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1. The questions at hand

The basic problem in immersion theory is the following.

Question 1.1. Classify immersions of M in N up to homotopy.

Here, a homotopy between immersions f0 ' f1 means a smooth map F : M × [0, 1] → N such
that F (−, t) is an immersion for every t ∈ [0, 1] with f0 = F (−, 0) and f1 = F (−, 1).

A more refined question, which we’ll pursue in the next few lectures is

Question 1.2. What is the homotopy type of Imm(M,N), the space of immersions?

Notice that the basic question is a reduction of this refined question since

π0 Imm(M,N) = {immersions}/ ∼ of homotopy.

Our basic approach to the refined question is to study the map

Imm(M,N) ↪→ Immf(M,N),

where the “formal immersions” Immf(M,N) consists of the space of smooth bundle maps F : TM →
TN that are injective on the fibers. We then ask

Question 1.3. What is the homotopy type of this map? When is it a homotopy equivalence?

We ask these questions because formal immersions are much easier to study. Observe that there
is the forgetful map Immf(M,N) → Mapsm(M,N), sending a bundle map F to the map f on the
base space. This forgetful map is a fibration, and it’s easy to see that the fiber over a smooth map
f : M → N is precisely Hominj

Vect(M)(TM, f∗TN), the space of injective bundle maps from TM to

the pullback bundle f∗TN . The base space Mapsm(M,N) is a comparatively easy space to study
since it is homotopy equivalent to all continuous maps Map(M,N), which is well-studied in topology.
(For example, if N is contractible, we know Map(M,N) ' pt.) And we discussed earlier how the

fiber Hominj
Vect(M)(TM, f∗TN) is a pretty nice space and can be studied using bundle theory. So the

upshot is that if the space of immersions is homotopy equivalent to the space of formal immersions,
our life gets easier because formal immersions are easier to attack with homotopy theory.

Example 1.4. For N = Rn, we have Map(M,N) ' pt, so there is an equivalence Immf(M,N) '
Hominj

Vect(M)(TM,Rn), which is attackable with the theory of characteristic classes.

Example 1.5. Suppose as well that M has dimension n and is parallelizable, so that we can pick a
bundle isomorphism TM ∼= Rn. Then Hominj

Vect(M)(TM,Rn) ∼= Map(M,GLnR). For certain M , this

is a well-studied space. For example, if M = S3, we see that π0 Map(S3,GL3R) = π0GL3×π3GL3 =
Z/2 × Z. However, there are no immersions of S3 into R3,1 so we see that formal and actual
immersions are not homotopy equivalent in this case.
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1In general, there are no immersions of a compact, closed n-manifold into Rn. In this case, the argument goes as

follows. Consider U = S3 − pt. Any immersion f restricted to U is just an embedding of U into R3, so its image
f(U) is an open set in R3. The boundary of this open f(U) is either empty (if it’s all of R3) or more than a point,

so we can’t extend f to all of S3.
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2. Working with sheaves

Recall the notion of a presheaf of spaces, which we introduced last time. A presheaf on M is
a functor F : UopM → Spaces, where UM is the category whose objects are the open subsets of M
and whose morphisms are given by inclusion maps. Notice that Imm(−, N) and Immf(−, N) define
presheaves on M . In fact, their global sections are determined in a local-to-global fashion, so in fact
they are sheaves. We will use the following definition of a sheaf.

Definition 2.1. A (classical) sheaf of spaces F on M is a presheaf such that for any finite cover
{Uα} of an open set U , the natural map

F(U) −→ lim

∏
α

F(Uα) ⇒
∏
α,β

F(Uα ∩ Uβ)


is an isomorphism.

Let Imm(−, N) and Immf(−, N) be the presheaves of bounded immersions and formal immersions
of open submanifolds of M into N (that is, immersions g : U → N for which the image g(U) is
contained in a compact subset of N). The property of a map being an immersion is local, as is the
structure of a formal immersion, so they form sheaves on M . This fact suggests that maybe we can
exploit the simple description of these sheaves on any open set diffeomorphic to Rm.

Proposition 2.2. The inclusion Imm(Dm, N) ↪→ Immf(Dm, N) is a weak homotopy equivalence.

Proof (Just a sketch . . . ) Let Vm(TN) denote the space of m-frames in the tangent bundle TN over
N . It is the total space of a bundle over N whose fiber is the Stiefel space Vm(Rn), with n = dimN .
There is a map d0 : Imm(Dm, N) → Vm(TN) sending an immersion g to its tangent map at the
origin d0g : T0M → (g∗TN)0, which picks out an m-frame in Tg(0)N . Likewise, there is a map

df0 : Immf(Dm, N) → Vm(TN) sending a bundle map F to its behavior at the origin. Clearly, d0
agrees with df0 following the inclusion Imm ↪→ Immf .

We want to show that both d0 and df0 are weak homotopy equivalences and hence the inclusion
must be as well.

