
THE H-PRINCIPLE, LECTURES 5 & 6: THE HIRSCH-SMALE THEOREM

J. FRANCIS, NOTES BY C. ELLIOTT

1. The Hirsch-Smale Theorem

We have finished proving:

Lemma 1.1. Let M0 ⊆M be a codimension zero submanifold, where both M and M0 are compact,
and let N be a smooth manifold without boundary. Then the natural map

Mapsm(M,N)→ Mapsm(M0, N)

is a Serre fibration.

Corollary 1.2. Immf(Dk ×Dn−k, N)→ Immf(Sk−1 × [0, 1]×Dn−k, N) is a Serre fibration.

Proof. This follows directly from the lemma as soon as we notice that

Immf(Dk ×Dn−k, N) ∼= Mapsm(Dk ×Dn−k, Vn(TN )

and

Immf(Sk−1 × [0, 1]×Dn−k, N) ∼= Mapsm(Sk−1 × [0, 1]×Dn−k, Vn(TN )).

�

The following lemma is the technical heart of the Hirsch-Smale theorem.

Lemma 1.3 (Hirsch-Smale Fibration Lemma). Restricting along a collar of the boundary of an
n-disk, Sk−1 × [0, 1] ↪→ Dk, induces map

Imm(Dk ×Dn−k, Nn)→ Imm(Sk−1 × [0, 1]×Dn−k, Nn)

which is a Serre fibration provided n > k.

Note 1.4. Why is the n > k condition necessary? Suppose n = k. Then we’re considering the map

Imm(Dn, N)→ Imm(Sn−1 × [0.1], N)

where dim(N) = n. Let’s look at this situation where n = 1. So we’re trying to find lifts of the
form

pt //

��

Imm(D1,R)

��
pt× [0, 1]

f //

f̃
66

Imm(D1
0 tD1

1,R)

.

Choose the natural immersion ι of D1
0 tD1

1 into R that sends D1
0 to [0, 1/3] and D1

1 to [2/3, 1] say,

and let f be the homotopy that swaps the two discs over. Then try to lift f to a homotopy f̃ from
the natural embedding [0, 1]→ R with itself, extending f . Then there will have to be some value t

where f̃(t) is not an immersion. Note that as soon as we are immersing into a higher-dimensional

Euclidean space, such as R2, then this problem goes away and we can find such a f̃ .

In this lecture, we will prove the Hirsch-Smale theorem assuming the lemma above. Next time,
we will
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Theorem 1.5 (Hirsch-Smale, first form). If M and N are n-manifolds, where M is open and
compact and N is without boundary, then

Imm(M,N)
d→ Immf(M,N)

is a weak homotopy equivalence.

Proof. Our argument exactly follows the proof from Lecture 4 that local equivalences of flexible
sheaves imply global equivalences, applied to the case where the map F → F ′ is Imm(−, N) →
Immf(−, N). The idea here is to build M as a handlebody, then prove the result inductively on
filtration defined by adding handles. Namely, we have a filtration of M

M0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mn−1 = M

where Mq+1 is built from Mq by attaching (q + 1)-handles, i.e., by a pushout∐
α S

q
α ×Dn−q−1

α
� � //

� _

��

∂Mq
� � // Mq

��∐
αD

q+1
α ×Dn−q−1

α
// Mq+1

.

Note that we stop at (n− 1)-handles. This is necessary because of the condition in our lemma that
required n > k. So we prove the result inductively on this filtration. We have a map of pullback
squares:

Imm(Mj+1, N) //
,,

��

Imm(Dq+1 ×Dn−q−1, N)
,,

��

Immf(Mj+1, N) //

��

Immf(Dq+1 ×Dn−q−1, N)

��
Imm(Mj , N) //

44
Imm(Sq × [0, 1]×Dn−q−1, N)

44
Immf(Mj , N) // Immf(Sq × [0, 1]×Dn−q−1, N)

Our lemma tells us that the left-hand square is actually a homotopy pullback square, as its right-
hand vertial map is a Serre fibration for q+ 1 < n. Now we apply an induction argument to deduce
that the map on the bottom right corners of square is always a homotopy equivalence. Then the
induction step on j follows immediately. �

This proves that the map Imm(M,N)→ Immf(M,N) is a weak homotopy equivalence if M has
a handle decomposition with no handles of index n. What does this actually mean concretely?

