
THE H-PRINCIPLE, LECTURE 18: THE PROOF OF MCDUFF’S THEOREM,

FIRST PART

J. FRANCIS, NOTES BY C. ELLIOTT

1. McDuff’s Theorem on Configuration Spaces

We’re going to use the machinery of the h-principle for sheaves and the scanning map to prove
Bödigheimer’s generalization of a theorem of McDuff. Let’s remind ourselves of what it said:

Theorem 1.1. There exists a map

ConfX(M)→ Γc(T∞M ∧M X)

which is a weak homotopy equivalence if either X is connected or M is compact and open.

Here, ConfX(M) is the configuration space of points of M labeled by points of X (with annihi-
lation/creation of points on the boundary of M), and T∞M is the fiberwise 1-point compactification
of the tangent bundle. First we’ll prove the theorem in the case M = Dn.

Lemma 1.2. ConfX(Dn) is homotopy equivalent to the nth suspension ΣnX of X.

Proof. Note that we can filter ConfX(M) by the number of points of M in a configuration:

· · · ⊆ ConfX(M)≤i ⊆ ConfX(M)≤i+1 ⊆ · · · .

So in particular

ConfX(M)≤0 = pt

ConfX(M)≤1 = (Conf1(M)×Σ1
X1)/(Conf1(∂M)×X)

= (Dn ×X)/(Sn−1 ×X) ∼= ΣnX

in the case M = Dn. Now, let’s construct a deformation retraction

ConfX(Dn)× {0}
id

))SSSSSSSSSSSSSS

��
ConfX(Dn)× [0, 1]

rt // ConfX(Dn)

ConfX(Dn)× {1}

OO

retract // ConfX(Dn)≤1

OO

.

The idea of this construction is to dilate the disk so that all the points except maybe one go to the
boundary. Define the dilation rt for a configuration f so that all but maybe the furthest point of
the configuration map to ∂Dn. One can choose a way of doing this that is continuous in f .
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For the rest of this lecture we assume M is compact. Recall that we have a bundle on M
corresponding to the sheaf ConfX , with fibers ConfX(Disk(TxM)),

ConfX(Disk(TxM))

��

// EConfX

��
{x} // M.

We saw the total space of this bundle could be defined as

Frame(TM )×GLn
ConfX(Dn)

so by the lemma, there’s a natural homotopy equivalence over M

Frame(TM )×GLn
ConfX(Dn)

∼−→ Frame(TM )×GLn
ΣnX ∼= T∞M ∧M X.

We also constructed a scanning map for our sheaf, which allows us to define the map of the theorem
as the composition

ConfX(M)
scan−−−→ Γ(ConfX(M))→ Γ(T∞M ∧M X).

Now, let’s return for our usual recipe for proving results of this form:

(1) Prove the theorem for M = Dn.
(2) Induct on a handle decomposition of M .

For the M = Dn case, we’ve constructed maps

ConfX(Dn)

∼
��

// Γ(T∞Dn ∧Dn X)

∼
��

ΣnX

∼

!!CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

Dn × ΣnX

∼
��

Map(Dn,ΣnX)

∼
��

ΣnX

which shows the theorem holds for Dn.
To understand the inductive step, we need to understand the restriction maps ConfX(V ) →

ConfX(U), where U ↪→ V is, say, of the form

Sk−1 × [0, δ]×Dn−k ↪→ Dk ×Dn−k.
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We observe that the fibers of this map look like

ConfX(V − U, ∂V − ∂V ∩ ∂U) //

��

ConfX(V )

��
{f} // ConfX(U).

Indeed, we can see this immediately from the picture

So we have a map with fibers that are all homeomorphic. Note that this doesn’t imply that it is
a fibration, as the following example shows:

Example 1.3. As in the case of immersion theory (in which we saw that Imm(Dn, Nn)→ Imm(Sn−1×
[0, δ], Nn) was not a Serre fibration), let’s look for failure in the case

U = Sn−1 × [0, δ] ↪→ Dn = V.

Let X = S0, or any non-connected space. So we have

∐
i(Confi(D

n
1−δ)Σi

Conf(Dn
1−δ,∅) //

��

Conf(Dn)

��
{f} // Conf(Sn−1 × [0, δ]).

In particular, the fibers have infinitely many non-homeomorphic components, but the base and total
space are connected, so the map cannot be a fibration. To elaborate, we know that Conf(Dn) ∼= Sn.
Assuming the theorem, Conf(Sn−1 × [0, δ]) ∼= Map(Sn−1, Sn). It’s then easy to see directly that
the map Sn → Map(Sn−1, Sn) does not have homotopy fiber

∐
i(Confi(D

n
1−δ)Σi

. (For instance, in

the case of S1 → Map(S0, S1), the homotopy fiber ΩS1 is homotopy equivalent to Z.)
Now, let’s just prove directly that our map isn’t a fibration by presenting a lifting problem that

can’t be solved. Choose

∗

��

base

point
// Conf(Dn)

��
[0, 1]

γ // Conf(Sn−1 × [0, δ])

where γ is the red path shown in the picture below:
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That is, the path γ from time t = 0 to time ε is just the empty configuration. At time t = ε,
a point is created on the interior boundary of the annulus and then this point moves around until
time t = 1 (what it does doesn’t matter). We choose the lifting condition at time t = 0 of the empty
configuration in Conf(Dn). It is impossible to lift the path γ, because of this initial condition and
the fact that we cannot create points in Dn in its interior, only on its boundary. Thus, this map
cannot be a fibration.

Note that we were unable to construct the lift of γ because the boundary of ∂U surjected onto
the boundary ∂V . If this was not the case (e.g., if U looked like a horseshoe in V ) then we could
have created a point on the complement of ∂V in ∂U , then rushed, in time ε, the point along a path
ending at γ(ε) on the interior boundary of U . This would have defined a lift. So, one should still
feel like we’re in good shape so long as the boundary of U doesn’t surject onto the boundary of V .
This is true, for instance, for the inclusions Sk−1 × [0, δ]×Dn−k ↪→ Dk ×Dn−k, for n > k. We will
continue with this issue next time.
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