THE H-PRINCIPLE, LECTURE 18: THE PROOF OF MCDUFF’S THEOREM,
FIRST PART

J. FRANCIS, NOTES BY C. ELLIOTT

1. McDuFrF’s THEOREM ON CONFIGURATION SPACES

We're going to use the machinery of the h-principle for sheaves and the scanning map to prove
Baédigheimer’s generalization of a theorem of McDuff. Let’s remind ourselves of what it said:

Theorem 1.1. There exists a map
COIlfx(M) — FC(T](\)/IO Amr X)
which is a weak homotopy equivalence if either X is connected or M is compact and open.

Here, Conf x (M) is the configuration space of points of M labeled by points of X (with annihi-
lation/creation of points on the boundary of M), and T5? is the fiberwise 1-point compactification
of the tangent bundle. First we’ll prove the theorem in the case M = D".

Lemma 1.2. Confx(D") is homotopy equivalent to the n'" suspension ¥"X of X.
Proof. Note that we can filter Conf x (M) by the number of points of M in a configuration:
tee g CODfx(M)Si g COIlfx(M)SH_l g L

So in particular

pt
Conf, (M) x5, X')/(Conf,(0M) x X)
D" x X)/(S" ' x X)=2¥"X

Conf x (M)<
Confx(M)<1 = (
=(
in the case M = D™. Now, let’s construct a deformation retraction

Confx (D") x {0}

e

Confx (D™) x [0,1] ——— Conf x (D™)

| |

Confy (D) x {1}2%% Confx (D)<,

The idea of this construction is to dilate the disk so that all the points except maybe one go to the
boundary. Define the dilation r; for a configuration f so that all but maybe the furthest point of
the configuration map to dD™. One can choose a way of doing this that is continuous in f.
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For the rest of this lecture we assume M is compact. Recall that we have a bundle on M
corresponding to the sheaf Conf x, with fibers Conf x (Disk(7,M)),

Conf x (Disk(T,M)) —= Econf

We saw the total space of this bundle could be defined as

Frame(TM) XGL, COan (Dn)
so by the lemma, there’s a natural homotopy equivalence over M
Frame(Tys) X g1, Confx(D™) = Frame(Ty) xgr, L"X = T5? Ay X.

We also constructed a scanning map for our sheaf, which allows us to define the map of the theorem
as the composition
Conf x (M) =% T'(Confx (M)) — T(T5 Ay X).
Now, let’s return for our usual recipe for proving results of this form:

(1) Prove the theorem for M = D™.
(2) Induct on a handle decomposition of M.

For the M = D" case, we’ve constructed maps

Coan(D”) F(TB?L Apn X)

lw -

XX D" x¥"X

_ Map(D",¥"X)

~

X

which shows the theorem holds for D™.
To understand the inductive step, we need to understand the restriction maps Confx (V) —
Confx (U), where U < V is, say, of the form

SF=1 % [0,0] x D"7F < DF x D"F,
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We observe that the fibers of this map look like

Confx (V —U,9V — 9V NoU) — Confx (V)

| |

{f} Confx (U).

Indeed, we can see this immediately from the picture

A
W -(VAIU)

So we have a map with fibers that are all homeomorphic. Note that this doesn’t imply that it is
a fibration, as the following example shows:

Ezample 1.3. As in the case of immersion theory (in which we saw that Imm(D", N™) — Imm(S™ "1 x
[0,6], N™) was not a Serre fibration), let’s look for failure in the case

U=58""1x][0,0] < D" =V.

Let X = 5%, or any non-connected space. So we have

L, (Conf;(D}_s)s, == Conf(D?}_j, &) ——— Conf(D")

| |

{f} ———— Conf(5"~ x [0, 4]).

In particular, the fibers have infinitely many non-homeomorphic components, but the base and total
space are connected, so the map cannot be a fibration. To elaborate, we know that Conf(D™) = S™.
Assuming the theorem, Conf(S"~! x [0,4]) = Map(S™~1,8™). It’s then easy to see directly that
the map S™ — Map(S™~!, S™) does not have homotopy fiber [],(Conf;(D?_,)s,. (For instance, in
the case of ST — Map(S°, S1), the homotopy fiber Q5! is homotopy equivalent to Z.)

Now, let’s just prove directly that our map isn’t a fibration by presenting a lifting problem that
can’t be solved. Choose

oo base Conf(D")

N

[0,1] — Conf(S™~! x [0, d])

where v is the red path shown in the picture below:
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That is, the path v from time ¢ = 0 to time € is just the empty configuration. At time ¢ = e,
a point is created on the interior boundary of the annulus and then this point moves around until
time ¢ = 1 (what it does doesn’t matter). We choose the lifting condition at time ¢ = 0 of the empty
configuration in Conf(D™). It is impossible to lift the path =y, because of this initial condition and
the fact that we cannot create points in D™ in its interior, only on its boundary. Thus, this map
cannot be a fibration.

Note that we were unable to construct the lift of v because the boundary of QU surjected onto
the boundary dV. If this was not the case (e.g., if U looked like a horseshoe in V') then we could
have created a point on the complement of 9V in OU, then rushed, in time €, the point along a path
ending at y(e) on the interior boundary of U. This would have defined a lift. So, one should still
feel like we’re in good shape so long as the boundary of U doesn’t surject onto the boundary of V.
This is true, for instance, for the inclusions S¥=1 x [0, 8] x D"~* < D¥ x D"=* for n > k. We will
continue with this issue next time.
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