MATH 465, LECTURE 23: PLUMBING

J. FRANCIS, NOTES BY O. GWILLIAM

Our goal in this talk is to explain the construction known as “plumbing.” The input is an even
unimodular lattice @ and the output is a 4m-manifold whose middle cohomology has intersection
pairing described by Q.

Theorem 0.1 (Arf). The signature of an even unimodular lattice is a multiple of 8.

Remark 0.2. Recall that for a lattice, even means that (v,v) is even for all v € Q, and unimodular
means det @ = 1.

Example 0.3. The FEg lattice is defined by the matrix

21 000000
12100000
01210000
001 20000
00002101
00001210
0 000O0T120
0 0001O0O0 2

Using Arf’s theorem and plumbing, we will obtain a map
Z — bPyy,, = { parallelizable manifolds bounding a 4m-manifold }

by starting with an even unimodular lattice Q and computing its signature(Q)/8 (this lives in Z),
and then using plumbing to construct a 4m-manifold Pém and taking its boundary 0Py € bPyyy,.

1. PLUMBING

Plumbing goes as follows.

e Given @ and a basis indexed by I, for each index i € I choose a sphere S; := S?™ and take
the disk bundle Disk(TS;) — S; of its tangent bundle.

e For each nonzero entry a;; in @ with i # j, glue Disk(T'S;) and Disk(TS;) around points
in each as follows:
(1) Choose a disk in the base D; := D?™ C S; and pick a splitting of the restriction of

Disk(TS;) to D; as D; x D™,

(2) Do likewise for S; — pick a disk ...
(3) Glue the two product disks by “switching order”: D; x D>™ 5 D2m x D;.

Remark 1.1. If a;; > 0, pick a bunch of disjoint points in S; and S; and do the construction as
above. If a;; is negative, reverse orientations. Note, however, that one can pick a representing
matrix @ so that all the off-diagonal entries are 0 or 1.

By following this construction we obtain a 4m-manifold Pg. The intersection number of the S;
and S; is precisely a;;. Hence, if @ is unimodular and has all 2’s along the diagonal, we get an
isomorphism

Hgm(PQ) — Hgm(PQ,aPQ)
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in the long exact sequence of the pair, where this map is given by the intersection matrix Q. Thus @
unimodular implies Ha,,, (0Pg) = 0 and so 0Py is (4m —2)-connected. By the h-cobordism theorem,
we then see that 0Py is then homotopy equivalent to S4m=1_ (Note that we don’t need all 2’s along
the diagonal, just that we have a bundle V' with euler(V) = a;; CANT READ MY NOTES HERE)

Theorem 1.2 (Kervaire-Milnor). Plumbing provides a group homomorphism
(Z,+) = (bPym, #)
that is surjective. The kernel is 0,7, with
Om = @y 227222 — 1) numerator(B,, /4m),
where ay, = 1 or 2 and B,,, denotes the m'" Bernoulli number.

Remark 1.3. These particular numbers are a consequence of Adams, J(X) IV.

2. EXAMPLE: 4m = 8

Note that coker J; = 0 so ©7; = bPs. Earlier, we gave an example of an even unimodular lattice,
Eg. We will now address the question: Is 0Pp, diffeomorphic to the standard 7-sphere? We know
that

sig(Pgg,0) = sig(Eg) = 8,

and we know that the tangent bundle T Pg, restricted to its 4-skeleton is trivial, so p;(Pg,) = 0.
Hence,

sig(Eg) = Tp2/3% - 5.
As Ppg, is 3-connected, it is a Spin-manifold. By the Atiyah-Singer index theorem, there thus exists
a Dirac operator D such that

Ag(Pg,) =ind e 7.
(We don’t need anything about the operator other than its existence.)

This integrality result has the following consequence. Recall that

. P —4
As(M) = 7.
Now suppose that 0Pg, is the standard 7-sphere. Then it bounds the 8-disk, and so we can construct
a boundaryless 8-manifold

X = Pp, Ugr—gp D®.
Then, because p; = 0,

N —4p, 1 1 ( Tpo ) 1 sig(Bg) 1

0 27.32.5 28 81\32-5 28 8 28’

since we saw earlier that sig(FEs) = 8. We thus have a contradiction! Hence OP is not diffeomorphic
to S7.
Note that by Kervaire-Milnor, we know that 28 connect-sums of Pg, has the property

A (ngg Ua(p#%) Dg) =-1¢€Z.

(Here P#2® means “iterate the connect-sum operation 28 times.”) Thus we see that the obstruc-
tion/invariant we’ve constructed gives an isomorphism

bPs = 7,/28.

Remark 2.1. What we've just done is not a proof of Kervaire-Milnor. The goal was simply to
show that these invariants we’ve been discussing are not exotic: they are consequences of the index
theorem, one of the central theorems of mathematics. We simply wanted to explore the invariants
in low dimensions.



3. MOVING ON FROM HERE

We just gave some techniques for exploring bPy,,. What about bPj,12?7 The important fact
is that a framed 2k-manifold has a quadratic refinement of the intersection pairing in the middle
dimension. The Arf invariant of a quadratic form gives an invariant of P with OP € bPyy, 2.

For example, if @ is in a symplectic basis, then Arf(Q) = >, .; q(xi)q(y:) is a function taking
values in Fs.

By work of many topologists (notably Browder and recently Hill-Hopkins-Ravenel), we know that
the Kervaire invariant detects bP.

Theorem 3.1.
WP o Z)2 Am+2#£2F—2
Am+2 = 0 else, or for 4m + 2 = 6,14, 30, 62
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