THE H-PRINCIPLE, LECTURE 23: GOODWILLIE-WEISS CALCULUS

J. FRANCIS, NOTES BY I. BOBKOVA

Let us start with an example:

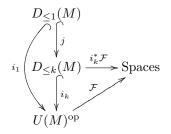
 $Claim \ 0.1. \ {\rm The \ functor \ } {\rm Mfld}_n^{\rm op} \xrightarrow{{\rm Map}((-)^k,X)} {\rm Spaces \ is \ polynomial \ of \ degree \ k}.$

Proof. Recall that this means that for any k + 1-cube of spaces $A_i \subset M \mid 1 \leq i \leq k+1$, (where A_i are pairwise disjoint, open subspaces which are the interiors of codim 1 submanifolds) the map $\mathcal{F}(M) \to \operatorname{holim}_{S \subset k+1}(\mathcal{F}(M - \cup_S A_i))$ is a weak homotopy equivalence. So we just have to check that $M^k \leftarrow \operatorname{colim}(M - \cup A_i)^k$ is a weak homotopy equivalence (exercise).

This functor is a good example of how this theory behaves. We will come back to it later.

Proposition 0.2. If there exists a functor $\operatorname{Mfld}_n^{\operatorname{op}} \to \operatorname{Spaces}$ such that $\mathcal{F}(\coprod D_i^n) \to \prod \mathcal{F}(D_i^n)$ is a weak homotopy equivalence, then $T_1\mathcal{F} \simeq T_k\mathcal{F}$ for all $k \ge 1$.

Proof. Consider the commutative diagram:



 $T_k \mathcal{F} = i_{k*} i_k^* \mathcal{F}$, where i_{1*} is the right Kan extension. Notice that $i_k^* \mathcal{F} = j_* i_1^* \mathcal{F}$ because they both agree on the disks and preserve products. Then we get:

$$T_k\mathcal{F} = i_{k*}i_k^*\mathcal{F} = i_{k*}j_*i_1^*\mathcal{F} = i_{1*}i_1^*\mathcal{F} = T_1\mathcal{F}$$

So, for many examples that we considered, Goodwillie-Weiss calculus doesn't really help us. For example:

- (1) $T_k \operatorname{Imm}_N = T_1 \operatorname{Imm}_N = \operatorname{Imm}^f$
- (2) $T_k \operatorname{Subm}_N = T_1 \operatorname{Subm}_N = \operatorname{Subm}_N^f$. Note, that we still do not understand $\operatorname{Subm}(M, N)$ when M is closed.
- (3) $\mathcal{F} = \operatorname{Map}((-)^k, X)$. In this case $T_{k-1}\mathcal{F} = \operatorname{Map}(\triangle_{\leq k-1}(-)^k, X)$, so $T_{k-1}\operatorname{Map}(M^k, N) = \operatorname{Map}(\triangle_{\leq k-1}(M)^k, X)$.

Definition 0.3. The functor \mathcal{F} is called k-homogeneous if it is a polynomial of degree less than or equal to k and $T_{k-1}\mathcal{F} \simeq *$.

By analogy with the Postnikov tower methods we should now study the fibers of the maps $T_k \mathcal{F} \to T_{k-1} \mathcal{F}$.

Date: Lecture March 7, 2011. Not yet edited.

Definition 0.4. Given a fixed point in $\mathcal{F}(M)$ define $L_k \mathcal{F}$ as the functor

$$U(M)^{\mathrm{op}} \longrightarrow \mathrm{Spaces}$$

 $U \longmapsto L_k \mathcal{F}(U)$

which assigns to every cover U the value of the homotopy pullback

$$T_k \mathcal{F}(U) \longleftarrow L_k \mathcal{F}(U)$$

$$\downarrow \qquad \qquad \downarrow$$

$$T_{k-1} \mathcal{F}(U) \longleftarrow *$$

Lemma 0.5. $L_k \mathcal{F}$ is homogeneous polynomial of degree k.

Proof. Let us apply T_{k-1} to the square that defines $L_k \mathcal{F}$. Then in the homotopy pullback diagram

the left arrow is homotopy equivalence, so the right arrow has to be homotopy equivalence as well and $T_{k-1}L_k\mathcal{F} \simeq *$

Example 0.6. Let us try to understand the homogeneous layers of the functor $\mathcal{F} = \operatorname{Map}((-)^k, X)$.

Applying the functor Map(-, X) to the above diagram we get:

And, by the universal property of pullback $\operatorname{Map}_{c}(\operatorname{Conf}_{k}(M), X) \simeq L_{k}\mathcal{F}(M)$.

This observation leads us to the following theorem which will be proved in the next lecture:

Theorem 0.7. Any homogeneous of degree k functor is equivalent to $\Gamma_c(C_k(M), Z)$, where $C_k(M) = \operatorname{Conf}_k(M)_{\Sigma_k}$ and $Z \to C_k(M)$ is a Serre fibration with a section.

References

- [1] Hirsch, Morris. Immersions of manifolds. Transactions A.M.S. 93 (1959), 242-276.
- [2] Phillips, Anthony. Submersions of open manifolds. Topology 6 1967 171206.
- [3] Poénaru, Valentin. Regular homotopy and isotopy. Mimeographed notes. Harvard University, Cambridge, Mass., 1964.
- [4] Smale, Stephen. The classification of immersions of spheres in Euclidean spaces. Ann. Math. 69 (1959), 327-344.