MATH 465, LECTURE 15: THE S-COBORDISM THEOREM, SIMPLE
HOMOTOPY, AND WHITEHEAD TORSION

J. FRANCIS, NOTES BY A. SMITH

Previously, given an h-cobordism W with a specified handlebo/dz/ presentation, we had an asso-
ciated contractible chain complex of free Zm-modules: O:eﬂ(W, OoW). Here 7 denotes the group
m1(0oW) =2 mW. Recall that this contractible complex came to us with a natural equivalence
class of basis, given by lifts of the handles. That is, for each ¢g-handle ¢!, we choose a lift of the
characteristic map

B : (DI x D", 8971 5 D) —s (W, W,_1)
and then we pushforward a relative fundamental class of the ¢-disk to obtain a cellular class [¢!] €
Hq(Wq,Wq_l) = C’ge“(W,ﬁ/oT/I// ). In selecting each basis element, we made an arbitrary choice
of lift, which we could alter by acting by a deck transformation v; € w, and an arbitrary choice
of fundamental class, which we alter by multiplying by —1. This (unordered) basis is thus only
well-defined up to multiplying by +~;, for each 3.

It might be tempting to think that this complex C:;e“(W, 5;14// ) might contain no information
because it is contractible. But this would be a mistake. So let us now address the question: What
invariant can extracted from a contractible finite complex of free Zm-modules equipped with an
equivalence class of basis?

1. THE WHITEHEAD GROUP AND WHITEHEAD TORSION

Let X be a contractible finite complex of free Zm-modules with an unordered Zmr-basis of each
X,. Given such an X, we will produce an element of K;(Z), the first algebraic K-group of the
ring Zm.

Let us first recall the definition of K;(R). (This is originally due to Whitehead, who defined it
for this exact purpose.) Let GL(R) denote the sequential colimit colim,,_, GL,(R). Let ¢;; denote
the matrix which is zero except for a single entry at the ith row and jth column. A invertible matrix
is elementary if it equal to the sum of the identity matrix I with rd;;, » € R and 7 # j, a matrix
consisting of a single off-diagonal nonzero element. Let F(R) C GL(R) be the subgroup generated
by all elementary matrices.

Lemma 1.1. The subgroup E(R) is equal to [GL(R), GL(R)], the commutator subgroup of GL(R).

Proof. Any elementary matrix I + rd;; is equivalent to the commutator
I+7ré;y, = (I+ T(Sij)(l—f— (Sjk)<l — T(Sij)(l — (Sjk).

Conversely, show that for any A, B € GL(R), the commutator ABA™'B~! can be expressed a
product of elementary matrices. See, e.g., [6]. O

Definition 1.2. K;(R) is GL(R)/E(R) = GL(R)/[GL(R), GL(R)], the abelianization of the group
GL(R).

Observe the quotient GL(R)/E(R) can be expressed by imposing several equivalence relations:

e A ~ B if B is obtained from A by adding r times the kth row of A to the lth row, for r € R
and k # [;
e A~ B if B is obtained from A by switching a pair of rows or a pair of columns.
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We now return to the problem of our contractible complex X. Let X be a contractible finitely
generated complex of free R-modules. Since X is contractible, we may choose a contracting homo-
topy h. That is, h is a sequence of R-module maps h; : X; — X;;1 such that h;10d;+d;_10h; =id
for each i. Let A denote the matrix defining the linear transformation (d + h)odd : Xodd — Xev-
Likewise, let B denote the matrix of the linear transformation (d 4+ h)ey : Xev = Xoda. Note that
the matrices A and B both define classes, [4] and [B], in K;(R).

Now, the composition B o A : Xoqq4 — Xev — Xoda is the identity matrix I, exactly by the
formula for h being a contracting homotopy. Thus, we obtain that the class [A] 4+ [B] = [B o 4] is
the identity element [I] =0 € K;1(R), so [A] = —[B].

Select the matrix A. This will be our invariant in K7 (R) associated to such a contractible complex
X. We will refer to this element as the torsion of X. Since the choice of [A] versus B was somewhat
arbitrary, we make the following definition.

Definition 1.3. Let X be a contractible ﬁnitell generated complex of free R-modules with a basis.
The torsion 7(X) is class [4] € K1(R), where K1(R) = K1(R)/Z* is the reduced K-group of R.

Remark 1.4. There is also a definition of torsion when X is not necessarily contractible, which is
slightly more involved. See [6].

Our situation is slightly different, however, in that our basis for the contractible complex X was
only well-defined up to a certain equivalence relation.

Since the determinant map det : GL(R) — R* is trivial when restricted to E(R), there is thus a
factorization:
E(R) — GL(R) — Ki(R)

\ J/ - /det
~
RX
There is a section R* — K7 (R), defined by sending a unit a € R* to the class of the 1 x l-matrix
[a] € K1(R). This defines a splitting K7 (R) & R* @ ker(det).

Remark 1.5. Nothing in this construction depended on the ring Zz being a group ring. The same
construction could be made for any ring R together with a choice of subgroup of the units of R,
G C R*. In our case, this subgroup is Z* x w C Z[x|*.

Definition 1.6. For a group 7, the Whitehead group of 7 is Ky (Z7)/Z* x 7 = Wh(n).
We can also define the Whitehead torsion of a homotopy equivalence of finite CW complexes.