Lemma 1.6. A manifold M of dimension n has a handle decomposition without n-handles if and
only if M is open.

Proof. First note M is open if and only if Hn(M) = 0.

=⇒:
Recall, given a handlebody decomposition one has an associated CW complex by collapsing all the
thickenings of k-handles. This CW complex has an associated cellular chain complex. The fact that
there are n-handles implies our chain complex has no generators for Hn, so Hn(M) = 0 and M is
open.

⇐=:
Proceed by cancellation of handles. We won’t go into details here because some technical machinery
is required – see, for instance, the notes on handle cancellation from last year’s surgery class. Suppose
Hn(M) = 0. Choose any handle decomposition of M . We’ll show that we can get rid of all the

n-handles. We know Ccell
n (M)

d→ Ccell
n−1(M) is injective. Choose [Dn

α] ∈ Ccell
n . It pairs nontrivially
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with an element [Dn−1
β ], β ∈ Υ , where d[Dn

α] =
∑
Υ [Dn−1

υ ], and one can cancel them, i.e., omit
them both from the handle presentation of M without changing the diffeomorphism type of M .
The following is a picture of the case of canceling a 2-handle a 1-handle:

�

Thus we’ve proved the Hirsch-Smale theorem in the case dimM = dimN , with M open and
compact. What about if dimM < dimN?

Theorem 1.7 (Hirsch-Smale, final form). If M and N are smooth manifolds with M compact and
N without boundary, and either 1) M open, or 2) dimM < dimN , then the map

Imm(M,N)→ Immf(M,N)

is a weak homotopy equivalence.

Proof. Suppose m = dimM < dimN = n. Any immersion M → N factors through the disk bundle
of some vector bundle of dimension n−m

M

��

f // N

D(V )

<<

where V = coker
(
TM

df→ f∗TN

)
, the normal bundle. We know the result for such thickenings of

M , so we’ll work backwards to the result for M .

Definition 1.8. For V →M a vector bundle of dimension n−m, define

ImmV (M,N) = {f ∈ Imm(M,N) with a bundle isomorphism with the normal bundle V ∼= coker(df)} .

Observe that we have a natural maps

Imm(D(V ), N)
d→ ImmV (M,N)

a special case of which is familiar to us. Indeed, if M is a point then this becomes

Imm(pt, N)→ ImmRn(pt, N) = Vn(TM ).

Lemma 1.9. This map Imm(D(V ), N)
d→ ImmV (M,N) is a weak homotopy equivalence.

Sketch. We will generalize our proof that

Imm(Dn−m, N) ∼= Vn−m(N)

i.e., we construct a section going back. Choose a Riemannian metric on N and construct a section
using the exponential map. Our data gives a preferred includion V ↪→ TN , which we can compose
with exp: TN → N . �
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Using this lemma, we can conclude the proof. First, note that the forgetful map ImmV (M,N)→
Imm(M,N) is a fiber bundle, and thus a Serre fibration. Now, observe that the following is a
pullback square

ImmV (M,N)

��

d // Immf
V (M,N)

Serre fibration

��
Imm(M,N)

d // Immf(M,N)

where the top right object is defined in the obvious way:

Immf
V (M,N) ∼=

{
TM

F→ TN ∈ Immf(M,N) with an isomorphism coker(F ) ∼= (V )
}
.

This pullback square maps to the square

Imm(D(V ), N)

��

d // Immf(D(V ), N)

��
Imm(M,N)

d // Immf(M,N)

where the maps on the top row are weak homotopy equivalences by the previous lemma. Thus the
square is a homotopy pullback square, and

Imm(D(V ), N)→ Immf(D(V ), N)

is a weak homotopy equivalence. Using the long exact sequence on homotopy groups associated to
the two vertical fibrations, we find that the map

Imm(M,N)→ Immf(M,N)

induces an isomorphism on homotopy groups π∗ so long as the basepoint chosen lies in component
which is in the image of π0 ImmV (M,N). Finally, by using all the possible (n − m)-dimensional
vector bundles V , we obtain the isomorphism π∗ Imm(M,N) → π∗ Immf(M,N) for all choices of
basepoints, and so we conclude that

Imm(M,N)→ Immf(M,N)

is a weak homotopy equivalence. �
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