
EXOTIC 7-SPHERES, PART III

J. FRANCIS, NOTES BY H. TANAKA

1. Summary of last time

(1) We first constructed an invariant of oriented 7-manifolds. We showed (using Thom’s cobor-
dism theory) that the oriented cobordism ring of 7-manifolds is zero. That is, ΩSO

y = 0. That is,
every oriented 7-manifold bounds some 8-manifold. Then, using the Hirzebruch signature theorem,
we showed “given a 7-manifold M , if you choose some 8-manifold B with ∂B = M , then the number

λ(M) := 2〈p21(B), [B, ∂M ]〉 − Sig(B)

modulo 7 is independent of B. We called this invariant λ(M). (Here, [B, ∂M ] is the relative
fundamental class of B, and the pairing is that of cohomology to homology. p1 is the first pontrjagin
class. Sig is the signature of B.

(2) We constructed 7-manifolds by fibering S3 over S4. We used that fact that π4BSOf = Z×Z.
(This is a special n—π4BSO(n) = π4BSO(5) = Z for all n ≥ 5; we’re just out of stable range with
n = 4.) Choosing a class (i, j) such that i− j = 1,

S3

��

// S3

��
Mi,j

��

// BSO(3)

��
S4

fij

// BSO(4)

from the long exact sequence on π∗, we see that Mij is 6-connected. By the h-cobordism theorem,
M7 is hence homeomorphic to S7.

(3) We calculated λ(Mij), knowing

Mij = ∂Disk(ξij)

where ξij is the vector bundle classified by fij , and B = Disk(ξij). The signature of B is equal to 1
sinceH4B is 1-dimensional. (It’s a disk bundle over S4). Then we calculated that p1(B) = ±2(i+j)ι.

2. Finishing the proof

Now let’s calculate some more. Setting k = i+ j, we have that

λ(Mij) = 2pi21(B)− Sig(B) = 8k2 − 1

which equals k2 − 1 modulo 7.
Then, for k2 6= 1 modulo 7, Mk is not diffeomorphic to S7, because the value of this invariant for

S7 is zero.
So there exist exotic spheres, QED.
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3. More Exotic Spheres. Kervaire-Milnor’s Computation of Θn

How is the entire theory of exotic spheres supposed to work? It’s not clear; we used some trick
that used how a low-dimensional homotopy group behaved for SO(4). Moreover, there may be other
exotic 7-spheres. So what we should ask for now is how to do this systematically. This is work of
Kervaire and Milnor.

Definition 3.1. Let Θn denote the collection of diffeomorphism classes of exotic n-spheres.

By the h-cobordism theorem, this collection is in bijection with another(a priori different) set of
equivalence classes.

Θn = {exotic n-spheres}/h-cobordisms

4. Proof of Theorem

There’s a fundamental theorem that we’ll partially consider:

Theorem 4.1. Every exotic n-sphere M is stably parallelizable. That is, TM ⊕ R1 is trivial.

Remark 4.2. This is clearly true for the standard n-sphere. Also, While stably parallelizable usually
means we can add a trivial bundle Rk of some dimension n, the homotopy groups of SO(n) tells us
that k = 1 is enough. This is because TM is classified by some map

M → BO(n)

and tacking on a trivial bundle of dimension k is the same as a map

M → BO(n+ k)

which is just saying that the composition

M → BO(n)→ BO(n+ k)

becomes null-homotopic. But the long exact sequence on π∗ associated to the fibration

O(n+ 1) // O(n+ 2)

��
Sn+1

tells us that πiO(n+ 1) ∼= πiO(n+ 2) for i ≤ n. So V ⊕Rk is trivial if and only if V ⊕R1 is trivial.
Note this fact is true of any n-dimensional manifold M .

