
MATH 465, LECTURE 20: MORSE THEORY ON LOOP SPACES

J. FRANCIS, NOTES BY A. BEAUDRY

We have shown that, given a Morse function f on a manifold M , we obtain a CW-complex
homotopy equivalent to M which has a k-cell for each critical point of index k. Here M was a finite
dimensional manifold and the CW-complex obtained from f a finite CW-complex. We can ask
wether or not this generalizes to infinite CW-complexes so as to account for spaces like Grn(C∞) or
U . The happy fact is that if we restrict to loop spaces, Morse theory caries over without too much
work. In this lecture we will generalize the main theorem of Morse theory to loop spaces. We will
then use this result to analyze ΩU(n) and ΩSU(n).

1. The Main theorem of Morse theory for loop spaces

Let M be a smooth Riemannian manifold, and x, y be points on M . Define Ωx,yM to be the
space of piecewise smooth paths f : [0, 1] → M such that f(0) = x and f(1) = y. This loop space
is homotopy equivalent to ΩM . We define an energy function on Ωx,yM as follows.

Definition 1.1. The energy E is the function E : Ωx,yM → R given by

γ 7→
∫ 1

0

|dγ
dt
|2dt.

If you imagine the path γ to be a stretched elastic band, the energy E corresponds to the potential
energy of the band. Alternatively, if you’re familiar with the calculus of variations, E can be given
another interpretation as the action.

Our hope is to use E as a Morse function, so we need to understand what we mean by a critical
point of E, i.e., we want to define dE. We already have a definition of tangent spaces for a manifolds.
A natural way to generalize it to loop spaces is to consider tangent vectors of M along a path γ. In
other words, to take a section of the tangent bundle of M along our path.

Definition 1.2. Let γ be in Ωx,yM . The tangent space TγΩx,yM is the vector space of piecewise
smooth vector fields along γ.

Now we would like to define
dE : TγΩ→ TE(r)R.

But really, what we are after is the critical points, so it is sufficient to know when this map should
be zero. A map of vector spaces is zero if it vanishes on every one dimensional subspaces. We can
reduce the question to a finite dimensional problem.

Definition 1.3. Let γ be in Ωx,yM . A variation for γ is a map

α : (−ε, ε)→ Ωx,yM

with α(0) = γ.

A variation is a one parameter family, so passing to tangent spaces should give one dimensional
subspaces. We will want to define the critical points to be those for which dE vanishes on all
variations, i.e., the composite of the moral maps

T0(−ε, ε) dα−−→ TγΩx,yM
dE−−→ TE(γ)R

must be zero. Since we can define the map on tangent spaces for the composite E ◦α, we can bypass
dE.
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Definition 1.4. The point γ in Ωx,yM is a critical point of E if, for any variation α of γ, the map

d(E ◦ α) : T0(−ε, ε)→ TE(γ)R

is zero.

Now we turn to the index. Recall that the index of f at a critical point x is the bilinear form
given by the matrix (

∂2f

∂xi∂xj

)
.

Another description of the bilinear form f∗,∗(V1, V2) for V1 and V2 vector fields can be given by
choosing a two parameter variation α : R2 →M such that ∂α/∂ui = Vi. Then

f∗,∗(V1, V2) =
∂2(f ◦ α)

∂u1∂u2
.

One can check that the two definitions coincide, but this one is taylored for generalization.

Definition 1.5. For γ a critical point of E, the bilinear form

E∗,∗ : TγΩx,yM × TγΩx,yM → R

is defined by

E∗,∗(V1, V2) =
∂2(E ◦ α)

∂u1∂u2
(0, 0).

Here α : R2 → Ωx,yM is a two parameter family such that α(0, 0) = γ and ∂α/∂ui = Vi.

Going back to our analogy with the elastic band, if γ is a geodesic, pushing the band in any
direction increases the energy. Hence the energy is at its minimum precisely in this case. This is an
intuitive explanation for the following two lemmas.

Lemma 1.6. A geodesic is a critical point γ of E.

Lemma 1.7. A minimal geodesic is critical point of index zero, where a minimal geodesic is one
minimizing the distance between x and y.

Now we have all the ingredients to generalize the main theorem of Morse theory.

Theorem 1.8 (Main Theorem of Morse theory on loop spaces). Let M be a Riemannian manifold
and x, y be points on M , satisfying certain conditions. Under certain conditions the space Ωx,yM is
homotopy equivalent to a countable CW complex with a k-cell for each index k critical point of E.

From this we get a some homotopical information.

Theorem 1.9. If the subspace Ωmin
x,yM of minimal geodesics in Ωx,yM is a topological manifold and

the smallest index of a non-minimal cirtical point of E is equal to k, then

πi(Ωx,yM,Ωmin
x,yM) = 0 if i < k,

i.e., the inclusion Ωmin
x,yM → Ωx,yM is k − 1 connected.

We already have an example. Consider Sn+1 with antipodal points x and y. A minimal geodesic
is a meridian from x to y. It intersects the equator, Sn, in a unique point. Hence there is a
homeomorphism between Ωmin

x,yM and Sn. Our theorem tells us that Sn → Ωx,yS
n+1 ' ΩΣSn has a

certain connectivity. In fact, this map is the unit of the adjunction between loop and suspension. We
already know from Freudenthal’s suspension theorem that it is 2n− 1 connected. Another geodesic
is one that wraps around the sphere a certain number of times. You can check that index and
connectivity match in this example. We could prove Freudenthal’s Suspension Theorem this way.
But we would not have the full generality since it holds for any space given a certain connectivity.
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2. Understanding ΩU and ΩSU

In this section we describe ΩI,−IU(n) and ΩI,−ISU(2n). From Lie Theory we have a usual metric
on U(n) given by Tr(ABt), having chosen the left invariant framing of TIU(n). We can describe
TIU(n) as the set of n× n Hermitian matrices, i.e., those matrices (aij) satisfying aij = −aji.

We have an exponential map exp : TIU(n)→ U(n), given by

exp(A) =
∑
k≥0

Ak

k!
.

It is a standard fact of Lie theory that this map is surjective.
Next time, we will use this to understand the minimal geodesics of U(n) and SU(2n).
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