
MATH 465, LECTURE 14: THE H-COBORDISM THEOREM AND THE

GENERALIZED POINCARÉ CONJECTURE

J. FRANCIS, NOTES BY I. BOBKOVA

1. The h-cobordism theorem

Theorem 1.1 (The h-cobordism theorem). Let W be an h-cobordism of dimension at least 6. If
W is simply connected, then W is diffeomorphic relative ∂0W to a product ∂0W × [0, 1].

We will require the following lemma.

Lemma 1.2. Any smooth cobordism has a handlebody structure.

Proof. Deferred until our treatment of Morse theory next week. �

We now prove the h-cobordism theorem:

Proof. Applying the normal form lemma, we can alter the handle presentation of W so that all of
the handles have index either q or q+1 for a choice of a single q, 2 ≤ q ≤ n−3. Let us now consider
the cellular differential dq+1

Hq+1(Wq+1,Wq) = Ccell
q+1(W,∂0W )

dq+1 // Ccell
q (W,∂0W ) = Hq(Wq,Wq−1) .

Choosing the basis for each Hm(Wm,Wm−1) formed by the m-handles [ϕm
j ], then the differential

dq+1 is then given by a matrixA = (aij), where the coefficient aij is equal to the algebraic intersection
number of the transverse sphere of the ith q-handle ϕq

i and attaching sphere of the jth (q+1)-handle,

ϕq+1
j (Sq × {0}).

Trivial case: Consdier the fortuitous case in which A is a diagonal matrix. Then we can apply the
cancellation lemma sequentially to each pair of q- and (q+1)-handles which have intersection number
equal ±1. This thereby gets rid of all of the handles, and we obtain the desired diffeomorphism
W ∼= ∂0W × [0, 1].

General case: In general, the matrix A may be any invertible matrix with integer coefficients.
Of course, any matrix over the integers can be diagonalized by elementary matrix operations, so if
we can isotope the attaching maps for our handles so as to make their intersection theory performa
elementary row reduction, we will be able to maneuver to the trivial case. We can do exactly this,
as summarized by the following table:

Row reduction operation Handle operation

A ∼
(
A′ 0
0 1

)
Cancellation lemma

Multiply the kth row by x and add to the lth
row

Modification lemma: modify ϕq+1
l |Sq×{0} by

the boundary xdq+1[ϕq+1
k ]. Modify the em-

bedding to ϕq+1
l |Sq×{0} so that [ϕq+1

l |Sq ] =

[ϕq+1
l |Sq ] + xdq+1[ϕq+1

k ]
Multiply the kth row by x ∈ Z× Precompose with degree −1 map on Sq

ϕq+1
k : Sq ×Dn−q−1 → ∂kW

Switch rows and columns Relabel handles
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Thus, we can reduce the handle presentation of any such cobordism W to a cylinder by handle
operations corresponding to row reduction operations. This proves the h-cobordism theorem. �

2. Poincaré conjecture

The h-cobordism theorem has many powerful consequences. Before addressing the Poincaré
conjecture, on manifold structures on the homotopy type of the n-sphere, we first consider the case
of the n-disk.

Theorem 2.1. Let W be a smooth compact manifold of dimension n > 6 with simply connected
boundary. If W is contractible, then W is diffeomorphic to the standard n-disk.

Proof. Let us choose a smooth embedding g of an n-disk D into the interior of W and remove the
interior D◦ of this n-disk from W . W − g(D◦) then defines a cobordism between ∂W and Sn−1.
Since W can be glued back together from this cobordism and D along the common boundary Sn−1,
we have the following pushout diagram:

W

W − g(D◦)
+ �

88rrrrrrrrrrr
D

0 P
g

aaDDDDDDDDD

Sn−1
3 S

ffLLLLLLLLLL . �

=={{{{{{{{

All the maps are cofibrations, so the diagram is a homotopy pushout. Since D is contractible,
this implies that Sn−1 → W − g(D◦) → W is a homotopy cofiber sequence. By the long exact
sequence of cofibration

. . .→ H∗(S
n−1)→ H∗(W − g(D◦))→ H∗(W )→ H∗−1(Sn−1)→ . . .

W − g(D◦) is simply connected, therefore Sn−1 →W − g(D◦) is a homotopy equivalence. Applying
the h-cobordism theorem to W − g(D◦) we obtain that W − g(D◦) is diffeomorphic to Sn−1× [0, 1]
relative the boundary component ∂0W = g(∂D). By gluing the n-disk back on along ∂0W , we thus
obtain a diffeomorphism W ∼= D. �

The following is an easy, but key, fact.

