
MATH 465, LECTURE 22: EXOTIC SPHERES THAT BOUND

PARALLELIZABLE MANIFOLDS

J. FRANCIS, NOTES BY H. TANAKA

Our goal is to understand Θn, the group of exotic n-spheres. The group operation is connect
sum, where clearly the connect sum of two topological spheres is again a topological sphere.

We’ll write this by M]M ′. There is a cobordism M]M ′ to M
∐
M ′, given by the surgery we

perform on M and M ′ to obtain the connect sum. This is because

M]M ′ = ∂1(M
∐

M ′ × [0, 1] + φ1).

We’ve shown that any exotic sphere is stably parallelizable, in that we can always direct sum a
trivial line bundle to the tangent bundle to obtain a trivial vector bundle.

If we consider the set of framed exotic n-spheres, Θfr
n , we can consider the Pontrjagin construction

Θfr
n → Ωfr

n

but this is going to factor through the set of framed exotic spheres modlo those which are boundaries
of framed n+1-manifolds, bP fr

n+1. In fact this map is a gorup homomorphism becasue disjoint union
is cobordant to connect sum!

Θfr
n

//

��

&&MMMMMMMMMMMM Ωfr
n

��

Θfr
n/bP

fr
n+1
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Θn/bPn+1
// πnS0/πn(O)

The map from Θn/bPn+1 to πnS0/πn(O) is an injection, and this latter set is the ckernel of the
Jn homomorphism. We also have a map from Ωfr

n to πnS0/πnO by Pontrjagin-Thom.
(Note also that the map Θfr

n/bP
fr
n+1 → Ωfr

n is injective.)

bPn+1
// Θn

// Θn/bPn+1 ⊂ Coker(Jn)

We know from stable homotopy theory the following homotopy groups

πnS0 =



Z n = 0

Z/2 n = 1

Z/2 n = 2

Z/24 n = 3

0 n = 4

0 n = 5

Z/2 n = 6

Z/240 n = 7

For example the Hopf map is the generator of π3S
2 and it surjects onto π1S0 = Z/2.
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Similarly we have what is most relevant to us: The Hopf fibration S7 → S15 → S8, which is
given by the octonions. There is an action by the (unit) octonions on (units in) octonion 2-space,
and this quotient is S8. And this gives a surjection π15S

8 → π7S0, where π15S
8 is Z.

And the surjection from π70 to Z/240 is given by the J7 homomorphism.
Conclusion: This implies that the J homomorphism is surjective in degree 7. i.e., J7 is surjective.
We are interested in the cokernel of the J-homomorphism.
Well, we see that the coker Jn is given by 0 at n=5,7 and Z/2 at n = 6. This implies that
Θn/bPn+1 is equal to 0 in n = 5, 7 and 0 or Z/2 in n = 6.
So by homotopy theory, we know that this is zero in some cases.

1. How do we analyze bPn+1?

1.1. The case of bP2k+1.

Proposition 1.1. Let Mn ∈ bPn+1. Then there exists a parallelizable Wn+1 such that πiW = 0
for i < n/2, such that ∂W = Mn.

In other words, we can always find a highly-connected manifold whose boundary is Mn.

Remark 1.2. Note that M is just stably parallelizable, but W is straight-up parallelizable. As it
turns out,

Lemma 1.3. If W is a manifold with non-empty boundary, then W is parallelizable if and only if
it is stably so.

Proof. Top homology vanishes because W has non-empty boundary. We can choose a CW structure
on W such that W is homotopy equivalent to its n-skeleton.

W
TW

//

∃ ˜TW $$IIIIIIIIII BO(n+ 1)
i

// BO

BO(n)

OO

since W is homotpic to a CW complex with no cells above dimension n, then i ◦TW is trivial if and
only if W ı is trivial. �

With this lemma, here is the sketch of how to prove the proposition:

Proposition 1.4. We use framed surgery. We choose any W by surgery, and kill the lowest nonzero
homotopy of W , πiW .

[f ] ∈ πiW
then we choose any embedding

Si ↪→W 0

into the interior of W , by the map f , and perform surgery along this map. Then

W + f ∼= W
∐
Si

Di+1

so while this may introduce higher homotopy groups, it kills the lowest ones.
The only difficult detail is that we need to carry along the trivilialization of TW to TW+f . For

the moment let’s just assume we can do that.
Now we just repeat this process. But to choose embeddings into W , the dimension i cannot be

too large. This works only up to the middle dimension. After that, by Whitney Embedding theorem,
we may not be able to embed the high-dimensional spheres.

This completes the proof sketch.

Now, if the dimension of W is odd, we see by Poincare duality that more than the middle
dimension is zero.
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Corollary 1.5. Let n be even. Then Wn+1, with ∂W = Mn, can be modified so that W is
contractible. That is, any exotic sphere bounding a parallelizable manifold is the boundary of a
contractible manifold. (If M ∈ bP2n+1, then M bounds a contractible manifold.)

Proof. By the proposition, fix π2kW = 0. By Hurewicz, this means that H2kW = 0. By Poincare
duality, H2k+1W = 0. So H∗W = 0 for all ∗ > 0. �

But in the proof of the h-cobordism theorem, we saw that there are no exotic disks. That is, if
W is a contractible compact manifold, thatn W is diffeomorphic to a disk. This was for dimensions
5 or bigger. (The question for n = 4 is an open question, John thinks.)

So if M bounds a contractible manifold, then M is diffeomorphic to the sphere. So this implies
that bP2k+1 = 0.

We’re done with half of the bP analysis. We also need to apologize the Θn stuff, so we’re about
a fourth of the way done.

What we see then is that

Θn/bPn+1 =


0 n = 5

0 or Z/2 n = 6

0 n = 7

and bP2k+1 = 0.
So Θ6 = 0 or Z/2.

1.2. bP2k. What about bP2k? It turns out this further splits into whether k is even or odd. We’ll
get a topological invariant by studying the intersection form, and the kind of intersection form we
get will depend a lot on whether k is even or odd.

For M ∈ bP2k, we can obtain a (k − 1)-connected framed manifold W with ∂W = M . This has
an associated intersection form which is an algebraic “invariant” of M . How much is W specified
by this intersection form? And for what intersection forms do we get a manifold which is in fact
trivial?

So next time, in the case where k = 2m is even, we’ll construct a homomoprhism

Z→ bP4m

by a process known as plumbing, by plumbing disk bundles. It will turn out that this is a surjective
homomorphism with a kernel given by a simple formula.

(We will be taking an even unimodular lattice, and mapping it to a W whose boundary is an
exotic sphere.)

In the case where k = 2m + 1 is odd, bP4m+2 is subtle, and depends on some sophisticated
homotopy theory. It has only been closed up recently by Hopkins et al., in their work relating to
the Arf invariant.

We’ll show next time, in fact, that bP8 is Z/28, and that Θ6/bPn+1 is actually 0.
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