ̃αβ}, where φ̃αβ : Eαβ → Γq sends [α, x, v] to the germ g such that id×g is the germ of Φαβ at

(x, v). It is then straightforward to check that F̃ is a Γq-structure and that s−1(F̃) = F. Moreover,

φ̃α : Eα → Rq is just the composition of the open embedding Eα ⊂ Uα × Rq and the projection to
the second factor, hence is smooth and a submersion. �

Proof of surjectivity. Take a bundle map

TM
F // //

��

NΓq

��
M

f
// BΓq

in the target, and let F = f−1(U). By the lemma, there exists s : M → E and a foliation F̃ on E

such that s−1(F̃) = F. Let f̃ : E → BΓq be a map classifying F̃. Because s is a cofibration, we can

choose it so that f = f̃ ◦ s. Then the left-hand square in

TM //___

F
**

��

NF̃

��

// NΓq

��
M s

// E
f̃

//// BΓq

is an element of Mapsurj
Vect(TM,NF̃) mapping to (f, F ) by the bottom map in the square (3). This

square completes the proof. �

Proof of injectivity. Let F0 and F1 be Γq-foliations on M and suppose that there is a path

TM × [0, 1]
F // //

��

NΓq

��
M × [0, 1]

f
// BΓq
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between the associated bundles maps (f0, F0) and (f1, F1). We can assume that F0 = f−10 (U)
and F1 = f−11 (U). Then F = f−1(U) is a homotopy from F0 to F1. By the lemma, there exists

s : M × [0, 1]→ E and a foliation F̃ on E such that s−1(F̃) = F. Since s−10 (F) = F0 and s−11 (F) = F1

are foliations, s0 and s1 belong to MaptF̃(M,E), and they map to F0 and F1 by the top map of the

square (3). Using this square it will suffice to show that the images of s0 and s1 in Mapsurj
Vect(TM,NF̃)

are in the same connected component. A path between them is given by the left-hand square in

TM × [0, 1] //___

F

**

��

NF̃

��

// NΓq

��
M × [0, 1]

s
// E

f̃

//// BΓq,

since F0 = F̃ ◦ ds0 and F1 = F̃ ◦ ds1. �

This completes the proof of Haefliger’s classification. To understand its meaning, let’s pretend
for a moment that BΓq is a manifold and that U is a Γq-foliation on it. Then we have a commutative
triangle

π0 MaptU(M,BΓq)

��

∼=

**TTTTTTTTTTTTTTT

Folq(M)/∼
Haef

// π0 Mapsurj
Vect(TM,NΓq)

in which the top map is an isomorphism by the theorem of Gromov and Phillips, and Haefliger’s
theorem is equivalent to the vertical map being an isomorphism. Morally speaking, therefore,
Haefliger’s theorem is the statement that U is the universal Γq-foliation.

3. Some consequences

The following proposition gives Haefliger’s classification a more homotopy-theoretic flavor.

Proposition 3.1. If dimM = n, π0 Mapsurj
Vect(TM,NΓq) is naturally identified with the set of lifts

BΓq ×BGLn−q

Bd×id
��

BGLq ×BGLn−q

⊕
��

M

;;w
w

w
w

w
w

w
w

w
w

w
τ

// BGLn

up to homotopy, i.e., the set of maps M → BΓq×BGLn−q in the homotopy category of spaces over
BGLn. Equivalently, this is π0 of the space of sections of the fibration τ−1(BΓq ×BGLn−q) on M ,
where τ classifies the tangent bundle of M .

Proof. Such a lift is the same thing as a map M → BΓq × BGLn−q together with a homotopy
between the two maps M → BGLn, up to homotopy. This is equivalent to a map f : M → BΓq, a
rank n− q vector bundle K on M , and an isomorphism TM ∼= K⊕ f∗(NΓq), up to homotopy. Any
homotopy class of such data has a representative in which the injection K ↪→ TM is the inclusion
of a subbundle. Since a splitting of this inclusion is unique up to homotopy, this data is equivalent
to a map f : M → BΓq together with a fibrewise surjective map TM → f∗(NΓq), up to homotopy.

This is exactly π0 Mapsurj
Vect(TM,NΓq). �
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Corollary 3.2. If M is contractible, there exists a unique Γq-foliation on M up to integrable
homotopy.

Proof. There is a unique lift in Proposition 3.1, since BΓq×BGLn−q and BGLn are connected. �

Corollary 3.3. If M is open and parallelizable, then there exists at least one Γq-foliation on M .

Proof. The mapM → BGLn factors through a point, so it can be lifted by the previous corollary. �

Define BΓq by the homotopy fiber sequence

BΓq // BΓq
Bd // BGLq.

In other words, BΓq classifies Γq-structures with trivialized normal bundle.

Proposition 3.4. Bd : BΓq → BGLq is q-connected.

Proof. Let 0 ≤ k ≤ q − 1. There exists a unique codimension q foliation on the open manifold
Sk × Rq−k, since it has dimension q. By Proposition 3.1, there exists a unique lift

BΓq

��
Sk × Rq−k

99r
r

r
r

r
// BGLq

up to homotopy. But Sk × Rq−k has trivial tangent bundle, so the bottom map is null-homotopic
and therefore these lifts identify with homotopy classes of maps Sk → BΓq. �

Corollary 3.5. Let M be open and k-truncated. If q ≥ k, then any rank n− q subbundle of TM is
the tangent bundle of a Γq-foliation, which is unique up to integrable homotopy if q > k.
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