
MATH 465, LECTURE 11: THE WHITNEY TRICK, FIRST PART

J. FRANCIS, NOTES BY H. TANAKA

In the last lecture, we established one of the key technical lemmas in the proof the the s-cobordism
theorem, a homological condition on a smooth embedding of a q-sphere that determines whether it it
can isotoped so as to cancel an individual q-handle, leaving the other handles unchanged. Our proof
relied on the assertion of a particular geometric maneuver, the Whitney trick, which desribed when
a pair of intersection points between the q-sphere and the transverse sphere of opposite intersection
sign could be simultaneously removed by isotopy of the map.

This is a technical result, but one which very much seems to underly the behavior of higher-
dimensional topology: The failure of the trick in dimension 4 seems to likewise underlie the special
behavior of low-dimensional topology. So I’m happy this class gives me the opportunity to really
understand the proof, our treatment of which will follow that of Milnor in [1]. This treatment is
a little laborious compared with Milnor’s usual clarity and fluency, but that’s probably necessary.
For ease of cross-reference, we will use the same notation as [1] as much as possible.

Theorem 0.1 (The Whitney Trick). Let V r+s be a smooth manifold of dimension r + s with
transversally intersecting closed submanifolds M and M ′ of complementary dimensions r and s,
and in which both M and the normal bundle of M ′ are oriented, so that the intersection sign
εx = ±1 of a point x ∈M ∩M ′ can be defined. Assume:

• The dimension r + s is at least 5;
• If r = 1 or 2, then assume further that the map π1(V −M ′)→ π1(V ) is injective.

Let x, y ∈ M ∩M ′ be two points with opposite intersection numbers, εx = −εy. Finally, assume
there exits paths C ⊂M , C ⊂M ′, both connecting x and y, and such that

• both C and C ′ miss the other points in the intersection (i.e., C and C ′ miss M∩M ′−{x, y});
• The loop C ∪ C ′ is contractible in V .

Under these conditions, then there exists an isotopy ft : [0, 1]× V → V , where f0 = idV , and such
that:

• f1(M) ∩M ′ = M ∩M ′ − {x, y};
• The isotopy is constant in a neighborhood of M ∩ M ′ − {x, y} and outside an open ball

containing C ∪ C ′.

In other words, one can select an isotopy that moves M so as to simultaneously eliminate the two
points of intersection with M ′ at x and y, but where everything else about the intersection M ∩M ′
does not change at all.

For example, in the case that M and M ′ have zero algebraic intersection number, with finite
intersection, this just says that we can move M off of M ′.

See the figure below, of a sinusoidal surface intersecting a line in V = R3.)
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Corollary 0.2. Let V , M,M ′ be as in the theorem, but assume additionally that all are oriented
compact manifolds, V is simply-connected, and that the inclusions of M and M ′ are orientation
preserving maps. Let [M ] and [M ′] represent the classes in H∗(V,Z) given by the pushforward of
the fundamental classes. Define the algebraic intersection number of M and M ′ by

#(M,M ′) := 〈Pd[M ] ^ Pd[M ′], [V ]〉.

Then there exists an isotopy ft of the embedding of M such that the actual number of intersection
points in f1(M) ∩M ′ is equal to the algebraic intersection number. i.e., we have an equality

#(f1(M) ∩M ′) = #(M,M ′).

This is, of course, also relies on the following essential result of intersection theory, that the cup
product counts the sum of the signed intersection points:

Lemma 0.3. For V , M and M ′ as above, then following numbers are equal∑
x∈M∩M ′

εx = #(M,M ′).

We now turn to the proof the Whitney trick, which will occupy the rest of this and next lectures

Proof. We will prove the theorem by first formulating a “standard picture,” prove the theorem in
this particular case, and then finally prove a Lemma 6.7 which shows that the standard picture is in
fact universal, and can always be embedded. Consider the standard picture of the diagram below.
Here we have two smooth curves (one upward, one downward) intersecting in R2. D is a disk, and
C0 and C ′0 are the arcs of the curves bounding the disc. Let U be an open neighborhood of D.

2



Now assume we have an embedding of this picture φ1 : U ↪→ V .

C0

��

φ1 // C

��
U

φ1 // V

C ′0

OO

φ1 // C ′

OO

and such that the interior D◦ maps to V − (M ∪M ′).
Assume that the embedding φ1 extends to an open embedding

φ2 : U × Rr−1 × Rs−1 ↪→ V

so that we can write

U
φ1 //

''NNNNNNNNNNNN V

U × Rr−1 × Rs−1

φ2

open

77pppppppppppp

.

Further assume we can choose φ2 such that

φ−12 (M) = C0 × Rr−1 × {0}
and that

φ−12 (M ′) = C ′0 × {0} × Rs−1.
Making these assumptions, the rest of the proof is easy. We will construct the requisite isotopy

on U × Rr−1 × Rs−1 and then import it to V .
In the standard picture, we choose an isotopy Gt of U so that

G1(C0) ∩ C ′0 = φ.

The upward parabola, labeled C0, is just moving upward and upward, until it goes completely above
C ′0, which is the downward parabola.

Now we extend Gt to U × Rr−1 × Rs−1. We normalize it so that as it gets far away in the
Rr−1 or Rs−1 direction, it goes to the identity map. For instance, just choose a bump function
ρ : Rr−1 × Rs−1 → [0, 1] and apply to make the extension.
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Then the isotopy extends to all of V via the identity.
We then have G1(M) ∩M ′ = M ∩M ′ − {x, y}. QED. �

So the proof is done up until the choice of a certain embedding. This is the ‘very intuitive lemma’
that we need to prove, that would make the rest of the proof easy. Unfortunately, this lemma doesn’t
exist.

Lemma 0.4 (Lemma 6.7 of [1]). Fix V , M , and M ′ as before. (All assumptions of the theorem are
necessary.) Then there exists an embedding

φ2 : U × Rr−1 × Rs−1 ↪→ V

extending the embedding of φ1 : U → V taking C ′0 and C0 to C ′ and C, respectively, and such that

φ−12 M = C0 × Rr−1 × {0}
φ−12 M ′ = C ′0 × {0} × Rs−1.

The embedding of Lemma 6.7 will be constructed using Riemannian geometry. The following
Lemma, 6.8, says that our problem can be placed in a nice Riemannian setting. First recall the
following definition.

Definition 0.5. M ⊂ V is totally geodesic if for any geodesic f : [0, 1] ↪→ V in which a single point
f(t) lies in M and for which the tangent vector df(t) lies in the subspace Tf(t)M ⊂ Tf(t)V , then
the geodesic itself lies entirely in M .

Lemma 0.6 (Lemma 6.8 of [1]). There exists a Riemannian metric on V such that

• M and M ′ are totally geodesic submanifolds;
• There exist neighborhoods Nx and Ny of x and y where the metric is Euclidean, and in

which the line segments Nx ∩ C0, Nx ∩ C ′0, Ny ∩ C0, Ny ∩ C ′0 are all straight.

We will prove these lemmas in the next class.
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