
MATH 465, LECTURE 17: MORSE THEORY AND MILNOR’S

CONSTRUCTION OF EXOTIC 7-SPHERES, FIRST PART

J. FRANCIS, NOTES BY O. GWILLIAM

Today we’ll finish up the main result in Morse theory and explain why it gives a handlebody
decomposition to every cobordism. After that, we’ll begin on the construction of exotic smooth
structures on spheres.

1. Morse theory

Over the last few lectures we’ve discovered an intimate relationship between the nondegenerate
critical points of a function and the process of attaching handles. What we’ll now show is that the
functions we want are plentiful, so that constructing handle decompositions is easy.

Definition 1.1. A Morse function f : M → R is a smooth function all of whose critical points are
nondegenerate.

Proposition 1.2. For any smooth manifold M , there exists a Morse function.

Proof. Our basic strategy, as in much of differential topology, is to modify the problem till we can
apply Sard’s lemma, which says that critical values of a function are a measure zero subset of the
range. Our proof has two stages: first, we consider a manifold that is an open subset of Rn, and
then we reduce the general case to that embedded case.

Case 1:
Let M be an open subset of Rn and f a smooth function on all of Rn. Consider the gradient

function g := ∇f : M → Rn. Notice that the Jacobian matrix dg is also the Hessian matrix
Hess(f), and thus we have the following useful correspondence. The critical points of f are precisely
the zero set of g, and x ∈ M is a degenerate critical point of f if and only if g(x) = 0 and dg(x) is
noninvertible. In other words, the degenerate critical points of f are in bijection with the critical
points of g on which g vanishes.

Consider the following family of functions {fa := f + 〈a,−〉}, where we range over all a ∈ Rn.
We will show that almost every fa is Morse.1 Notice that ga = ∇fa = g + a. As we saw above,

{degenerate critical points of fa} = {critical points of ga} ∩ g−1
a (0).

In other words, fa has degenerate critical points if and only if 0 ∈ Rn is a critical value of ga. By
Sard’s lemma, we know that 0 will be a regular value for almost every choice of a.

Case 2:
We treat the case of a general manifold by piggybacking on our work above. Choose an embedding

M ↪→ RN of our n-manifold into some Euclidean space. Pick an open cover {Uα} of M such that
for every Uα there is a projection π : Uα → Rn ⊂ RN onto a coordinate subspace that defines a
coordinate chart for Uα.2 In other words, for each Uα, we get an embedding Uα ↪→ Rn by only
paying attention to some subset of the coordinate variables in the full Euclidean space. Note that
we restrict attention to manifolds such that we can make such a cover that is countable and locally
finite.
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Given a smooth function f : M → R, we can again consider fa = f + 〈a,−〉, for any a ∈ RN .
By restricting our attention to Uα, we can apply Case 1 to determine the measure zero set in RN
of the vectors a for which fa|Uα

is not Morse. Running over all opens in the cover, we construct
a measure zero set of a for which fa is not Morse on M (here we use that the cover is countable).
Hence there is some value a for which fa is Morse. �

Note that our proof suggests that Morse functions are dense in the space of all smooth functions.

Corollary 1.3. Every cobordism W has a handlebody decomposition.

Proof. With a little work, see [2], one can show that there exists a Morse function f such that
f(∂0W ) = 0 and f(∂1W ) = 1. �

Remark 1.4. This was the last necessary ingredient in our proof of the h-cobordism theorem. Recall
that our proof assumed the existence of a handlebody presentation for an h-cobordism W : The
existence of such a handlebody presentation is now assured by existence of a Morse function on W
and the result from the previous lecture that a Morse function begets a handle presentation.

2. Exotic spheres

By the h-cobordism theorem, there is a single topological manifold structure on the homotopy
type of the sphere Sn, n ≥ 5. This naturally leads us to ask the following.

Question 2.1. Is there also a unique smooth manifold structure? If not, what are the other smooth
structures?

In this lecture we’ll just try to construct an exotic sphere and see what we’ll need to do to show
they exist.

