THE H-PRINCIPLE, LECTURES 5 & 6: THE HIRSCH-SMALE THEOREM

J. FRANCIS, NOTES BY C. ELLIOTT

1. THE HIRSCH-SMALE THEOREM
We have finished proving:

Lemma 1.1. Let My C M be a codimension zero submanifold, where both M and My are compact,
and let N be a smooth manifold without boundary. Then the natural map

Map®™ (M, N) — Map®™ (Mo, N)
is a Serre fibration.
Corollary 1.2. Immf(D* x D"k N) — Imm!(S*~! x [0,1] x D"* N) is a Serre fibration.
Proof. This follows directly from the lemma as soon as we notice that
Imm® (D x D"7% N) = Map™ (D* x D" % V,,(T)

and
Imm(S*~1 x [0, 1] x D" N) = Map™ (S*~! x [0,1] x D" % V,,(Tn)).

The following lemma is the technical heart of the Hirsch-Smale theorem.

Lemma 1.3 (Hirsch-Smale Fibration Lemma). Restricting along a collar of the boundary of an
n-disk, S*~1 x [0,1] < D*, induces map

Imm(D* x D" N™) — Imm(S*~! x [0,1] x D"~% N™)
which is a Serre fibration provided n > k.
Note 1.4. Why is the n > k condition necessary? Suppose n = k. Then we’re considering the map
Imm(D", N) — Imm(S™~! x [0.1], N)

where dim(N) = n. Let’s look at this situation where n = 1. So we’re trying to find lifts of the
form

pt Imm(D', R)

i

pt x [0,1] AN Imm(D§ U D1, R)

Choose the natural immersion ¢ of D} U D} into R that sends D} to [0,1/3] and D} to [2/3,1] say,
and let f be the homotopy that swaps the two discs over. Then try to lift f to a homotopy f from
the natural embedding [0, 1] — R with itself, extending f. Then there will have to be some value ¢

where f(t) is not an immersion. Note that as soon as we are immersing into a higher-dimensional
Euclidean space, such as R?, then this problem goes away and we can find such a f.

In this lecture, we will prove the Hirsch-Smale theorem assuming the lemma above. Next time,
we will
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Theorem 1.5 (Hirsch-Smale, first form). If M and N are n-manifolds, where M is open and
compact and N is without boundary, then

Imm(M, N) % Imm® (M, N)
is a weak homotopy equivalence.

Proof. Our argument exactly follows the proof from Lecture 4 that local equivalences of flexible
sheaves imply global equivalences, applied to the case where the map F — F’ is Imm(—, N) —
Imm!(—, N). The idea here is to build M as a handlebody, then prove the result inductively on
filtration defined by adding handles. Namely, we have a filtration of M

MyC M CMC---C M, 1=M
where M1 is built from M, by attaching (¢ + 1)-handles, i.e., by a pushout

Ha Sgé X Dg—q—l( 8Mq( Mq
[, D& x Dgmat Mg

Note that we stop at (n — 1)-handles. This is necessary because of the condition in our lemma that
required n > k. So we prove the result inductively on this filtration. We have a map of pullback
squares:

=TT

Imm(Mj41, N) ——— Imm(D9*! x D"=471 N) Immf (M1, N) —— Immf(D9+! x Dn—9=1 N)
Imm(M;, N) —— Imm(S? x [0,1] x D"7971 N) Imm!(M;, N) —— Imm (S x [0,1] x D"7971 N)

—_—

Our lemma tells us that the left-hand square is actually a homotopy pullback square, as its right-
hand vertial map is a Serre fibration for ¢4+ 1 < n. Now we apply an induction argument to deduce
that the map on the bottom right corners of square is always a homotopy equivalence. Then the
induction step on j follows immediately. O

This proves that the map Imm(M, N) — Immf(M, N) is a weak homotopy equivalence if M has
a handle decomposition with no handles of index n. What does this actually mean concretely?

Lemma 1.6. A manifold M of dimension n has a handle decomposition without n-handles if and
only if M is open.

Proof. First note M is open if and only if H,(M) = 0.

