
MATH 465, LECTURE 1: OVERVIEW

J. FRANCIS, NOTES BY H. TANAKA

The driving question for this class will be to classify manifolds. There are two obvious features
to address in making this question more precise:

(1) What kinds of manifolds?
(2) Classify up to what notion of equivalence?

1. What kinds of manifolds?

Topological manifolds form the most basic choice. A topological manifold is just a particularly
nice type of topological space: being locally Euclidean is a property of a space (as is being Hausdorff
and paracompact). There’s no need to choose additional structure, such as a topological atlas.

Of course, one may want to do analysis on manifolds, so we may also want to consider smooth
structures (i.e., a smooth atlas) on topological manifolds, particularly since all the canonical exam-
ples of manifolds come with such a structure.

However, there are reasons to make a slightly different choice, that of piecewise linear (PL) man-
ifolds. For one, our interest in analysis might be slight, and it might be focused on the large class
of analytic invariants that admit more topological interpretations (e.g., the de Rham complex).
For another, more historical, reason, the origins of topology were very combinatorial, so the notion
of a PL manifold might well be that closest to Poincaré’s original ideas. Finally, and most com-
pellingly, we might want to restrict attention to those invariants that are readily computable from a
triangulation – TFT invariants should look like this, according to the Baez-Dolan hypothesis. The
structure of topological manifolds is insufficient (in part since it is not obvious that they are even
triangulable), while the PL structure is fundamental. PL manifolds have fallen out of style recently,
but they may make a comeback.

So the three basic cases we’ll consider are topological, smooth, and PL manifolds.

2. Classify up to what?

The most obvious classification would be to ask for a list of equivalence classes of Cat manifolds
up to Cat homeomorphism, where Cat refers to smooth, PL, or topological. This has the practical
drawback that it is hard, since the equivalence relation is so restrictive, and the theoretical drawback
that it is not possible to produce a sensible list, for both practical and list-theoretic reasons. We can
deal with the first issue by dealing with a coarser classification problem first: classify manifolds up
to cobordism. Thom’s cobordism theory gives a simple classification, amenable to the list format:
The cobordism group of n-manifolds is a finitely generated abelian group for any n, and it is possible
to make explicit choices of generators. This will be our first subject.

But, for example, all orientable 2-manifolds bound a 3-manifold, and all orientable 3-manifolds
are parallelizable, and hence bound a 4-manifold. So the cobordism classification of orientable 1-, 2-,
and 3-manifolds is trivial, since they are all null-cobordant, even though the theory of 3-manifolds
is, of course, very interesting.

So how does one refine this coarse classification? Well, cobordism can alter the homotopy type
of a manifold (for instance, an orientable 2-manifold does not have the homotopy type of the empty
set, even though they are cobordant). So what if we ask for cobordisms also preserve homotopy
classes? This is the notion of an h-cobordism.
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Definition 2.1. M is h-cobordant to N if there exists a manifold W with boundary iqj : MqN
∼=−→

∂W for which the maps i : M ↪→W , j : N ↪→W are both homotopy equivalences.

This radically throws out the grossness of previous classification, so much so that it’s not clear
that the notion of h-cobordism is different from the notion of Cat homeomorphism. That is, the first
example of an h-cobordism is a cylinder, W = M× [0, 1]; but are there any nontrivial h-cobordisms?

However, the problem of classifying manifolds up to h-cobordism is more immediately tractable.
For example, Kervaire and Milnor mostly did this for spheres Sk for all k (except k=3 or 4, and
modulo a factor in certain dimensions depending on the Kervaire invariant problem, solved by Hill-
Hopkins-Ravenel). By the h-cobordism theorem, their work simultaneously classified exotic smooth
structures on spheres.

Theorem 2.2 (The h-cobordism theorem). Let M be simply-connected Cat manifold of dimension
greater than 4. Let W be an h-cobordism from M to N . Then W is Cat-homeomorphic to the
product M × [0, 1]

This has a corollary.

Corollary 2.3 (Higher dimensional Poincaré conjecture). If M is a smooth or PL manifold of
dimension greater than 4, and M is homotopy equivalent to some Sn, then M is PL homeomorphic
(and, in particular, homeomorphic) to Sn.

The result was first proved by Smale in the smooth case for dimensions greater than 6, then
shortly thereafter by Stallings for PL manifolds, then by Zeeman for dimensions 5 and 6. It is false
that M need be diffeomorphic to Sn, as Milnor’s construction of an exotic 7-sphere first showed.

So, there is no unique section of the forgetful functor MfldsDiff → MfldsTop. In fact, there is no
section at all, because there exist unsmoothable topological manifolds.

What about manifolds with nontrivial fundamental groups? Here, the h-cobordism theorem
fails: There exist h-cobordisms that are not products. But this is fixable by refining our notion of
“homotopy” to correct this equivalence. The required notion is that of a simple homotopy.