Observe that some spheres are obtained as total spaces of fibrations. For example, there are the
Hopf fibrations S1 ↪→ S3 → S2, S3 ↪→ S7 → S4, and so on. Let’s try to fiber them differently. In
other words, we want to build a smooth fiber bundle

Sn−1 ↪→M → Sn

such that the connecting map δ : πnS
n → πn−1S

n−1 is an isomorphism because the manifold
M will then be (2n − 2)-connected. Note that this assertion about connectedness follows from
looking at the homology Serre spectral sequence for this (putative) fibration: by the Hurewicz map
from homotopy to homology, the connecting map δ is also the differential dn : Hn(Sn, H0S

n−1)→
H0(Sn, Hn−1S

n−1). Hence we know that M has the same homology as S2n−1 and M is simply
connected, and so, by the h-cobordism theorem, M is homeomorphic to S2n−1.

So we now have a strategy: classify the smooth fibrations of the form above. Let’s try S1 ↪→M →
S2 first. Abstractly, we could construct such a smooth fibration by picking a map S2 → BDiff(S1),
but this is a hard space to work with. Instead, we will consider maps into BSO(2) ⊂ BDiff(S2), since
that space is much more tractable. Given a map f : S2 → BSO(2), we pull back the tautological
bundle to get an SO(2)-bundle on S2. Since SO(2) is the space S1, we have our S1-bundle. Since
the map f induces a map of SO(2)-bundles (by construction), we get a map between the long exact
sequences in homotopy. The boundary map δ : π2S

2 → π1S
1 is an isomorphism if and only if the

map f∗ : π2S
2 → π2BSO(2) is an isomorphism. But if f∗ is an isomorphism, then M is precisely

S3 as f must then classify the Hopf bundle.
Let’s try S3 ↪→ M → S4. Thus we consider maps S4 → BSO(4). What is π4BSO(4)? Recall

that we have a universal cover

Sp(1)× Sp(1)→ SO(4) ∼= Isom+(H),

(u, v) 7→ (x→ u · x · v−1).

(Recall that Sp(1) = SU(2) is the unit quaternions and hence the space S3.) The kernel of this
map is Z× = {±1}. Thus we have a fibration

Z× ↪→ Sp(1)× Sp(1)→ SO(4),
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and the long exact sequence in homotopy tells us π4B(Sp(1)× Sp(1)) ∼= Z× Z ∼= π4BSO(4).
Now we need to address the question of what condition on f : S4 → BSO(4) implies that the

boundary map δ is an isomorphism? Recall that S3 = SO(4)/SO(3). Hence we can view M as the
pullback along f of the bundle

S3 ↪→ ESO(4)×SO(4) S
3 → BSO(4),

where the total space is the Borel construction

ESO(4)×SO(4) S
3 ∼= (S3)hSO(4),

namely, the homotopy orbits of the SO(4) action on S3. Playing with notation, we see

S3 = SO(4)/SO(3) =⇒ S3/SO(4) = (SO(4)/SO(3))/SO(4) ' pt/SO(3) = BSO(3).

Thus, f gives a map of fibrations

S3 ↪→ M → S4

↓ ↓ ↓
S3 ↪→ BSO(3) → BSO(4)

and hence a map between the long exact sequences in homotopy. In particular, we have a commuting
square

π4S
4 δ //

f∗

��

π3S
3

∼=
��

π4BSO(4)
δ′ // π3S

3

and so we see that describing δ′ will let us characterize which maps f∗ make δ an isomorphism.
Understanding δ′ is quite straightforward, thankfully. Notice that our S3-fibration over BSO(4)

“rotates” to the fibration SO(3) ↪→ SO(4) → S3 so that the map π3SO(4) → π3S
3 is exactly the

map δ′ : π4BSO(4) → π3S
3. From our work above, we know we can lift this SO(3)-bundle to the

bundle Sp(1)
∆
↪→ Sp(1)× Sp(1)→ S3 (using the obvious universal cover stuff). But now we see

π3(Sp(1)× Sp(1))→ π3S
3

(i, j) 7→ i− j
and so δ′ is precisely the “difference” map. Hence f∗ must send a generator of π4S

4 to pair of
integers (i, j) ∈ π4BSO(4) that differ by ±1.
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