
THE H-PRINCIPLE, LECTURES 1 AND 2: OVERVIEW

J. FRANCIS

This class is about the h-principle. This topic might not have the huge name recognition for you
all, which might lead you might think that the h-principle an esoteric or niche topic in mathematics,
but it’s not. It’s a central and useful tool in geometry, and part of the impetus to teach this course
is that it’s easy to imagine you all making use of the h-principle in your own work.

1. Immersion theory

Given two smooth manifolds M and N , an interesting problem is to study smooth maps of M to
N . A particularly interesting type of map (if dim(N) ≥ dim(M)) is an embedding, i.e., a smooth
math M → N which is also an injection at the level of sets. Emb(M,N) is a very interesting thing
to try to understand; for instance, the study of Emb(S1,R3) is knot thory. Studying embeddings is
difficult in part because the property of a map f being an embedding is not local on M . There is
a closely related type of map that is local on M , which is an immersion. Recall that f : M → N is
an immersion if for every point x ∈M , the derivative map on tangent spaces dfx : TxM → Tf(x)N
is injective. (Equivalently, f is an immersion if it is locally an embedding, i.e., every point x has an
open neighborhood U such that f |U is an embedding.)

In the case where the source M is the standard m-disk Dm, there is a fairly simple model for both
the spaces of embeddings and immersions into a target N . Given any immersion f : Dm → N , we
can differentiate at the origin to obtain an injection df0 : Rm ∼= T0D

m ↪→ Tf(0)N . This is equivalent
to a choice of an m-dimensional subspace of the tangent space TN at the point f(0) together
with a basis, which is a point of Vm(TN), the Stiefel bundle of framed m-framed subspaces of the
tangent bundle of N . Thus, we obtain a natural map Emb(Dm, N) → Imm(Dm, N) → Vm(TN).
Likewise, any m-framed subspace Rm ↪→ TxN can be used to define an embedding Rm → N by
using the exponential map TxN → N (perhaps combined with a scaling). It is not hard to construct
an isotopy between the embedding f and the embedding exp ◦ df0, and this implies that the big,
seemingly complicated, spaces Emb(Dm, N) and Imm(Dm, N) are both homotopy equivalent to a
less intimidating bundle of frames Vm(TN).

Since immersions are local in the source, one might then hope that this fairly simple model of
immersions for source Dm should globalize to a similarly nice model. Of course, we made the
arbitrary choice of a point 0 ∈ Dm, so to globalize we should first fix this model so as to not depend
on such a choice. The fix is called a formal immersion.

Definition 1.1. A formal immersion F from M to N is an injective bundle map TM → TN . That
is, F consists of a map f : M → N and a vector bundle map F : TM → TN covering f such that
the map F |x : TxM → Tf(x)N is injective for every point x in M . Immf(M,N) is the space of
formal immersions.

This definition might look very similar to a basic notion in differential equations, that of a formal
solution: If you have some differential equation, say G(x, ẋ) = 0, you can replace the derivative ẋ
with an independent variable, y, and try to first solve the equation G(x, y) = 0 as a stepping stone
to finding genuine solutions of G(x, ẋ) = 0. Such an intermediate solution is sometimes called a
formal solution.

There is a natural map Imm(M,N) → Immf(M,N), sending an immersion f to the injective
bundle map df . It might seem like the space Immf(M,N) is more complicated than Imm(M,N),
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since we are allowing more maps (for instance, maps TM → TN which may not arise as the
derivative of any immersion of M into N), but from the point of view of homotopy theory or
cohomology, Immf(M,N) can be analyzed much more easily than Imm(M,N), because of the
existence of a fibering

Immf(M,N)

��

Hominj
VectM

(TM, f∗TN)oo

��
Map(M,N) {f}oo

where the base and the fiber are often fairly comprehensible objects in homotopy theory.
For instance, it is a difficult theorem to show that the space Imm(Mm,R2m) is nonempty (i.e.,

that every m-manifold immerses into R2m, a weak version of Whitney’s immersion theorem), but it is

comparatively easy to show that the space of formal immersions Immf(M,R2m) ' Hominj(TM,R2m)
is nonempty: You just need to show that there always exists an m-dimensional bundle NM on
M such that the direct sum TM ⊕ NM is a trivial bundle, and you obtain a formal immersion
TM ↪→ TM ⊕NM

∼= R2m.
The following celebrated theorem was proven by Hirsch, generalizing work of Smale. Recall that

a manifold M is open if the complement of the boundary, M − ∂M , has no compact component.

