THE H-PRINCIPLE, LECTURE 4: FLEXIBLE SHEAVES

J. FRANCIS

1. Flexible sheaves

We might say that a (pre)sheaf \mathcal{F} on M is very flexible if all the restriction maps $\mathcal{F}(V) \to \mathcal{F}(U)$ are Serre fibrations, for every inclusion for every inclusion of opens $U \to V$. Unfortunately, even very well-behaved sheaves, as the sheaf of functions $\operatorname{Map}(-,\mathbb{R})$, typically fail to satisfy this very strong condition: For instance, for an open subspace of a disk $U \subset D^n$, the restriction $\operatorname{Map}(D^n\mathbb{R}) \to$ $\operatorname{Map}(U,\mathbb{R})$ is never a Serre fibration. We can ask for a slightly weaker condition: Recall from the last lecture that a (pre)sheaf of spaces \mathcal{F} is flexible if all restriction maps $\mathcal{F}(L) \to \mathcal{F}(K)$ are Serre fibrations for any inclusion of compact subspaces $K \subset L$. Some of the importance of this notion is due to the following key observation (which also holds for very flexible sheaves):

Proposition 1.1. Let $\mathcal{F} \to \mathcal{F}'$ be a map of flexible sheaves on a compact n-manifold M, possibly with boundary. If $\mathcal{F}(U) \to \mathcal{F}'(U)$ is a weak homotopy equivalence for every $U \subset M$ which is contractible, $U \simeq \text{pt}$, then $\mathcal{F}(M) \to \mathcal{F}'(M)$ is a weak homotopy equivalence.

Proof. Since M is compact and smooth, we can choose a finite cover of a M by n-disks D_i , $1 \le i \le k$, such that the intersection of D_{j+1} with $M_j := \bigcup_{i \le j} D_i$ is a thickened sphere, $M_j \cap D_{j+1} \cong S^l \times D^{n-l}$. (Such a decomposition of M is essentially provided by a handlebody decomposition, and can be obtained from any Morse function on M.)

First we prove that $\mathcal{F}(S^l \times D^{n-l}) \to \mathcal{F}'(S^l \times D^{n-l})$ is a weak homotopy equivalence for any submanifold $S^l \times D^{n-l} \subset M$. We prove this sequentially on increasing l. For the initial case of l = 0, the combination of the sheaf property and the fact that weak homotopy equivalences are preserved by taking products implies the chain of equivalences

$$\mathcal{F}(S^0 \times D^n) \cong \mathcal{F}(\{-1\} \times D^n) \times \mathcal{F}(\{1\} \times D^n) \simeq \mathcal{F}'(\{-1\} \times D^n) \times \mathcal{F}'(\{1\} \times D^n) \cong \mathcal{F}'(S^0 \times D^n).$$

Now, assuming the equivalence of \mathcal{F} and \mathcal{F}' on all submanifolds of M diffeomorphic to $S^l \times D^{n-l}$ we show the equivalence on submanifolds diffeomorphic to $S^{l+1} \times D^{n-l-1}$. Choose a submanifold $S^{l+1} \times D^{n-l-1} \subset M$, and consider a decomposition of the (l+1)-sphere as a union of Euclidean spaces over a neighborhood of the equator, $S^{l+1} \cong D^{l+1} \cup_{S^k \times D} D^{l+1}$. Applying $\mathcal{F} \to \mathcal{F}'$ to these pushout squares of submanifolds, we obtain a map of pullback squares of spaces:

$$\begin{array}{cccc} \mathcal{F}(S^{l+1} \times D^{n-l-1}) \longrightarrow \mathcal{F}(D^{l+1} \times D^{n-l-1}) \implies \mathcal{F}'(S^{l+1} \times D^{n-l-1}) \longrightarrow \mathcal{F}'(D^{l+1} \times D^{n-l-1}) \\ & & \downarrow & & \downarrow \\ \mathcal{F}(D^{l+1} \times D^{n-l-1}) \longrightarrow \mathcal{F}(S^l \times D^{n-l}) \qquad \qquad \mathcal{F}'(D^{l+1} \times D^{n-l-1}) \longrightarrow \mathcal{F}'(S^l \times D^{n-l}) \end{array}$$

By the original assumption together with the inductive assumption, this map is a weak homotopy equivalence for all three of the subspaces of $S^{l+1} \times D^{n-l-1}$. Since the diagram maps are Serre fibrations, we obtain that the map $\mathcal{F}(S^{l+1} \times D^{n-l-1}) \to \mathcal{F}'(S^{l+1} \times D^{n-l-1})$ is a weak homotopy equivalence.

