
THE H-PRINCIPLE, LECTURE 4: FLEXIBLE SHEAVES

J. FRANCIS

1. Flexible sheaves

We might say that a (pre)sheaf F on M is very flexible if all the restriction maps F(V )→ F(U)
are Serre fibrations, for every inclusion for every inclusion of opens U → V . Unfortunately, even
very well-behaved sheaves, as the sheaf of functions Map(−,R), typically fail to satsify this very
strong condition: For instance, for an open subspace of a disk U ⊂ Dn, the restriction Map(DnR)→
Map(U,R) is never a Serre fibration. We can ask for a slightly weaker condition: Recall from the
last lecture that a (pre)sheaf of spaces F is flexible if all restriction maps F(L)→ F(K) are Serre
fibrations for any inclusion of compact subspaces K ⊂ L. Some of the importance of this notion is
due to the following key observation (which also holds for very flexible sheaves):

Proposition 1.1. Let F → F ′ be a map of flexible sheaves on a compact n-manifold M , possibly
with boundary. If F(U) → F ′(U) is a weak homotopy equivalence for every U ⊂ M which is
contractible, U ' pt, then F(M)→ F ′(M) is a weak homotopy equivalence.

Proof. Since M is compact and smooth, we can choose a finite cover of a M by n-disks Di, 1 ≤ i ≤ k,
such that the intersection of Dj+1 with Mj :=

⋃
i≤j Di is a thickened sphere, Mj∩Dj+1

∼= Sl×Dn−l.

(Such a decomposition of M is essentially provided by a handlebody decomposition, and can be
obtained from any Morse function on M .)

First we prove that F(Sl × Dn−l) → F ′(Sl × Dn−l) is a weak homotopy equivalence for any
submanifold Sl × Dn−l ⊂ M . We prove this sequentially on increasing l. For the initial case of
l = 0, the combination of the sheaf property and the fact that weak homotopy equivalences are
preserved by taking products implies the chain of equivalences

F(S0 ×Dn) ∼= F({−1} ×Dn)×F({1} ×Dn) ' F ′({−1} ×Dn)×F ′({1} ×Dn) ∼= F ′(S0 ×Dn).

Now, assuming the equivalence of F and F ′ on all submanifolds of M diffeomorphic to Sl ×Dn−l

we show the equivalence on submanifolds diffeomorphic to Sl+1 ×Dn−l−1. Choose a submanifold
Sl+1 × Dn−l−1 ⊂ M , and consider a decomposition of the (l + 1)-sphere as a union of Euclidean
spaces over a neighborhood of the equator, Sl+1 ∼= Dl+1 ∪Sk×D Dl+1. Applying F → F ′ to these
pushout squares of submanifolds, we obtain a map of pullback squares of spaces:

F(Sl+1 ×Dn−l−1)

��

// F(Dl+1 ×Dn−l−1)

��
F(Dl+1 ×Dn−l−1) // F(Sl ×Dn−l)

=⇒ F ′(Sl+1 ×Dn−l−1)

��

// F ′(Dl+1 ×Dn−l−1)

��
F ′(Dl+1 ×Dn−l−1) // F ′(Sl ×Dn−l)

By the original assumption together with the inductive assumption, this map is a weak homotopy
equivalence for all three of the subspaces of Sl+1 × Dn−l−1. Since the diagram maps are Serre
fibrations, we obtain that the map F(Sl+1 × Dn−l−1) → F ′(Sl+1 × Dn−l−1) is a weak homotopy
equivalence.

We now prove the proposition by induction on the submanifolds Mj . Consider the inductive step,
where we assume the proposition for Mj and then infer it for Mj+1. Expressing Mj+1 as a union
of Mj and Dj+1, we then have a map of pullback squares
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F(Mj+1)

��

// F(Dj+1)

��
F(Mj) // F(Mj ∩Dj+1)

=⇒ F ′(Mj+1)

��

// F ′(Dj+1)

��
F ′(Mj) // F ′(Mj ∩Dj+1)

Since Mj∩Dj+1 is diffeomorphic to a thickened sphere, the map F(Mj∩Dj+1)→ F ′(Mj∩Dj+1)
is a weak homotopy equivalence, using the first part of the proof. Thus, the maps on the three
subspaces of Mj+1 are all weak homotopy equivalences, and since the diagram maps are fibrations,
the induced map F(Mj+1)→ F ′(Mj+1) is a weak homotopy equivalence. Hence, the map F(M)→
F ′(M) is a weak homotopy equivalence.

�

Question 1.2. This proposition should absolutely be valid for topological manifolds, but smoothness
is unfortunately used in the proof because of the use of Morse theory. This shortcoming is funda-
mental: For instance, nonsmoothable topological 4-manifolds don’t have handlebody structures.
Can you find a proof that works for topological manifolds?

