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Last time: We saw that the restriction map Conf(Dn) → Conf(Sn−1 × [0, δ]) is not a fibration
because we can’t lift a path that starts on the “interior” boundary of Sn−1×{δ} and then wanders
inside the fattened sphere. The main problem is that we cannot “create” a point in the middle of
the disk.

There are situations where this problem vanishes. Consider U ⊂ V two compact manifolds.
Suppose the boundary of U does not contain the boundary of V . Then we can lift a path that
starts on the boundary of U , so long as the path sits on the boundary for a finite length of time
[0, ε]. We simply create a point on ∂V and traverse a path to ∂U in time ε. Alternatively, if every
component of ∂U intersects ∂V , then we can also lift paths that sit on ∂U for finite time. (Note
that this condition implies the ∂U does not surject onto ∂V .)

These conditions have a peculiar property: the path has to stay on ∂U for finite time. What is a
path immediately leaves the boundary? In that case, we cannot lift the path because we would have
to traverse through V − U instantaneously. Nonetheless, we can almost lift paths since all fibers of
the restriction map are homeomorphic.

To run our handlebody arguments, we just need to relax our conditions a little, as follows.

Definition 0.1. A map π : E → C is a quasi-fibration if the inclusion

Fibx = π−1(x) ↪→ hFibx = {(e, γ) | γ : [0, 1]→ C, γ(0) = x, γ(1) = π(e)}
is a weak homotopy equivalence for every x ∈ C.

We will see that our handlebody arguments work whenever restriction maps are quasi-fibrations,
not just fibrations, and that ConfX(−) has this property.

Remark 0.2. Homotopy-equivalent maps have homotopy-equivalent homotopy fibers (hFibx, as
above), and so for a fibration, the inclusion Fibx ↪→ hFibx is a homotopy equivalence.

Example 0.3. PICTURE OF THE EL

For us, the crucial property of quasi-fibrations is that we still get long exact sequences of homotopy
groups.

Lemma 0.4. For a quasi-fibration π : E → C, for each point e ∈ E, we get a long exact sequence

· · · → πn+1(C, π(e))→ πn(Fibπ(e), e)→ πn(E, e)→ πn(C, π(e))→ · · ·

Proof. Every map factors into an inclusion followed by a fibration, using the path space construction.
In our case, define

π̃ : Ẽ = {γ : [0, 1]→ E} → C

γ → γ(1).

This is a fibration, and its fibers are precisely the homotopy fibers of π : E → C. Since the inclusion
E ↪→ Ẽ is a homotopy equivalence, the lemma follows. �

Warning: Quasi-fibrations do not always pull back!
We now state the main lemma, which implies our goal as an easy corollary.
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Lemma 0.5. Given an inclusion j : U → V , the restriction map

ConfX(j) : ConfX(V )→ ConfX(U)

is a quasi-fibration if either of the following holds:

(1) X is connected;
(2) each component of ∂U intersects ∂V , V − U is a closed submanifold of V , and ∂U∩∂(V − U)

is a closed submanifold of both ∂U and ∂(V − U).

Remark 0.6. The first condition clearly allows us to “create” points whenever we want. We can
view any point in V as labelled by the basepoint of X and then simply vary the label in X to create
the necessary point. Hence, we get path-lifting for paths that live on the boundary for finite time.

Remark 0.7. The second condition, albeit convoluted, holds for handlebodies and arises naturally
from thinking carefully about handle attachment.

Corollary 0.8. If either M is compact and open or X is connected, then

ConfX(M)→ Γ(T∞M ∧M X)

is a weak homotopy equivalence.

Proof of corollary. As in our earlier arguments (e.g., immersion or submersion), we pick a handle
decomposition of M and apply induction with respect to the dimension of handles.

The base case was done last time. For a disk Dn, we saw

ConfX(Dn) ' ΣnX = Map(Dn,ΣnX) = Γ(T∞Dn ∧Dn X).

We now do the induction step. Let V = U + φk, where φ is a handle of index k. (Note that for
X is not connected, we only need to consider k < n.) Let j : U ↪→ V denote the inclusion; likewise
j′ : Sk−1 × [0, δ]×Dn−k ↪→ Dk ×Dn−k.

Both ConfX(−) and Γ(−, T∞M ∧M X) are sheaves, so we have pullback diagrams with respect to
the handle attachment. For ConfX(−) we have

ConfX(V ) //

Conf(j)

��

ConfX(Dk ×Dn−k)

Conf(j′)

��
ConfX(U) // ConfX(Sk−1 × [0, δ]×Dn−k)

where the two vertical maps Conf(j) and Conf(j′) are quasi-fibrations, by the main lemma. For
brevity, denote Γ(−, T∞M ∧M X) by Γ(−). We then have

Γ(V ) //

Γ(j)

��

Γ(Dk ×Dn−k)

Γ(j′)

��
Γ(U) // Γ(Sk−1 × [0, δ]×Dn−k)

where the vertical maps are fibrations (since they come from a fiber bundle).
The scanning map scan : ConfX(−) → Γ(−) induces a map between the diagrams and, by

hypothesis, we know it is a weak homotopy equivalence on all the inputs except V . To show
that scan : ConfX(V ) → Γ(V ) is a weak homotopy equivalence, we will show that it induces an
isomorphism on homotopy groups.

Observe that hFib(Conf(j)) ' hFib(Conf(j′)). As the scanning map is a weak homotopy equiv-
alence on the right column, we find that

Fib(Conf(j)) ' Fib(Γ(j)),

where we use the fact that fibers and homotopy fibers agree for quasifibrations (and hence fibrations).
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We obtain a map of long exact sequences

· · · // πnFib(ConfX(j))

'
��

// πn ConfX(V )

��

// πn ConfX(U)

'
��

// · · ·

· · · // πnFib(Γ(j)) // πnΓ(V ) // πnΓ(U) // · · ·

and so the five lemma tells us that πn ConfX(V ) ' πnΓ(V ). �

We now make a preliminary remark on the proof of the main lemma. If one blurs one’s vision a
little, a fibration is basically a fiber bundle. A quasi-fibration is then a map that looks like a fiber
bundle over some closed subspaces of the base space. Thus, to check that a map is a quasi-fibration,
one can search for a closed stratification of the base and verify the property stratum by stratum.
In our case, the configuration space ConfX(M) has a natural stratification by “number of points”
in a configuration.
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