Remark 4.3. If M is homeomorphic to Sn, TM is classified by an element of πnBSO. Bott period-
icity helps us here. It tells us that for O,

πi(Z×BO) =



Z i = 0

Z/2 i = 1

Z/2 i = 2

0 i = 3

Z i = 4

0 i = 5

0 i = 6

0 i = 7

where all the i equations are modulo 8.1

1Note that Z × BO ∼= ΩO. This even says that Ω8O ∼= O. It’s very rare that one can compute all homotopy

groups of a nice geometric space, so Bott Periodicity is a very amazing theorem. We black-box it for the moment.
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Corollary 4.4. (1) For n = 3, 5, 6, 7, πnBO is zero. Hence the class [TM ⊕ R1] ∈ πnBO is also
zero.

Proof. (2) Now assume that n = 0 mod 4. Then if the map Sn → BO classifying TM is non-zero,
then the pontrjagin class of pn/4(TM) is non-zero. But the Hirzebruch signature theorem would
then imply that the signature of M is non-zero, since pi(M) = 0 for all i < n/4. But the signature
of any manifold is a topological invariant, so if M is homeomoprhic to a sphere, its signature is zero.
Hence [TM ⊕ R] = 0.

(3) This is hard. We’ll say a few words, then come back to it later. If n = 1, 2 mod 8, we have
these Z/2 showing up. This depends on an understanding of the j homomorphism. �

Definition 4.5 (J-homomorphism). We define a map

Jk : πk0→ πkS0)

as follows. There is a map

O(n)→Mapspairs((D
n, Sn−1), (Dn, Sn−1))

given by the action of O(n) on (Dn, Sn−1), and collapsing

O(n) //

J ))TTTTTTTTTTTTTTTTT Mappairs((D
n, Sn−1), (Dn, Sn−1))

��
Map∗(Sn, Sn)

gives an unstable version of J .2 It gives us a map

πkO(n)→ πkΩnSn ∼= πn+kS
n.

Letting n→∞, we have the stable version, a map

Jk : πkO → πkS0.

Now the J-homomorphism on homotopy groups is injective.

Theorem 4.6 (Adams, J(X) IV). The map

Jk : πkO → πkS0

is injective for k = 1, 2 modulo 8.

Corollary 4.7. TM ⊕ R is trivial if and only if the associated bundle of spheres is trivial. This
can be shown to be trivial.3

So we have a surjective map from stabley framed exotic n-spheres to exotic n-spheres, and the
corresponding maps in the cobordism theory

Θn
// Ωfr

n/{framings}

Θfr
n

OO

// Ωfr
n

OO

And Pontrjagin-Thom says that

2Owen points out this is the same thing as embedding O(n) ↪→ O(n + 1).
3Given a vector bundle, we can form a disk bundle. Then we quotient out by the boundaries of these disks,

fiberwise, to form a sphere bundle. This is what the J homomorphism is doing. So the vector bundle is trivial if
and only if the associated bundle of spheres is trivial. We’ll give an argument later about why this sphere bundle is

trivial.
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ΩB
∗

B=∗
��

// π∗MB

MB=S0

��
Ωfr

∗
// π∗S0

But we get that
Ωfr

∗ = π∗S0/image(π∗O) = Coker(J∗).

So
Θn

// Coker(Jn)

Θfr
n

OO

// Ωfr
n

OO

By defining bPn+1 to be the kernel of the map Θn → Ωfr
n/{framing} (i.e., those exotic n-spheres

that bound a parallelizable (n+ 1)-manifold) we need to understand

bPn+1 → Θn → Θn/bPn+1 → Coker(Jn)

and there is a theorem that almost always, this last map is an isomorphism. So studying Θn/bPn+1

reduces to understanding homotopy theory and the image of J∗.4 On the other hand, understanding
bPn+1 involves studying framed surgery. This is the somewhat more tractable problem.

So the next order of business is the J-homomorphism. In the end we’ll get some results, like Θn

is zero for n = 5, 6 and Θ7 has 28 elements.

4This is hard, this involves knowing the homotopy groups of S0 and O.
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