=

Recall, given a handlebody decomposition one has an associated CW complex by collapsing all the
thickenings of k-handles. This CW complex has an associated cellular chain complex. The fact that
there are n-handles implies our chain complex has no generators for H,,, so H,(M) =0 and M is
open.

=
Proceed by cancellation of handles. We won’t go into details here because some technical machinery
is required — see, for instance, the notes on handle cancellation from last year’s surgery class. Suppose

H,(M) = 0. Choose any handle decomposition of M. We’ll show that we can get rid of all the

n-handles. We know C<!'(M) 4 Ceell (M) is injective. Choose [D?] € C<L. Tt pairs nontrivially
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with an element [ng]’ B € T, where d[D?] = > [D7~!], and one can cancel them, i.e., omit
them both from the handle presentation of M without changing the diffeomorphism type of M.
The following is a picture of the case of canceling a 2-handle a 1-handle:

W)

o

O

Thus we’ve proved the Hirsch-Smale theorem in the case dim M = dim N, with M open and
compact. What about if dim M < dim N7

Theorem 1.7 (Hirsch-Smale, final form). If M and N are smooth manifolds with M compact and
N without boundary, and either 1) M open, or 2) dim M < dim N, then the map

Imm (M, N) — Imm’ (M, N)
s a weak homotopy equivalence.

Proof. Suppose m = dim M < dim N = n. Any immersion M — N factors through the disk bundle
of some vector bundle of dimension n —m

7

D(V)
where V' = coker (TM ﬂc> f *TN), the normal bundle. We know the result for such thickenings of
M, so we’ll work backwards to the result for M.
Definition 1.8. For V' — M a vector bundle of dimension n — m, define
Immy (M, N) = {f € Imm(M, N) with a bundle isomorphism with the normal bundle V' 2 coker(df)} .

Observe that we have a natural maps
Imm(D(V), N) % Immy (M, N)

a special case of which is familiar to us. Indeed, if M is a point then this becomes

Imm(pt, N) — Immg~ (pt, N) = V,,(Tar).

Lemma 1.9. This map Imm(D(V), N) LN Immy (M, N) is a weak homotopy equivalence.
Sketch. We will generalize our proof that
Imm(D"™™ N) 2 V,,_n(N)

i.e., we construct a section going back. Choose a Riemannian metric on N and construct a section
using the exponential map. Our data gives a preferred includion V' < Ty, which we can compose
with exp: Ty — N. ([l



Using this lemma, we can conclude the proof. First, note that the forgetful map Immy (M, N) —
Imm(M, N) is a fiber bundle, and thus a Serre fibration. Now, observe that the following is a
pullback square

Immy (M, N) *d>lmme(M, N)

\L \LSerre fibration

Imm(M, N) — 4 Imm! (M, N)
where the top right object is defined in the obvious way:
Imm®y (M, N) = {TM 5Ty e Imm! (M, N) with an isomorphism coker(F) = (V)} .
This pullback square maps to the square

Imm(D(V), N) —%> Imm(D(V), N)

l |

Imm(M, N) — < Immf (M, N)
where the maps on the top row are weak homotopy equivalences by the previous lemma. Thus the
square is a homotopy pullback square, and

Imm(D(V), N) — Imm’(D(V), N)
is a weak homotopy equivalence. Using the long exact sequence on homotopy groups associated to
the two vertical fibrations, we find that the map

Imm(M, N) — Imm® (M, N)

induces an isomorphism on homotopy groups 7, so long as the basepoint chosen lies in component
which is in the image of mo Immy (M, N). Finally, by using all the possible (n — m)-dimensional
vector bundles V, we obtain the isomorphism 7, Imm(M, N) — 7, Imm{(M, N) for all choices of
basepoints, and so we conclude that

Imm(M, N) — Imm® (M, N)

is a weak homotopy equivalence. (|

REFERENCES

[1] Hirsch, Morris. Immersions of manifolds. Transactions A.M.S. 93 (1959), 242-276.
[2] Smale, Stephen. The classification of immersions of spheres in Euclidean spaces. Ann. Math. 69 (1959), 327-344.
[3] Weiss, Michael. Immersion theory for homotopy theorists. http://www.maths.abdn.ac.uk/~mweiss/pubtions.html