We now prove the proposition by induction on the submanifolds M_j . Consider the inductive step, where we assume the proposition for M_j and then infer it for M_{j+1} . Expressing M_{j+1} as a union of M_j and D_{j+1} , we then have a map of pullback squares

Date: Lecture January 19, 2010. Last edited on January 26, 2010.

$$\begin{array}{cccc} \mathcal{F}(M_{j+1}) & \longrightarrow \mathcal{F}(D_{j+1}) & \implies \mathcal{F}'(M_{j+1}) & \longrightarrow \mathcal{F}'(D_{j+1}) \\ & & & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow & & \downarrow \\ \mathcal{F}(M_j) & \longrightarrow \mathcal{F}(M_j \cap D_{j+1}) & & \mathcal{F}'(M_j) & \longrightarrow \mathcal{F}'(M_j \cap D_{j+1}) \end{array}$$

Since $M_j \cap D_{j+1}$ is diffeomorphic to a thickened sphere, the map $\mathcal{F}(M_j \cap D_{j+1}) \to \mathcal{F}'(M_j \cap D_{j+1})$ is a weak homotopy equivalence, using the first part of the proof. Thus, the maps on the three subspaces of M_{j+1} are all weak homotopy equivalences, and since the diagram maps are fibrations, the induced map $\mathcal{F}(M_{j+1}) \to \mathcal{F}'(M_{j+1})$ is a weak homotopy equivalence. Hence, the map $\mathcal{F}(M) \to \mathcal{F}'(M)$ is a weak homotopy equivalence.

Question 1.2. This proposition should absolutely be valid for topological manifolds, but smoothness is unfortunately used in the proof because of the use of Morse theory. This shortcoming is fundamental: For instance, nonsmoothable topological 4-manifolds don't have handlebody structures. Can you find a proof that works for topological manifolds?

The following is an important observation: Note that in the proof of the proposition, we didn't truly use that the maps $\mathcal{F}(L) \to \mathcal{F}(K)$ were Serre fibrations for all inclusions $K \subset L$: The argument goes through exactly as well only using the particular case when L is diffeomorphic to a disk D^n , K is a thickened sphere, and the inclusion is a standard embedding $S^l \times D^{n-l} \subset D^n$.

2. FIBRATIONS OF MAPPING SPACES

The preceding proposition clearly shows that it's critical to understand when restriction induces a fibration on various mapping spaces. Before moving on to immersions and formal immersions, it's natural to first fit the more basic study of mapping spaces such as Map(M, N) and $Map^{sm}(M, N)$, into the previous rubric of flexible sheaves.

Recall that the space of continuous maps $\operatorname{Map}(M, N)$ has the compact-open open topology, a subbasis of which is formed by those subsets $S(K,U) = \{f : M \to N | f(K) \subset U\}$, K a compact subspace of M, U an open subspace of N. If M is compact, then this topology is the same as the topology of uniform convergence, so that a sequence of maps f_n converges to f if the supremum of $d(f(x), f_n(x))$ tends to zero, for any choice of a metric d on N. (If M is not compact, you could instead consider the topology of uniform convergence: This is horrific from the point of view of homotopy types.) The compact-open topology on $\operatorname{Map}(M, N)$ is okay if M and N are compactly generated spaces (see [?]), and it's even better if M is compact. We have the following basic result from algebraic topology

Lemma 2.1. Take X_0, X, Y be compactly generated spaces, and let $X_0 \hookrightarrow X$ be a cofibration (or Serre cofibration, respectively). Then the restriction map $Map(X, Y) \to Map(X_0, Y)$ is a fibration (Serre fibration, respectively).

Proof. For any K, we want to solve the lifting problem

This lifting problem above is equivalent to the lifting problem

Now the product $K \times X_0 \to K \times X$ is a cofibration. (This can been seen using the explicit condition for a cofibration, that $A \to A'$ is a cofibration if and only if $A' \times [0, 1]$ retracts onto the subspace $A \times [0, 1] \cup_{A \times \{0\}} A' \times \{0\}$.) And the restriction map $\operatorname{Map}([0, 1], Y) \to Y$ is a fibration and a homotopy equivalence, so therefore the lift in this diagram exists.

