
MATH 465, LECTURE 15: THE S-COBORDISM THEOREM, SIMPLE

HOMOTOPY, AND WHITEHEAD TORSION

J. FRANCIS, NOTES BY A. SMITH

Previously, given an h-cobordism W with a specified handlebody presentation, we had an asso-

ciated contractible chain complex of free Zπ-modules: Ccell
∗ (W̃ , ∂̃0W ). Here π denotes the group

π1(∂0W ) ∼= π1W . Recall that this contractible complex came to us with a natural equivalence
class of basis, given by lifts of the handles. That is, for each q-handle φqi , we choose a lift of the
characteristic map

Φ̃q
i : (Dq ×Dn−q, Sq−1 ×Dn−q) −→ (W̃q, W̃q−1)

and then we pushforward a relative fundamental class of the q-disk to obtain a cellular class [φqi ] ∈
Hq(W̃q, W̃q−1) = Ccell

q (W̃ , ∂̃0W ). In selecting each basis element, we made an arbitrary choice
of lift, which we could alter by acting by a deck transformation γi ∈ π, and an arbitrary choice
of fundamental class, which we alter by multiplying by −1. This (unordered) basis is thus only
well-defined up to multiplying by ±γi, for each i.

It might be tempting to think that this complex Ccell
∗ (W̃ , ∂̃0W ) might contain no information

because it is contractible. But this would be a mistake. So let us now address the question: What
invariant can extracted from a contractible finite complex of free Zπ-modules equipped with an
equivalence class of basis?

1. The Whitehead group and Whitehead torsion

Let X be a contractible finite complex of free Zπ-modules with an unordered Zπ-basis of each
Xq. Given such an X, we will produce an element of K1(Zπ), the first algebraic K-group of the
ring Zπ.

Let us first recall the definition of K1(R). (This is originally due to Whitehead, who defined it
for this exact purpose.) Let GL(R) denote the sequential colimit colimn→∞GLn(R). Let δij denote
the matrix which is zero except for a single entry at the ith row and jth column. A invertible matrix
is elementary if it equal to the sum of the identity matrix I with rδij , r ∈ R and i 6= j, a matrix
consisting of a single off-diagonal nonzero element. Let E(R) ⊂ GL(R) be the subgroup generated
by all elementary matrices.

Lemma 1.1. The subgroup E(R) is equal to [GL(R),GL(R)], the commutator subgroup of GL(R).

Proof. Any elementary matrix I + rδik is equivalent to the commutator

I + rδik = (I + rδij)(I + δjk)(I − rδij)(I − δjk).

Conversely, show that for any A,B ∈ GL(R), the commutator ABA−1B−1 can be expressed a
product of elementary matrices. See, e.g., [6]. �

Definition 1.2. K1(R) is GL(R)/E(R) = GL(R)/[GL(R),GL(R)], the abelianization of the group
GL(R).

Observe the quotient GL(R)/E(R) can be expressed by imposing several equivalence relations:

• A ∼ B if B is obtained from A by adding r times the kth row of A to the lth row, for r ∈ R
and k 6= l;

• A ∼ B if B is obtained from A by switching a pair of rows or a pair of columns.
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We now return to the problem of our contractible complex X. Let X be a contractible finitely
generated complex of free R-modules. Since X is contractible, we may choose a contracting homo-
topy h. That is, h is a sequence of R-module maps hi : Xi → Xi+1 such that hi+1◦di+di−1◦hi = id
for each i. Let A denote the matrix defining the linear transformation (d + h)odd : Xodd → Xev.
Likewise, let B denote the matrix of the linear transformation (d + h)ev : Xev → Xodd. Note that
the matrices A and B both define classes, [A] and [B], in K1(R).

Now, the composition B ◦ A : Xodd → Xev → Xodd is the identity matrix I, exactly by the
formula for h being a contracting homotopy. Thus, we obtain that the class [A] + [B] = [B ◦ A] is
the identity element [I] = 0 ∈ K1(R), so [A] = −[B].

Select the matrix A. This will be our invariant in K1(R) associated to such a contractible complex
X. We will refer to this element as the torsion of X. Since the choice of [A] versus B was somewhat
arbitrary, we make the following definition.

Definition 1.3. Let X be a contractible finitely generated complex of free R-modules with a basis.

The torsion τ(X) is class [A] ∈ K̃1(R), where K̃1(R) = K1(R)/Z× is the reduced K-group of R.

Remark 1.4. There is also a definition of torsion when X is not necessarily contractible, which is
slightly more involved. See [6].

Our situation is slightly different, however, in that our basis for the contractible complex X was
only well-defined up to a certain equivalence relation.

Since the determinant map det : GL(R)→ R× is trivial when restricted to E(R), there is thus a
factorization:

E(R) //

$$IIIIIIIII
GL(R) //

��

K1(R)

detzzt t
t

t
t

R×

There is a section R× → K1(R), defined by sending a unit a ∈ R× to the class of the 1× 1-matrix
[a] ∈ K1(R). This defines a splitting K1(R) ∼= R× ⊕ ker(det).

Remark 1.5. Nothing in this construction depended on the ring Zπ being a group ring. The same
construction could be made for any ring R together with a choice of subgroup of the units of R,
G ⊂ R×. In our case, this subgroup is Z× × π ⊂ Z[π]×.

Definition 1.6. For a group π, the Whitehead group of π is K1(Zπ)/Z× × π = Wh(π).

We can also define the Whitehead torsion of a homotopy equivalence of finite CW complexes.