Theorem 1.2 (Smale-Hirsch immersion theory). Let M be compact, and assume that either M
is open or dim(M) < dim(N). Then the map Imm(M,N) → Immf(M,N) is a weak homotopy
equivalence.

This theorem is remarkable in several respects. First, it reduces a situation in analysis involving
a partial differential relation (an immersion) to one in topology + algebra (a formal immersion).
Secondly, it allows for extensive computation. For instance, let us see what this theorem implies in
the case of immersing spheres into Euclidean space, which was Smale’s original result. First, note
that there is a map Immf(Sk,Rn+k)→ Map(Sk, Vn(Rn+k)), which can be shown to be a homotopy
equivalence. A corollary of this coupled with the above theorem is then the following (which predates
the above result):

Theorem 1.3 (Smale). Isotopy classes of immersions of Sk into Rn+k are in bijection with
πkVn(Rn+k), the kth homotopy group of Vk(Rn+k) ∼= GLn+k/GLn, the Stiefel manifold of k-frames
in Rn+k.

For instance, the group π2V2(R3) classifies immersions of S2 into R3. The Stiefel manifold V2(R3)
is diffeomorphic to SO3, and a basic exercise from topology shows π2 SO3 = 0. Consequently, all
immersions of S2 into R3 are isotopic. In particular, S2 can be turned inside-out inside R3 by
moving through a family of immersions. This was a very surprising result; Smale’s thesis advisor,
Raoul Bott, reportedly told him that the result couldn’t be true.

Remark 1.4. Neat as it is to be able to easily construct formal immersions, the case of parallelizable
manifolds (such as S1, S3, S7) shows that the conditions of the theorem are necessary, because
sometimes it is too easy to construct formal immersions. E.g., Imm(Mn,Rn) is the empty set if M
is compact without boundary, but there always exists a formal immersion TMn → TRn if TM is a
trivial bundle, which just maps M to a single point in Rn.

We now have an instance in which solutions (immersions) are equivalent to formal solutions (for-
mal immersions), which one might have otherwise supposed would never be true in any interesting
situations. This begs the question: What is the general principle at work here, and when does it
hold?

2. The h-principle for differential relations

Let M be a smooth n-manifold. Let E be a smooth fibration over M , E → M . The space of
k-jets of the bundle E, JkE, is the sections of a bundle E(k) over M whose fiber JkE|x at a point
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x ∈M is the space of smooth sections of E in a neighborhood of x modulo the equivalence relation
that f ∼ g if they agree to order k in a neighborhood of x (i.e., if the first k derivatives of f − g
vanish when restricted to some arbitrarily small Rn ∼= U ⊂ M containing x). Note that there is a
canonical map j(k) : Γ(E)→ JkE from sections of E to k-jets of sections of E.

Definition 2.1. A differential relation R of order k is a subspace of E(k). The space of (holonomic)
solutions SolR(M) of R is the image Γ(E) in Γ(R), i.e., the sections of R which are k-jets of actual
section of E.

Definition 2.2. A differential relation R adheres to the h-principle if the space of (holonomic)
solutions is weakly homotopy equivalent to the space of formal solutions. In other words, the map
SolR(M)→ Γ(R) induces an isomorphism on homotopy groups (for every choice of basepoint).

Remark 2.3. Ignore this on first reading: It is also useful to have some weaker notions of the
h-principle. Say that R adheres to the j-parametric h-principle if the map SolR(M) → Γ(R) is
j-connective. Caution: Many authors use “the h-principle” to refer to what we shall refer to as the
0-parametric h-principle. Also, say that

Gromov developed three basic techniques for establishing the h-principle: convex integration,
removal of singularities, and microflexible sheaves.

