
THE H-PRINCIPLE, LECTURE 17: THE SHEAF OF CONFIGURATION

SPACES AND THE SCANNING MAP

J. FRANCIS

1. Configuration spaces and mapping spaces

Our aim in the next several lectures is to prove the following theorem of Dusa McDuff. We will
state it first, then define the terms.

Theorem 1.1. 1 Let X be a pointed space and M be an n-manifold. Then the scanning map

ConfX(M) −→ Γc(T∞
M ∧M X)

is a weak homotopy equivalence if either

• M is open and compact, or
• X is connected.

We now define the constituent terms:

• ConfX(M) := ConfX(M,∂M) is the configuration space of points in M labeled by X, and
with annihilation of points in the boundary of M . (M is not assumed to have boundary or
be compact.) See Lecture 16.

• T∞
M is the fiberwise 1-point compactification of the tangent bundle of M , i.e., the bundle of

pointed n-spheres over M formed by adding a point at infinity in each space tangent space
TM,x, x ∈M . Sections of T∞

M can be thought of possibly infinite vector fields.2

• T∞
M ∧MX is the fiberwise smash product overM . The fiber over a point x is T∞

M,x∧X ∼= ΣnX.

• Γc denotes compactly supported sections, i.e., sections which are constant basepoint (in this
case, going to the point at infinity) outside a compact subspace of M , and equipped with
the compact-open topology. (If M is compact then, of course, we have Γc = Γ.)

This leaves only to define the scanning map, which will come later in this lecture. Before doing
so, let us first observe some consequences of the above theorem:

Corollary 1.2. If M is a parallelizable manifold, then there is a homotopy equivalence

ConfX(M) −→ Mapc(M,ΣnX)

if either M is open and compact or X is connected.

Proof. A framing TM ∼= Rn gives a homeomorphism of pointed spaces T∞
M ∧M X ∼= M ×ΣnX over

M .
�

Example 1.3. Consider M = R. We saw previously that there was a natural homotopy equivalence
ConfX(R) ' JX, to the James construction. By identifying the open interval and R, (0, 1) ∼=
R, there is further an equivalence Mapc(R,ΣX) ' ΩΣX with the based loop space of ΣX. We
therefore recover James’ original result, that there is a homotopy equivalence JX ' ΩΣX, for X
a connected, pointed space. Note the necessity of the hypothesis that X is connected: If X has

Date: Lecture February 21, 2010. Last edited on February –, 2010.
1This theorem and its proof are essentially due to McDuff, though the formulation with a space of labels seems

to be first formulated by Bödigheimer. The proof uses ideas of Segal and Gromov.
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obtained by collapsing all the different ∞’s in all the fibers to a single point.

1



multiple components, then π0JX is a monoid which is not a group, while π0ΩΣX ∼= π1ΣX is a
group, and they will never be homotopy equivalent.

Example 1.4. Consider now M = Rn. Then ConfX(Rn) is homotopy equivalent to the free En-
algebra FreeEn

(X, ∗) generated by the pointed space X. The theorem then implies the homotopy
equivalence FreeEn

(X, ∗) ' ConfX(Rn) ' ΩnΣnX, a result originally due to Segal and May.

2. Sheaves on manifolds, revisited

Until this point, when we considered a sheaf, such as sheaf of immersions with fixed target
Imm(−, N), we considered it as a sheaf on opens of a single manifold Mn. However, all of the
examples we have considered (such as Imm(−, N), Mapsm(−, N), Subm(−, N), Folq(−), ConfX(−))
can be naturally considered as sheaves on all n-manifolds at once. At this point, it becomes beneficial
to pursue this line of thinking.

Definition 2.1. Mfldn is the topological category of smooth, compact n-dimensional manifolds
with embeddings as morphisms. Namely, MapMfldn

(M,N) = Emb(M,N).

Definition 2.2. Let M be a compact n-manifold. The collection of embeddings {fα : Uα ↪→ U |α ∈
J} is a cover by compact n-manifolds if:

• The map
∐
J Uα → U is surjective;

• For any subset J0 ⊂ J , the intersection
⋂
J0
fα(Uα) ⊂ U is a closed, embedded n-manifold.

Remark 2.3. For instance, we do not allow the two closed hemispheres of S2 to form a cover, because
their intersection is the equator S1, which is codimension 1. However, if we stretch the hemispheres
to overlap in a band S1 × [−ε, ε], then this becomes a cover in the sense of the above definition.

Definition 2.4. Shv(Mfldn) is the full subcategory of continuous functors Fun(Mfldop
n ,Spaces)

consisting of those presheaves F for which the natural map

F(U) −→ lim

∏
α

F(Uα) ⇒
∏
α,β

F(Uα ∩ Uβ)


is a homeomorphism.3 In particular, this all such sheaves F have the property that F(i) : F(V )→
F(U) is a weak homotopy equivalence for every isotopy equivalence i : U ↪→ V .4

Recall that an embedding f : U → V is an isotopy equivalence if it is isotopic to a diffeomorphism.
I.e., there exists a smooth family of embeddings ft : [0, 1] × U → V with f0 = f and f1 is a
diffeomorphism. Note that the space Diff(V ) acts of F(V ), for F ∈ Shv(Mfldn).

Remark 2.5.

3. The scanning map

Let F be a sheaf on manifolds, as we’ve just discussed. The values F(M) can be approximated
by the sheaf of sections ΓF of a bundle EF (M) on each M , which we now construct: Let

EF (M) := Frame(TM )×GLn
F(Dn)

be the diagonal quotient by GLn of the principal GLn bundle of n-frames of M and the value of F
on the standard n-disk. Choosing a Riemannian metric on M , the fibers of the bundle EF (M) can

3You may notice that I granted my own previous wish to work with sheaves defined on compact manifolds, rather
than open subspaces of a manifold.

4For instance, this excludes the sheaf of smooth structures Sm on the category of 4-manifolds.
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be continuously identified with the spaces F(Disk(TM,x)), F applied to the unit disk bundle of the
tangent space of M at x:

F(Disk(TM,x)) ∼= Fibx //

��

EF (M)

��
{x} // M

We define ΓF as the sheaf of sections on M of EF (M). We now construct the scanning map:

F(M)
scan // ΓF (M)

For each f ∈ F(M), we construct a section scan(f) of the bundle: scan(f) : M → EF (M),
assigning to each point x ∈ M an element of the fiber of EF (M) over x, which we can identify
with F(Disk(TM,x)). Using the exponential map expx : Disk(TM,x) ↪→M , we have an induced map
F(expx) : F(M)→ F(Disk(TM,x)), and we define the value of scan(f) at x to be

scan(f)(x) := F(expx)(f)

which varies continuously in x, and hence defines a section of EF (M).

4. The h-principle for sheaves

Definition 4.1. For F a sheaf on manifolds, as above, F adheres to the h-principle on M if the
scanning map F(U)→ ΓF (U) is a weak homotopy equivalence for every U ⊂M .

Proposition 4.2. For R an open, diffeomorphism invariant, differential relation on M , then R
adheres to the h-principle (for differential relations) if and only if the sheaf of solutions SolR adheres
to the principle (for sheaves).

Proof. ΓR ' ΓSolR .
�

Next time we will prove McDuff’s theorem, which will be seen as the statement that the sheaf
ConfX on adheres to the h-principle on M , given the aforementioned conditions.
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