Now, how about the case of smooth functions: when does restriction to a submanifold induce a fibration of mapping spaces? We will prove the following:

Lemma 2.2. Let M_0 be a codimension zero submanifold of M, a compact manifold with boundary, and let N be a manifold without boundary. Then the restriction map $\operatorname{Map}^{\operatorname{sm}}(M, N) \to \operatorname{Map}^{\operatorname{sm}}(M_0, N)$ is a Serre fibration.

Remark 2.3. The precise condition is that there exists a smooth function $f: M \to \mathbb{R}$ such that $M_0 = f^{-1}\mathbb{R}_{\leq 0}$ and both M and ∂M are transverse to $0 \in \mathbb{R}$.

We will first prove this lemma in the special case of the inclusion $M_0 = L \times [-1, 0] \rightarrow L \times [-1, 1] = M$, where L is any smooth manifold, possibly with boundary, and $N = \mathbb{R}$. We will use Emile Borel's Lemma:

Lemma 2.4. The map $\operatorname{Map}^{\operatorname{sm}}(L \times \mathbb{R}, \mathbb{R}) \to \prod_{i \geq 0} \operatorname{Map}^{\operatorname{sm}}(L, \mathbb{R})$, which assigns to F the collection of partial derivatives $\left\{ \frac{\partial^i F}{\partial t^i} |_{t=0} \right\}$, has a continuous inverse.

Sketch proof: Choose a bump function $\mu(t)$. To a collection $\{f_i\}$, define the function $\sum_{i\geq 0} \frac{t^i}{i!} \mu_i(t) f_i(x)$, where fidget with the bump function $\mu_i(t)$ so as to ensure convergence of all derivatives.

Now we turn to the special case above, that $\operatorname{Map}^{\operatorname{sm}}(L \times [-1, 1], \mathbb{R}) \to \operatorname{Map}^{\operatorname{sm}}(L \times [-1, 0], \mathbb{R})$ is a Serre fibration.

Proof of special case. We are given a lifting problem:

where we try to construct a map $K \times [0,1] \to \operatorname{Map}^{\operatorname{sm}}(L \times [-1,1], \mathbb{R})$ making the above diagram commute. First, using Borel's Lemma, let us construct a section of the right vertical map, s : $\operatorname{Map}^{\operatorname{sm}}(L \times [-1,0], \mathbb{R}) \to \operatorname{Map}^{\operatorname{sm}}(L \times [-1,1], \mathbb{R})$. By differentiating a smooth $F : L \times [-1,0] \to \mathbb{R}$ at t = 0, we obtain a collection of functions $\{\frac{\partial^i F}{\partial t^i}|_{t=0}\}$, which using Borel's Lemma we can use to define a new function $\tilde{F} : L \times \mathbb{R} \to \mathbb{R}$, all of whose derivatives agree with F at t = 0. Thus, we can define the value of the section $s(F) : L \times [-1,1] \to \mathbb{R}$ to be F along $L \times [-1,0]$ and \tilde{F} along $L \times [0,1]$. Choosing a lift $s \circ f$, we obtain that the bottom part of above the diagram commutes:

$$K \times [0,1] \xrightarrow{f} \operatorname{Map}^{\operatorname{sm}}(L \times [-1,1], \mathbb{R})$$

However, $s \circ f$ probably doesn't agree with \tilde{f}_0 over $K \times \{0\}$. Using that $\operatorname{Map}^{\operatorname{sm}}(L \times [-1, 1], \mathbb{R})$ is a topological vector space, we can fix the section by adding the difference between these two maps. That is, define the lift as

$$\tilde{f} = s \circ f + [(\tilde{f}_0 - s \circ f|_{t=0}) \circ \operatorname{proj}],$$

proj is the projection map $K \times [0, 1] \to K$. It's easy to see this is still a lift of f and agrees with f_0 on $K \times \{0\}$, which completes the proof of the lemma in this special case.

$$\Box$$

Now we deduce the general case, of restricting smooth maps into N along $M_0 \subset M$, from preceding special case.

Reduction of general case to the special case. Firstly, we can immediately see that the case of $N = \mathbb{R}$ implies the case of general Euclidean spaces, $N = \mathbb{R}^n$, since we have

$$\operatorname{Map}^{\operatorname{sm}}(M, \mathbb{R}^n) \cong \prod_n \operatorname{Map}^{\operatorname{sm}}(M, \mathbb{R})$$

and a product of Serre fibrations remains a Serre fibration (since a product of lifts remains a lift).