The following is an important observation: Note that in the proof of the proposition, we didn’t
truly use that the maps F(L)→ F(K) were Serre fibrations for all inclusions K ⊂ L: The argument
goes through exactly as well only using the particular case when L is diffeomorphic to a disk Dn,
K is a thickened sphere, and the inclusion is a standard embedding Sl ×Dn−l ⊂ Dn.

2. Fibrations of mapping spaces

The preceding proposition clearly shows that it’s critical to understand when restriction induces
a fibration on various mapping spaces. Before moving on to immersions and formal immersions, it’s
natural to first fit the more basic study of mapping spaces such as Map(M,N) and Mapsm(M,N),
into the previous rubric of flexible sheaves.

Recall that the space of continuous maps Map(M,N) has the compact-open open topology, a
subbasis of which is formed by those subsets S(K,U) = {f : M → N |f(K) ⊂ U}, K a compact
subspace of M , U an open subspace of N . If M is compact, then this topology is the same as the
topology of uniform convergence, so that a sequence of maps fn converges to f if the supremum of
d(f(x), fn(x)) tends to zero, for any choice of a metric d on N . (If M is not compact, you could
instead consider the topology of uniform convergence: This is horrific from the point of view of
homotopy types.) The compact-open topology on Map(M,N) is okay if M and N are compactly
generated spaces (see [?]), and it’s even better if M is compact. We have the following basic result
from algebraic topology

Lemma 2.1. Take X0, X, Y be compactly generated spaces, and let X0 ↪→ X be a cofibration (or
Serre cofibration, respectively). Then the restriction map Map(X,Y ) → Map(X0, Y ) is a fibration
(Serre fibration, respectively).

Proof. For any K, we want to solve the lifting problem

K

��

// Map(X,Y )

��
K × [0, 1]

77pppppp
// Map(X0, Y )

This lifting problem above is equivalent to the lifting problem
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K ×X0

��

// Map([0, 1], Y )

��
K ×X

77oooooo
// Y

Now the product K × X0 → K × X is a cofibration. (This can been seen using the explicit
condition for a cofibration, that A → A′ is a cofibration if and only if A′ × [0, 1] retracts onto the
subspace A× [0, 1]∪A×{0}A′×{0}.) And the restriction map Map([0, 1], Y )→ Y is a fibration and
a homotopy equivalence, so therefore the lift in this diagram exists.

�

Now, how about the case of smooth functions: when does restriction to a submanifold induce a
fibration of mapping spaces? We will prove the following:

Lemma 2.2. Let M0 be a codimension zero submanifold of M , a compact manifold with bound-
ary, and let N be a manifold without boundary. Then the restriction map Mapsm(M,N) →
Mapsm(M0, N) is a Serre fibration.

Remark 2.3. The precise condition is that there exists a smooth function f : M → R such that
M0 = f−1R≤0 and both M and ∂M are transverse to 0 ∈ R.

We will first prove this lemma in the special case of the inclusion M0 = L×[−1, 0]→ L×[−1, 1] =
M , where L is any smooth manifold, possibly with boundary, and N = R. We will use Emile Borel’s
Lemma:

Lemma 2.4. The map Mapsm(L × R,R) →
∏
i≥0 Mapsm(L,R), which assigns to F the collection

of partial derivatives

{
∂iF

∂ti
|t=0

}
, has a continuous inverse.

Sketch proof: Choose a bump function µ(t). To a collection {fi}, define the function
∑
i≥0

ti

i!µi(t)fi(x),

where fidget with the bump function µi(t) so as to ensure convergence of all derivatives. �

Now we turn to the special case above, that Mapsm(L× [−1, 1],R)→ Mapsm(L× [−1, 0],R) is a
Serre fibration.

Proof of special case. We are given a lifting problem:

K

��

f̃0 // Mapsm(L× [−1, 1],R)

��
K × [0, 1]

55lllllll

f
// Mapsm(L× [−1, 0],R)

where we try to construct a map K × [0, 1]→ Mapsm(L× [−1, 1],R) making the above diagram
commute. First, using Borel’s Lemma, let us construct a section of the right vertical map, s :
Mapsm(L × [−1, 0],R) → Mapsm(L × [−1, 1],R). By differentiating a smooth F : L × [−1, 0] → R

at t = 0, we obtain a collection of functions {∂
iF

∂ti
|t=0}, which using Borel’s Lemma we can use to

define a new function F̃ : L × R → R, all of whose derivatives agree with F at t = 0. Thus, we
can define the value of the section s(F ) : L × [−1, 1] → R to be F along L × [−1, 0] and F̃ along
L× [0, 1].
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Choosing a lift s ◦ f , we obtain that the bottom part of above the diagram commutes:

Mapsm(L× [−1, 1],R)

��
K × [0, 1]

s◦f
55lllllllllllll

f
// Mapsm(L× [−1, 0],R)

However, s ◦ f probably doesn’t agree with f̃0 over K ×{0}. Using that Mapsm(L× [−1, 1],R) is
a topological vector space, we can fix the section by adding the difference between these two maps.
That is, define the lift as

f̃ = s ◦ f + [(f̃0 − s ◦ f |t=0) ◦ proj],

proj is the projection map K × [0, 1]→ K. It’s easy to see this is still a lift of f and agrees with f̃0
on K × {0}, which completes the proof of the lemma in this special case.