Definition 1.7. Let f : K → K ′ be a cellular homotopy equivalence of finite CW complexes. This

induces f̃∗ : Ccell
∗ (K̃) → Ccell

∗ (K̃ ′). Then cone(f̃∗) is a contractible complex with a basis. The

Whitehead torsion of f is τ(f) = τ(cone(f̃∗) ∈Wh(π1K
′).

Definition 1.8. An elementary expansion is a map X → X
⋃

Dn Dn+1 of the form

X // X
⋃

Dn Dn+1

Dn

OO

// Dn+1

OO

where Dn → Dn+1 factors through ∂Dn+1.

Definition 1.9. An elementary collapse is a collapse map X
⋃

Dn Dn+1 → X of the form where
Dn → Dn+1 factors through ∂Dn+1.

Definition 1.10. A map f is simple if it is a composition of elementary expansions and collapses.
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Theorem 1.11. A cellular homotopy equivalence of finite CW complexes f is homotopic to a simple
homotopy equivalence if and only if τ(f) = 0 in Wh(π1K

′).

Lemma 1.12. Whitehead torsion is a homotopy invariant.

2. The s-cobordism theorem

We have the h-cobordism theorem to classify homotopy cobordisms with trivial fundamental
group. We will now extend this to cases with non-trivial fundamental group.

Theorem 2.1 (The s-cobordism Theorem). Let M be a smooth compact manifold without boundary,
of dimension n ≥ 5. Then there is a isomorphism

H – Cob(M) −→Wh(π1M)

between the set of h-cobordisms with ingoing boundary M modulo diffeomorphisms relative to M and
the Whitehead group of π1M . It is given by sending the class of a cobordism ∂0M → W to τ(∂0),
the Whitehead torsion of ∂0. in particular, an h-cobordism ∂0 is trivial if and only if τ(∂0) = 0.

Remark 2.2. Wh(1) = 0, so if π1M = 1, Wh(π1M) = 0, which implies the h-cobordism theorem.

Proof. We will see that the s-cobordism follows from an argument very similar to that used in the
proof of the h-cobordism theorem. So we will try to duplicate the argument for the h-cobordism

theorem, but use the universal cover W̃ of the cobordism W , whose homology has an action of the
fundamental group of W .

Step 1. Apply the Normal Form Lemma to the h-cobordism W .

W ∼= M × [0, 1] +
∑
Iq

ϕq +
∑
Iq+1

ϕq+1

Step 2. The differential dq+1 is an isomorphism given by a matrix A

A : Hq+1(W̃q+1/W̃q)→ Hq(W̃q/W̃q−1)

where the homology groups have Zπ-bases given by lifts of the handles.
Step 3. Attempt to diagonalize A using handle operations. Reduce A to the 0 matrix from 0 to

0 by cancelling appropriate pairs of handles. We have a table comparing row reduction
operations on a matrix to handle operations.

matrix operations over Zπ handle operations

1. A ∼
(
A 0
0 1

)
Cancellation Lemma

2. multiply kth row by x ∈ Zπ and Modification Lemma for

add to the lth row [ϕq+1
k |Sq ] + xdq+1[ϕq+1

l ]

3. interchange rows or columns relabel handles

4. multiply the ith row by ±γ for pre-compose by a map of degree −1
γ ∈ π and/ or change the lift of ϕ

If the matrix corresponding to a cobordism W can be diagonalized by these steps, W is
trivial. For a general ring R, not every matrix in GL(R) is diagonalizable. The s-cobordism
theorem characterizes nontrivial h-cobordisms W by characterizing the matrices associated
to them.

We must consider the matrix A corresponding to W modulo the above relations. A priori, we
have A ∈ GLn(Zπ1M) where n depends on the size of A. Imposing relation 1 corresponds to
considering A as an element of GL(Zπ1M). Imposing relations 2 and 3 corresponds to considering
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A as an element of K1(Zπ1M). Imposing relation 4 corresponds to considering A as an element of
Wh(π1M).

To show that the map in the theorem is well defined, we note that [A] = τ(Ccell
∗ (W̃ , ∂0W̃ )) in

Wh(π1M). Then since Whitehead torsion is a homotopy invariant, [A] is a diffeomorphism invariant.
To show that it is surjective, we note that given an element of Wh(π1M), we can choose a matrix

representing that element and build a handlebody with that matrix as its cellular differential.
That it is injective follows from basic properties of Whitehead torsion (e.g., the sum and compo-

sition formulas, see [5]), or from the following section (though this is overkill). �

3. The topological invariance of Whitehead torsion

The Whitehead torsion of a map is a topological invariant of a CW complex. That is, if f : X → Y
is a homeomorphism, then f is a simple homotopy equivalence: τ(f) = 0 in Wh(π1Y ). This was
a longstanding conjecture proved by Chapman, [2], more than ten years after Barden, Mazur, and
Stallings proved the s-cobordism theorem.

Chapman first proved the theorem using the theory of Q-manifolds, where Q =
∏

N[0, 1] is the
Hilbert cube, a countable product of intervals. A Q-manifold is a separable metric space with a
open cover of open subsets of Q.

Theorem 3.1. Let X be a finite CW complex. Then X ×Q is a Q-manifold. Likewise, let M be a
compact Q-manifold. Then there is a homeomorphism M ∼= X ×Q for some finite CW complex X.

Thus, there is a close relation between the homotopy theory of CW complexes and the homeo-
morphism theory of Q-manifolds. Chapman, building on a result of West, proved the following very
satisfying theorem:

Theorem 3.2. A map f : X → Y of finite CW complexes is a simple homotopy equivalence if and
only if the map of Q-manifolds f × id : X ×Q → Y ×Q is homotopic to a homeomorphism.

Corollary 3.3 (Topological invariance of Whitehead torsion). If f is a homeomorphism then τ(f)
is zero in Wh(π1Y ).
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