Proposition 2.2. Every homeomorphism Sn−1
f // Sn−1 from a sphere to itself extends over

the disk (in the following diagram the dotted arrow exists and is a homeomorphism):

Sn−1
f //

� _

��

Sn−1
� _

��
Dn

∃f̃ // Dn

Proof. Radially extend the map f through the interior of the disk by defining f̃(x) = |x|f( x
|x| ). �

This fact is actually a feature of something much stronger, which is not strictly necessary for the
proof of the Poincaré conjecture, but it is easy, important, and pretty, so we include it:

Proposition 2.3 (Alexander trick). The map Res∂ : Homeo(Dn) → Homeo(Sn−1) is a homotopy
equivalence.

Proof. The map Res∂ is a fibration, where each of the fibers are homeomorphic to Homeo(Dn, Sn−1),
the space of homeomorphisms of the n-disk which restrict to the identity on the boundary Sn−1.
The proposition is thus equivalent to statement that Homeo(Dn, Sn−1) is contractible, which we
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shall now show be exhibiting an explicit contraction. That is, we will exhibit Homeo(Dn, Sn−1)
as a retraction of a contractible space, the cone Cone(Homeo(Dn, Sn−1)), by constructing a map
Cone(Homeo(Dn, Sn−1))→ Homeo(Dn, Sn−1) such that composite

Homeo(Dn, Sn−1)→ Cone(Homeo(Dn, Sn−1))→ Homeo(Dn, Sn−1)

is the identity. This map deforms a homeomorphism f , as t varies from 0 to 1, from f to the identity
map. I.e., ft, as t varies, is a topological isotopy of f and id.

Define ft by shrinking the homeomorphism f to take place in a disk of radius 1− t, and outside
to be the identity. A formula is given by ft(x) = x, for |x| ≥ t and ft(x) = t · f(x/t) for |x| ≤ t. �

We finally come to the coup de grâce.

Theorem 2.4 (Generalized Poincaré conjecture). Let M be a smooth manifold of dimension n at
least 5, and suppose M is homotopy equivalent to Sn. Then M is homeomorphic to Sn.

Remark 2.5. The proof below only applies to the case where n is at least 6. We will prove the case
of n = 5 later, in our discussion of Kervaire-Milnor’s work on exotic spheres. In that dimension, we
will prove the stronger result that M must additionally be diffeomorphic to S5 if they are homotopy
equivalent.

Proof. Choose a smooth embedding g of an n-disk in the interior of M , g : D ↪→ M , and remove
the image of the interior of the disk from the manifold. The resulting manifold with boundary,
M − g(D◦) is contractible by the long exact sequence in homology. Applying the previous theorem
to W := M − g(D◦), we obtain that M − g(D◦) is diffeomorphic to Dn. Hence we see that is
M constructed from two n-dimensional disks Dn

1 and Dn
0 glued along their boundaries by some

unspecified diffeomorphism f of the (n− 1)-sphere:

Sn−1 � � //

f∼=

��

Dn
0 � p

!!B
BB

BB
BB

B

M

Sn−1 � � // Dn
1

. �

==||||||||

Then, by the Alexander trick, f extends to a homeomorphism f̃ of the disk Dn. We now define
a homeomorphism Sn →M by gluing together the two maps of the n-disks:

Dn
0

id //
� _

��

Dn
0� _

��
Sn // M

Dn
1

� ?

OO

f̃ // Dn
1

� ?

OO

�

Remark 2.6. The proof establishes a homeomorphism, rather than a diffeomorphism, betweenM and
Sn because the Alexander trick is only available in the topological (or PL) setting. Radial extension
has manifestly singular behavior at the origin. Let S sm(Sn) denote the space of smooth manifold
structures on the topological n-sphere. The argument above shows that any smooth structure on
Sn is given by gluing a pair of n-disks along a diffeomorphism of their boundaries. Thus, we obtain
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a surjective map Diff(Sn−1) → S sm(Sn). A smooth manifold structure will be equivalent to the
usual Sn if the diffeomorphism extends over the disk. We thus obtain a sequence of spaces

Diff(Dn)→ Diff(Sn−1)→ S sm(Sn)

that is exact at the level of π0. This remark is only valid outside dimension 4: The possibility of
exotic 4-spheres exists for completely different reasons, not by twists along diffeomorphisms of S3.
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