�

Now we deduce the general case, of restricting smooth maps into N along M0 ⊂ M , from
preceding special case.

Reduction of general case to the special case. Firstly, we can immediately see that the case of N =
R implies the case of general Euclidean spaces, N = Rn, since we have

Mapsm(M,Rn) ∼=
∏
n

Mapsm(M,R)

and a product of Serre fibrations remains a Serre fibration (since a product of lifts remains a lift).
Secondly, we reduce the case of general N to that of Euclidean space. Any manifold N admits an

embedding η : N ↪→ Rk. Let Eη denote the normal bundle of the inclusion, the cokernel of the map
dη : TN ↪→ η∗TRk . By the tubular neighborhood theorem, the inclusion η factors as the inclusion
of the zero section z : N → Eη followed by an open embedding η̃ : Eη → Rk, η = η̃ ◦ z. Now, by
assumption we can solve the problem of lifting the map f : K × [0, 1]→ Mapsm(M0, N) below after
we have embedded N in Rk:

K

��

f̃0 // Mapsm(M,N)

��

Mapsm(M,Eη)
πoo η̃ // Mapsm(M,Rk)

��
K × [0, 1]

η̃f

11dddddddddddddddddddddd
f

// Mapsm(M0, N)
η

// Mapsm(M0,Rk)

That is, a lift η̃f exists, adjoint to a map M ×K × [0, 1] → Rk that is smooth for each choice of
(k, t) ∈ K × [0, 1]. However, this map may not factor through Eη ⊂ Rk. We fix this as follows, by
scaling the lift along so as to bring it within Eη:

Choose a smooth function ε : M → (0, 1], where ε(x) = 1 for all x ∈ M0, and such that

for each x ∈ M , the image of the map η̃f : {x} × K × [0, ε(x)] lies in Eη. Finally, for each
x ∈ M choose a diffeomorphism φx : [0, 1] → [0, ε(x)] varying continuously in M , and such that
φx : [0, 1] → [0, ε(x) = 1] is the identity map for x ∈ M0. Now the composite of restriction with

scaling defines, for each x ∈ M , a map η̃f ◦ φx : {x} ×K × [0, 1] → Eη ⊂ Rk, whose image lies in

Eη. These assemble to define a map η̃f ◦ φ : M ×K × [0, 1] → Eη, and, because all choices were

made to vary smoothly, this is adjoint to a map η̃f ◦ φ : K × [0, 1] → Mapsm(M,Eη). Now, define

the lift f̃ to be composite of the modified lift η̃f ◦ φ with the projection map π : Eη → N , which
clearly defines a lift of f .

Lastly, we reduce the general case of a codimension zero submanifold M0 ⊂M to the case of the
inclusion L × [−1, 0] ⊂ L × [−1, 1]. This has two steps. First, we can delete any subspace of the
interior of M0 without having an effect on the lifting problem. Thus, after deleting open complement
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of some ε neighborhood U of the boundary of M0, we have the situation M0 − U ∼= L × [−1, 0].
Second, we now assume the special case where the manifoldM1

∼= L×[−1, 1] is a closed neighborhood
of L × [−1, 0] ∼= M0 in M , M0 ⊂ M1 ⊂ M . Now, given a lifting problem as above, we have the
following intermediate lift, as the result in the special case:

K
f̃0 //

��

Mapsm(M,N)

��
Mapsm(M1, N)

��
K × [0, 1]

g
77nnnnnn

f
// Mapsm(M0, N)

Now, we construct the desired lift f̃ . The idea is that outside of M1, f̃ will be constant in the t
direction, identically equal to f̃0. We will construct this by scaling g by choosing a smooth function
ψ : M → [0, 1] which is identically 1 on M0 and identically 0 on M −M1. Now define the smooth

map f̃(k, t) : M → N , for k ∈ K and t ∈ [0, 1], as

f̃(k, t)(x) :=

{
f̃0(k)(x) x ∈M −M1

g(k, ψ(x) · t)(x) x ∈M1

which is clearly a lift of f and agrees with f̃0. �
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