First, note that Immf(Dm, N) ∼= Map(Rm, Vm(TN)) ' Map(pt, Vm(TN)) = Vm(TN), and df0 is
compatible with this weak homotopy equivalence.

The case of d0 is a little more tricky, so we’ll explain why it’s plausible. As we discussed in
the first class, there is a section exp for d0, which essentially constructs an immersion from an
m-frame by using an exponential map on the tangent space Tf(0)N to extend the linear map to an
immersion. There is an analogous but simpler case. Consider the map ev0 : Map(Dm, N) → N
sending a continuous map to its value at the origin. There is a section c sending a point n ∈ N to
the constant map to n. This is clearly a homotopy equivalence. Now observe that d0 maps to ev0
by forgetting the differential and the m-frame information. �

Question 2.3. Since the map of sheaves Imm(−, N) ↪→ Immf(−, N) is a weak homotopy equivalence
on any open set diffeomorphic to Rm, does this imply that the global sections are also homotopy
equivalent? If not, what can we deduce from this local fact?

Earlier we showed that the answer to the first question is No, although it’s an attractive thought.
We need to explore how homotopy theory interacts with sheaf theory to get a handle on the questions
above.

Remark 2.4. A good model to bear in mind while we discuss sheaves of spaces is the more familiar
case of sheaves of chain complexes. Compare the three sheaves R→ Ω∗dR → C∗Sing(−,R). It’s familiar

that all three agree (up to chain homotopy) on disks (the analogue of the proposition above). But
they don’t agree on global sections for interesting manifolds: the constant sheaf only counts the
number of connected components, whereas de Rham and singular cohomology detect a lot more of
the topology. De Rham’s theorem tells us that de Rham and singular cohomology coincide, and his
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theorem follows from the fact that both functors behave nicely under restriction. Singular cochains
are flabby (so restriction is surjective), and differential forms are soft (so that restriction of values
on closed sets is surjective). We need to find the analogue of flabby/soft for sheaves of spaces.

Although we know that actual and formal immersions don’t always agree, let’s discover what goes
wrong when we try to prove they do agree. This will help us focus elucidate the crucial features of
the situation. We will try to prove they agree by induction on a cover of disks on M .

Pick a cover of M by disks: M =
⋃N
i=0D

m
i (we assume M is compact), and so that the intersec-

tions Mj ∩Dm
j+1, where Mj =

⋃j
i=0D

m
i , are all products of a sphere with a disk.

Now assume, as an induction hypothesis, that Imm(Mj , N) ' Immf(Mj , N), and imagine that
we have also shown the equivalence Imm(Mj ∩Dm

j+1, N) ' Immf(Mj ∩Dm
j+1, N).

We then have a map of pullback squares from

Imm(Mj+1, N) //

��

Imm(Dm
j+1, N)

��
Imm(Mj , N) // Imm(Mj ∩Dm

j+1, N)

to

Immf(Mj+1, N) //

��

Immf(Dm
j+1, N)

��
Immf(Mj , N) // Immf(Mj ∩Dm

j+1, N)

by functoriality. By our hypotheses, this map of squares is a weak homotopy equivalence for the
entries other than (possibly) the upper left hand corner. We would like to deduce that the map
Imm(Mj+1, N) ↪→ Immf(Mj+1, N) is also a weak homotopy equivalence. This would give us the
induction step.

In the category of spaces, however, we can’t make that conclusion. For example, suppose we have
a map f : X → Y . Pick a point {0} ∈ Y and let F = f−1{0} be the fiber. Pick a path extending
the point [0, 1]→ Y and let F ′ = f−1([0, 1]) be its fiber. We get a map of diagrams

F

��

// X

��
{0} // Y

=⇒ F ′

��

// X

��
[0, 1] // Y

and the maps from {0} → [0, 1], X → X, and Y → Y are homotopy equivalences. But this need
not mean the map F → F ′ is a weak homotopy equivalence. We need X → Y to be a fibration
to ensure this! (For instance, for X → Y is a fiber bundle, F ′ is homeomorphic to the a product
F × [0, 1].)

Definition 2.5. A Serre fibration is map f : E → B such that for any commuting square (with X
a CW complex)

X

��

// E

��
X × [0, 1] // B

there is a lift X × [0, 1]→ E.

This suggests we introduce an analogue of “flabbiness” for sheaves of spaces.

Definition 2.6 ([1]). A sheaf is flexible if every restriction map F(V ) → F(U), for any U ⊂ V a
pair of compact subspaces of M , is a Serre fibration.
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The following proposition, which we will discuss later, shows that this is an extremely suitable
notion for considering when a map of sheaves such as Imm(−, N)→ Immf(−N) is a weak homotopy
equivalence.

Proposition 2.7. Let F → F ′ be a map of flexible sheaves on M . If F(U)
∼−→ F ′(U) is a weak

homotopy equivalence for every contractible U ⊂ M , then F(M) → F ′(M) is a weak homotopy
equivalence.
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