Using the third technique, of sheaves, Gromov gave the following simple criterion for establishing
the h-principle for Diff(M)-invariant differential relations on open manifolds. First, assume that
there is an action of Diff(M) on E compatible with the action on M . R is Diff(M)-invariant if R
is mapped to itself under the corresponding action on E(k). Say that R is open if it is an open
subspace of E(k).

Theorem 2.4 (Gromov). Let R be an open, Diff(M)-invariant, differential relation on M . If M
is an open n-manifold, then R satisfies the h-principle.

Example 2.5. Consider the a trivial product bundle E = M ×N over M , so sections of E are the
same as maps from M to N . The bundle of 1-jets of maps, E(1), has a subspace R consisting
of bundle maps which are injective on each individual tangent space. A section of R is then the
same thing as a formal immersion. In this situation, Gromov’s theorem thus specializes to Hirsch’s
theorem when M is open.

3. The h-principle for presheaves of spaces

Those inclined to greater generalization, topologists less analytically inclined, or those who have
an example of interest that doesn’t quite fit in the rubric of differential relations, might ask whether
a version of this h-principle exists without the trappings of analysis at all. One might imagine
doing this by just remembering the structure of solutions to a differential relation R possess, but
forgetting about the differential relation itself.

The space of sections of a diffeomorphism invariant differential relation is a particular type of
presheaf:

Definition 3.1. UM is the category of open subsets of M , with morphisms given by inclusions.
A presheaf (of spaces) F on M is a contravariant functor from UM to the category of topological
spaces, F ∈ P(M) = Fun(Uop

M ,Spaces). F is isotopy invariant if for every isotopy equivalence
i : U ↪→ V in UM , then the map F(V ) → F(U) is a homotopy equivalence. F is equivariant given
a compatible collection of actions of Diff(U) on F(U) for each U in M .

Recall that f : U → V is an isotopy equivalence if there exists an embedding g : V → U such
that fg and gf are isotopic to idV and idU . By the isotopy extension theorem, this is equivalent to
the existence of a diffeomorphism f of M such that restriction of f to U defines a diffeomorphism
f : U ∼= V . Thus, Diff(M)-equivariance implies isotopy invariance.

Observe that holonomic solutions to a diffeomorphism invariant differential relation R always
form a isotopy invariant presheaf. The value of SolR(U) := Image(ΓU (E)) ∩ ΓU (R), the space of
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holonomic solutions of the restriction of R to U . Since solutions restrict, we obtain a presheaf
structure on SolR. The isotopy extension theorem implies that if R is diffeomorphism invariant,
then SolR is isotopy invariant.

In order to formulate the h-principle for sheaves, we need some analogue of the formal solutions
of a differential relation. A hint is given by the fact that formal solutions to R, if R is Diff(M)-
invariant, are sections of a bundle on M . Given an equivariant presheaf F on M , we can construct
a bundle on M by taking the diagonal quotient Vn(TM)×GLn F(Rn), where Vn(TM) is the frame
bundle of M and F(Rn) is the value of F on an arbitrary open Rn → M , both of which are acted
on by GLn.

Definition 3.2. Given an equivariant presheaf F on M , the linear approximation F ′ to F is the
sheaf of the sections of the fiber bundle Vn(TM)×GLn F(Rn), F ′(U) := Γ(Vn(TU)×GLn F(Rn)).

One can construct natural map of presheaves F → F ′, called the scanning map after Segal [16].

Definition 3.3. An equivariant presheaf F on M satisfies the h-principle if the scanning map
F → F ′ is a weak equivalence, i.e., if F(U) → F ′(U) is a weak equivalence of spaces for every
U ⊂M .

Remark 3.4. The presheaf satisfying the h-principle is a type of homotopy sheaf condition. For
instance, If F is a sheaf of spaces, and every restriction map F(V ) → F(U) is a fibration, then F
adheres to the h-principle. (Those familiar with model categories may recognize this as close to the
fibrancy condition for the Joyal or Jardine model structure on presheaves of spaces.)

The following is list of interesting presheaves, most, but not all, of which adhere to the h-
principle.1 (I call them presheaves, but most them also satisfy the usual sheaf condition.)