The idea is as follows: For M a smooth or PL manifolds, M has a CW structure. Thus we
can ask that homotopies be of a certain type—if it is built up by a nice kind of inclusion (like a
circle into a cylinder, which looks like a fattening or an expansion) or a nice kind of surjection
(like a cylinder down to a circle, which looks like contracting or collapsing), we’ll call this a simple
homotopy equivalence.

Definition 2.4. An s-cobordism is an h-cobordism for which i and j are simple homotopy equiva-
lences.

It is not true that any homotopy equivalence can be expressed as a composite of these nice kinds
of maps. So not every homotopy equivalence of CW complexes is simple. But there is a classification
of all types of homotopy equivalences of CW complexes, given by something called the Whitehead
torsion. This is a purely algebraic invariant determined by π1.

So we can refine our classification to obtain:

Theorem 2.5 (The s-cobordism theorem). (Barden, Mazur, Stallings) For dim M > 4, an s-
cobordism W of M is equivalent to a product W ∼= M × [0, 1]. Furthermore, the collection of equiva-
lence classes h-cobordisms with source M are uniquely classified by Whitehead torsion: H – Cob(M) ∼=
Wh(π1M).

Remark 2.6. For topological 4-manifolds, this is due to Freedman. Donaldson showed the h-
cobordism theorem fails for smooth 4-manifolds.

That is, h-cobordisms of M are in one-to-one correspondence with elements of the Whitehead
group of π1M (which is a quotient of the algebraic K-group K1(Z[π1M ])).

Now we have some ways of classifying manifolds in terms of homotopy theory. For instance,
the results of Smale, Kervaire, and Milnor classified exotic spheres by first specifying the homotopy
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type of Sn, then classifying smooth manifolds within this homotopy type (which all happened to be
homeomorphic). This idea could be applied more generally: Instead of asking for a list of all smooth
manifolds, we could ask for a mechanism for listing smooth manifolds within a homotopy type, once
that homotopy type has been specified. The ideas that went into these theorems can then be applied
quite generally, as was done by C.T.C. Wall (Browder and Novikov in the simply-connected case).

Theorem 2.7 (The fundamental theorem of surgery). There exists an exact sequence (of sets)
which we call the surgery exact sequence for any , as follows:

S̃Cat(X)→ NCat(X)→ L[π1X]

Here S̃Cat(X) is the set of equivalence classes of Cat manifolds M such that M is homotopy
equivalent to X; NCat(X) is a set reflecting data about the possible normal bundles of X; the
algebraic L-theory group L[π1X] determines an obstruction. (This sequence can be continued to
the left, which we will also discuss later.)

3. Second half

The preceding will form the core of the course. In the latter half of the course, we tackle some
subset of the following: smoothing theory, low-dimensional manifolds, and topological field theories.

First, instead of set ways of giving manifold structures, what is the space of ways?
Version One: Let X be a space. Then define SCat(X) to be the Cat structure space of X

(the space of all Cat manifolds homotopy equivalent to X) which we will define to be BCX , the
classifying space of a topological category CX . The category CX is defined to have as objects the
Cat manifolds M homotopy equivalent to X, and morphism spaces consist of Cat homeomorphisms,
MapCX (M,N) = HomeoCat(M,N).

So π0SCat(X) is the set of equivalence classes of manifolds homotopy equivalent to X. Each
connected component is the classifying space of Diff(M) (or Top(M) or PL(M)).

Version 2 (relative) By a theorem of Whitehead, every smooth manifold has an essentially
unique underlying PL manifold structure. We therefore have a hierarchy of structures

MfldsDiff
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And, given an object M of one of these categories, a Cat0 manifold, we could ask for the space of
lifts of that object to the category of Cat1 manifolds: This space of lifts is equivalent to the fiber of
the map SCat1(M) → SCat0(M) over the point M ∈ SCat0(M). Smoothing theory addresses how
to analyze the homotopy type of this space of lifts.

The main theorem of smoothing theory, due to Kirby-Siebenmann (building on Cairns-Hirsch
and Hirsch-Mazur for the PL to smooth case), is that one can build a fiber bundle over a M whose
sections classify Cat1 manifold refinements of the Cat0 manifold structure on M (except in the case
where the dimension is 4 and Cat0 = Top).

This theory shows that there are obstructions to PL smoothing a topological manifold M living
in H4(M,Z/2), which can be used to disprove the Hauptvermutung, that every topological manifold
has a unique PL manifold structure. When this obstruction vanished for a topological manifold M ,
then distinct PL structures are classified by elements of H3(M,Z/2).

Finally, in low dimensions, smoothing theory contributes to the proof of the following results:
Dimension 3: Topological 3-manifolds have unique PL and smooth structures in strong sense, in

that any automorphism lifts in a unique way to a smooth map;
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Dimension 4: PL 4 manifolds have a unique smoothing.
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