Secondly, we reduce the case of general N to that of Euclidean space. Any manifold N admits an embedding $\eta : N \hookrightarrow \mathbb{R}^k$. Let E_η denote the normal bundle of the inclusion, the cokernel of the map $d\eta : T_N \hookrightarrow \eta^* T_{\mathbb{R}^k}$. By the tubular neighborhood theorem, the inclusion η factors as the inclusion of the zero section $z : N \to E_\eta$ followed by an open embedding $\tilde{\eta} : E_\eta \to \mathbb{R}^k$, $\eta = \tilde{\eta} \circ z$. Now, by assumption we can solve the problem of lifting the map $f : K \times [0, 1] \to \operatorname{Map}^{\mathrm{sm}}(M_0, N)$ below after we have embedded N in \mathbb{R}^k :

That is, a lift ηf exists, adjoint to a map $M \times K \times [0,1] \to \mathbb{R}^k$ that is smooth for each choice of $(k,t) \in K \times [0,1]$. However, this map may not factor through $E_\eta \subset \mathbb{R}^k$. We fix this as follows, by scaling the lift along so as to bring it within E_η :

Choose a smooth function $\epsilon : M \to (0,1]$, where $\epsilon(x) = 1$ for all $x \in M_0$, and such that for each $x \in M$, the image of the map $\eta f : \{x\} \times K \times [0, \epsilon(x)]$ lies in E_{η} . Finally, for each $x \in M$ choose a diffeomorphism $\phi_x : [0,1] \to [0, \epsilon(x)]$ varying continuously in M, and such that $\phi_x : [0,1] \to [0, \epsilon(x) = 1]$ is the identity map for $x \in M_0$. Now the composite of restriction with scaling defines, for each $x \in M$, a map $\eta f \circ \phi_x : \{x\} \times K \times [0,1] \to E_{\eta} \subset \mathbb{R}^k$, whose image lies in E_{η} . These assemble to define a map $\eta f \circ \phi : M \times K \times [0,1] \to E_{\eta}$, and, because all choices were made to vary smoothly, this is adjoint to a map $\eta f \circ \phi : K \times [0,1] \to \operatorname{Map}^{\operatorname{sm}}(M, E_{\eta})$. Now, define the lift \tilde{f} to be composite of the modified lift $\eta f \circ \phi$ with the projection map $\pi : E_{\eta} \to N$, which clearly defines a lift of f.

Lastly, we reduce the general case of a codimension zero submanifold $M_0 \subset M$ to the case of the inclusion $L \times [-1,0] \subset L \times [-1,1]$. This has two steps. First, we can delete any subspace of the interior of M_0 without having an effect on the lifting problem. Thus, after deleting open complement

of some ϵ neighborhood U of the boundary of M_0 , we have the situation $M_0 - U \cong L \times [-1, 0]$. Second, we now assume the special case where the manifold $M_1 \cong L \times [-1, 1]$ is a closed neighborhood of $L \times [-1, 0] \cong M_0$ in $M, M_0 \subset M_1 \subset M$. Now, given a lifting problem as above, we have the following intermediate lift, as the result in the special case:

Now, we construct the desired lift \tilde{f} . The idea is that outside of M_1 , \tilde{f} will be constant in the t direction, identically equal to \tilde{f}_0 . We will construct this by scaling g by choosing a smooth function $\psi: M \to [0,1]$ which is identically 1 on M_0 and identically 0 on $M - M_1$. Now define the smooth map $\tilde{f}(k,t): M \to N$, for $k \in K$ and $t \in [0,1]$, as

$$\tilde{f}(k,t)(x) := \begin{cases} \tilde{f}_0(k)(x) & x \in M - M_1 \\ g(k,\psi(x) \cdot t)(x) & x \in M_1 \end{cases}$$

which is clearly a lift of f and agrees with \tilde{f}_0 .

References

- Gromov, Mikhael. Partial differential relations. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 9. Springer-Verlag, Berlin, 1986. x+363 pp.
- [2] May, Peter. Concise course in algebraic topology.
- [3] Weiss, Michael. Immersion theory for homotopy theorists. http://www.maths.abdn.ac.uk/~mweiss/publions.html
- [4] Weiss, Michael. Embeddings from the point of view of immersion theory. I. Geom. Topol. 3 (1999), 67101.