Deﬁnitign 1.7. Let f: K — K L be a cellular horpotopy equivalence of finite CW complexes. This
induces f. : CN(K) — Ce(K). Then cone(f,) is a contractible complex with a basis. The
Whitehead torsion of f is 7(f) = 7(cone(f.) € Wh(m K').

Definition 1.8. An elementary expansion is a map X — X (Jp. D" "' of the form

X —XUpn Dt

]

Dn Dn+1
where D" — D"*! factors through 9D" 1.

Definition 1.9. An elementary collapse is a collapse map X (Jpn D"t — X of the form where
D" — D" factors through D"+,

Definition 1.10. A map f is simple if it is a composition of elementary expansions and collapses.
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Theorem 1.11. A cellular homotopy equivalence of finite CW complexes f is homotopic to a simple
homotopy equivalence if and only if 7(f) =0 in Wh(m K').

Lemma 1.12. Whitehead torsion is a homotopy invariant.

2. THE S-COBORDISM THEOREM

We have the h-cobordism theorem to classify homotopy cobordisms with trivial fundamental
group. We will now extend this to cases with non-trivial fundamental group.

Theorem 2.1 (The s-cobordism Theorem). Let M be a smooth compact manifold without boundary,
of dimension n > 5. Then there is a isomorphism
H-Cob(M) — Wh(m M)

between the set of h-cobordisms with ingoing boundary M modulo diffeomorphisms relative to M and
the Whitehead group of miM. It is given by sending the class of a cobordism doM — W to 7(0p),
the Whitehead torsion of Oy. in particular, an h-cobordism Oy is trivial if and only if () = 0.

Remark 2.2. Wh(1) =0, so if m M =1, Wh(mM) = 0, which implies the h-cobordism theorem.

Proof. We will see that the s-cobordism follows from an argument very similar to that used in the
proof of the h-cobordism theorem. So we will try to duplicate the argument for the h-cobordism
theorem, but use the universal cover W of the cobordism W, whose homology has an action of the
fundamental group of W.

Step 1. Apply the Normal Form Lemma to the h-cobordism W.
WM x 0,1+ ¢+ Y ¢!
Iy Iqt1

Step 2. The differential d,4 is an isomorphism given by a matrix A
A Hypr(Wopa /W) — Ho(We/Wq—1)

where the homology groups have Zm-bases given by lifts of the handles.

Step 3. Attempt to diagonalize A using handle operations. Reduce A to the 0 matrix from 0 to
0 by cancelling appropriate pairs of handles. We have a table comparing row reduction
operations on a matrix to handle operations.

matrix operations over Znw handle operations
1.| A~ ( 13 (1] ) Cancellation Lemma
2. | multiply kth row by € Z7 and | Modification Lemma for
add to the Ith row [P0 |ga] 4 xdgia [P
3. | interchange rows or columns relabel handles

4. | multiply the ith row by £+ for | pre-compose by a map of degree —1
yeT and/ or change the lift of ¢

If the matrix corresponding to a cobordism W can be diagonalized by these steps, W is
trivial. For a general ring R, not every matrix in GL(R) is diagonalizable. The s-cobordism
theorem characterizes nontrivial h-cobordisms W by characterizing the matrices associated
to them.

We must consider the matrix A corresponding to W modulo the above relations. A priori, we
have A € GL,(Zm1 M) where n depends on the size of A. Imposing relation 1 corresponds to
considering A as an element of GL(Zm1M). Imposing relations 2 and 3 corresponds to considering

3



A as an element of Ky (Zm M). Imposing relation 4 corresponds to considering A as an element of
Wh(ﬂ'l M) .
To show that the map in the theorem is well defined, we note that [A] = 7(C<(W,8,W)) in
Wh(m M). Then since Whitehead torsion is a homotopy invariant, [A] is a diffeomorphism invariant.
To show that it is surjective, we note that given an element of Wh(m; M), we can choose a matrix
representing that element and build a handlebody with that matrix as its cellular differential.
That it is injective follows from basic properties of Whitehead torsion (e.g., the sum and compo-
sition formulas, see [5]), or from the following section (though this is overkill). O

3. THE TOPOLOGICAL INVARIANCE OF WHITEHEAD TORSION

The Whitehead torsion of a map is a topological invariant of a CW complex. That is, if f: X — Y
is a homeomorphism, then f is a simple homotopy equivalence: 7(f) = 0 in Wh(mY'). This was
a longstanding conjecture proved by Chapman, [2], more than ten years after Barden, Mazur, and
Stallings proved the s-cobordism theorem.

Chapman first proved the theorem using the theory of Q-manifolds, where Q = [][0, 1] is the
Hilbert cube, a countable product of intervals. A Q-manifold is a separable metric space with a
open cover of open subsets of Q.

Theorem 3.1. Let X be a finite CW complex. Then X x Q is a @-manifold. Likewise, let M be a
compact Q@-manifold. Then there is a homeomorphism M = X x Q for some finite CW complex X.

Thus, there is a close relation between the homotopy theory of CW complexes and the homeo-
morphism theory of Q-manifolds. Chapman, building on a result of West, proved the following very
satisfying theorem:

Theorem 3.2. A map f: X — Y of finite CW complexes is a simple homotopy equivalence if and
only if the map of Q@-manifolds f xid : X x Q =Y x Q is homotopic to a homeomorphism.

Corollary 3.3 (Topological invariance of Whitehead torsion). If f is a homeomorphism then 7(f)
is zero in Wh(mY).
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