• Functions: Let O be the presheaf of functions on a manifold M . O satisfies the h-principle.
• Holomorphic functions: Let Ohol be the presheaf of holomorphic functions on a complex

manifold M . Then Ohol adheres to the h-principle if M is Stein, but Ohol fails to satisfy
the h-principle if M is compact.

• Vector bundles: Let Vectn be the presheaf of n-dimensional vector bundles on M . Then
Vectn satisfies the h-principle.

• Thom Transversality: Let N be a smooth manifold with a submanifold K ⊂ N . Let
MaptK(−, N) be the presheaf on M of maps to N that intersect K transversally. Thom’s
transversality theorem is equivalent to the statement that MaptK(−, N) satisfies the 0-
parametric (and C0-dense) h-principle.

• Configuration spaces: Let M be a compact manifold with nonempty boundary. Let C̃ be
the presheaf on M assigning to U the unordered configuration space of all points in U , with
the equivalence relation that two configurations agree if they agree minus the points on the
boundary, so C̃(M) = (

∐
i≥1 Confi(M))/ ∼, where r ∼ s if r∩ (M − ∂M) = s∩ (M − ∂M).

Then C̃ satisfies the h-principle, giving h-principle proofs of theorems of McDuff and Barratt-
Quillen-Priddy.

• Foliations: Let F be the presheaf of codimension k foliations on M . Then a theorem of
Haefliger implies that F adheres to the h-principle if M is open, and a theorem of Thurston
implies it for general M .

• Cobordisms: Let Cobd be the presheaf of cobordisms in M : Cobd(U) is the classifying
space of the category whose objects are d-dimensional submanifolds of U , and whose mor-
phisms are cobordisms in U × [0, 1]. Then Cobd satisifies the h-principle, which gives a
proof the Galatius-Madsen-Tilman-Weiss theorem on the homotopy type of the cobordism
category.

• Embeddings: Let EN be the presheaf of embeddings of subspaces of M into N , EN (U) =
Emb(U,N). For the case of M being the n-disk, then EN satisfies the h-principle. For

1Not a complete list.
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essentially all other M , EN does not obey the h-principle. (Note also that the EN cannot
be presented as the solutions to any differential relation R.)

• Submersions: Let SubmN be the presheaf of submersions of open subspaces of M onto N .
Phillips-Gromov submersion theory says that SubmN satisfies the h-principle if M is open.

• Smoothing theory: Let S be the presheaf of smooth structures on M . That is, for any
open subset U ⊂M , S(U) is the classifying space of the category of smooth manifolds with
a homeomorphism to U . Then the smoothing theory of Kirby-Siebenmann implies that S
satisfies the h-principle if the dimension of M is greater than 4. In contrast there is an
uncountable set of smooth structures on R4, and this implies that S does not obey the
h-principle if M has dimension 4.

• Isometries: For Mn a Riemannian manifold, Rq usual Euclidean space of dimension greater

than n, let IsomC1

Rq be the presheaf of isometric C1-immersions of open subspaces of M into

Rq. The Nash-Kuiper theorem is roughly equivalent to the statement that IsomC1

Rq satisfies
the h-principle. (This implies, in particular, Nash’s embedding theorem, the amazing result
that every Riemannian manifold M isometrically embeds into Euclidean space.)

• Symplectic forms: Let M be an open almost complex manifold, and let S be the presheaf
of compatible symplectic structures on M . Then S adheres to the h-principle, one of Gro-
mov’s first applications of the h-principle in symplectic geometry, providing plentiful sym-
plectic structures on open manifolds.

• Curvature: Let Secpos and Secneg be the presheaves on M of Riemannian metrics of
positive and negative sectional curvature, respectively. Then both Secpos and Secneg satisfy
the h-principle.

Understanding some of these examples will be one of our main points of focus in this course.

4. Calculus of functors

What about when the h-principle fails, such as in the case of embeddings? Can the methods of
linear approximation be extended to address this situation? One such methodology is provided by
Goodwillie-Weiss’s calculus of presheaves on manifolds.
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