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1. A generalization of McDuff’s theorem

We have now proved that if either X is a connected topological space, or M is a compact open
manifold, there is a weak homotopy equivalence between ConfX(M) and the sections Γ(T∞M ∧M X).
As with many topological results, there is a relative version of this theorem.

Theorem 1.1. Suppose that M0 ⊂M and that M is contained in the interior of some manifold W .
Assume that X is connected or that the pair (M,M0) is connected. Then there is a weak homotopy
equivalence

ConfX(M,M0)→ Γ(W −M0,W −M ;T∞W ∧W X).

This theorem specializes to our previous results in the following way. Suppose that M is compact
and open. Let W = M ∪ ∂M × [0, 1] and M0 = ∂M . The right hand side above becomes

Γ(W − ∂M,W −M ;T∞W ∧W X).

These sections are precisely those that vanish over the half open collar of ∂M , which is the same as
Γ(M,∂M ;T∞M ∧M X).

Now consider the case when M is non-compact and without boundary. For simplicity, assume
that M is the interior of M , for some M compact with boundary. We apply the theorem with
W = M and M0 = ∅. Re-writing the equivalence we obtain

ConfX(M, ∅)→ Γ(M,∂M ;T∞
M
∧M X).

The right hand side is the compactly supported sections, Γc(T
∞
M ∧M X), which is again McDuff’s

theorem.
We will not give a proof of this result, since it is essentially the same as the proof of the non-

relative statement. It uses induction on a handle decomposition of W . One checks that every time
we add a handle U → U + ϕ, the induced map on the configuration spaces is a quasi-fibration.

Remark 1.2. The map ConfX(M)→ Γ is interesting even if it is not a homotopy equivalence. It is
closely related to the map BΣ∞ → Ω∞Σ∞S0 = colimn ΩnSn. Barratt, Priddy and Quillen proved
that this map is a homology equivalence, but not a homotopy equivalence.

2. Flexibility revisited

Recall that Mfldn is the category of compact n-manifolds with morphisms the smooth embed-
dings. We saw that certain sheaves on Mfldn can be approximated as sections of bundles. Recall
the following definition.

Definition 2.1. A sheaf F is flexible if the map F(V ) → F(U) is a Serre fibration for every

embedding of compact manifolds U ↪→ V . Shvflex(Mfldn) is the subcategory of Shv(Mfldn) consisting
of flexible sheaves.

The following underlies the importance of these properties, and is certainly implicit in Gromov’s
thinking.
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Theorem 2.2. There is a natural homotopy equivalences of topological categories

Spacesfib
/BOn

Γ // Shvflex(Mfldn)

Shvflex(Mfldn)
ev(Dn)

// Spacesfib
/BOn

where Spacesfib
/BOn

is the topological category of spaces B over BOn for which the map B → BOn is

a Serre fibration. The value of the sheaf ΓB on a manifold M is the space of sections ΓM (τ−1B),
where τ : M → BOn is the map classifying the tangent bundle of M .The homotopy inverse functor
Shvflex(Mfldn) → Spacesfib

/BOn
assigns to a sheaf F the homotopy quotient EOn ×On

F(Dn) '
F(Dn)hOn

.

Proof. Induction on a handle decomposition of M .
�

In other words, flexible sheaves on manifolds adhere to the h-principle.

Remark 2.3. There is a similar statement for a fixed manifold M , that “Shvflex(M)” is equivalent

to Spacesfib
/M . However, it is a little cumbersome to define the diffeomorphism actions to define

Shvflex(M). Perhaps the best way is to take the category of manifolds over M , with isotopies of
embeddings as morphisms. However, composition in this category is no longer strictly associative,
but governed by the E1 operad. So we will skirt this issue entirely, at least in this class.

3. The h-principle for microflexible sheaves

Recall from the proof of the Hirsch-Smale theorem that while it was very difficult to show that
the restriction map Imm(Dn, N)→ Imm(Sk−1× [0, 1]×Dn−k, N) is a Serre fibration (the technical
crux of the proof), it was quite easy to show an weaker result, that the map is a Serre microfibration.
That is:

Definition 3.1. A map E → B is a Serre microfibration if for any CW complex K and any
commutative diagram

{0} ×K

��

// E

��
[0, 1]×K // B

there then exists a sufficiently small positive number ε and for which there exists a lift:

{0} ×K

xxqqqqqqqqqq
// E

��
[0, ε]×K //

44iiiiiiiiiiiiiiiiiiiii
[0, 1]×K // B

Example 3.2. If U ⊂ V is an open subspace, then the inclusion map U ↪→ V is a Serre microfibration.
However, it is clearly not a Serre fibration unless it is a homeomorphism, U ∼= V .

Example 3.3. The restriction map Imm(Dn, Nn) → Imm(Sn−1, Nn) is a Serre microfibration, but
it is not a Serre fibration.

Definition 3.4. A sheaf F of topological spaces on M is microflexible if the restriction map
F(K ′)→ F(K) is a Serre microfibration for every closed inclusion of compact subspaces K → K ′.
It is flexible if the maps F(K ′)→ F(K) are all Serre fibrations.

The condition of being microflexible is weaker, but much easier to check. Some of the importance
of the notion of flexibility was reflected in the following result, see Lecture 4.
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Proposition 3.5. If a map of flexible sheaves F → F ′ on M is a weak homotopy equivalence
F(U) → F ′(U) for every U ⊂ M for which U is contractible, then F(M) → F ′(M) is a weak
homotopy equivalence.

Theorem 3.6 (Gromov). Diffeomorphism invariant microflexible sheaves on open manifolds are
equivalent to flexible sheaves, and consequently adhere to the h-principle. Equivalently, the inclusion

Shvflex(Mfldopen
n )→ Shvmflex(Mfldopen

n )

is a homotopy equivalence.

By popular demand, we will not prove this result.
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