
MATH 465, LECTURE 2: COBORDISM

J. FRANCIS, NOTES BY O. GWILLIAM

Our eventual goal is to understand the classification of manifolds in families, in which the fibers
are all Cat homeomorphic, for Cat = Top,PL, or Diff. As a warm-up to this, we’ll study families
in which the fibers can change. In particular, we’ll study cobordisms. Roughly speaking, a generic
family π : W → [0, 1] of n-manifolds parametrized by the closed interval is a cobordism between
π−1(0) and π−1(1).

Definition 0.1. A cobordism of smooth n-manifolds M and M ′ is an (n+1)-manifold W with a

diffeomorphism M qM ′
∼=−→ ∂W .

Remark 0.2. Of course, we can decorate or modify this definition for different settings. For instance,
if we work with topological rather than smooth manifolds, we require the map on ∂W to be a
homeomorphism. Or, if we wish to work with oriented manifolds, we require M , M ′, and W to be
oriented such that we have a orientation-respecting diffeomorphism ∂W →M

∐
M̄ ′, where the bar

means “reversed orientation.”

Our goal for the moment is to classify manifolds up to cobordism (roughly speaking, we want to
consider the set/space of manifolds modulo the equivalence relation given by cobordism). Ideally,
we would like a “moduli space M of all manifolds up to cobordism.” Here are a few properties we
should demand of M, in order for it to earn this moniker:

(1) A point ∗ →M gives a 0-manifold.

(2) A path [0, 1]
f→M defines a cobordism of 0-manifolds between f(0) and f(1).

Notice that the empty 0-manifold ∅0 equipsM with a basepoint. Hence a loop f ∈ ΩM specifies a
closed 1-manifold, since it gives a cobordism from ∅0 to itself. Analogously, a based map from S2

into M, namely an element f ∈ Ω2M, specifies a closed 2-manifold.
Continuing, we want a relation

ΩnM' {closed compact n-manifolds}
in such a way that

π0ΩnM' {closed compact n-manifolds}/ ∼ given by cobordism.

In other words, we want a space whose homotopy type encodes manifolds up to cobordism. Our
description above is only a heuristic, but we will make a space like this.

Historically, the first approach to this space was via the Pontryagin-Thom construction.
Pontryagin wanted to understand maps between spheres. He observed that if you have a smooth

map f : Sn+k → Sk, then the inverse image f−1(x) of a regular value x ∈ Sk is an n-manifold and,
moreover, that a path between two regular values gives a cobordism of n-manifolds. Hence maps
between spheres encode something about cobordism, and the process of taking the inverse image of
a regular value interrelates function theory and geometry.

What he showed precisely was that

πn+kS
k ∼=−→ Ωfr

n(Rn+k),

where the right hand symbol means “the set of compact, closed n-manifolds embedded in Rn+k with
framings on their normal bundles, up to framed embedded cobordism.” This is a really remarkable
result, relating geometry (in the guise of manifolds) to the core concerns of homotopy theory.
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This result is suggestive that we might regard space Ωn+kSk as some sort of moduli space of
n-manifolds with normally-framed embeddings into Rn+k. Taking this hint, we will use a similar
idea to construct M. We will first recall the standard notion of the Thom space.

Definition 0.3. For a vector bundle π : V → B, the Thom space Th(V ) is the quotient Disk(V )/Sph(V ),
where we pick a metric on the bundle for which Disk(V ) is the unit disk bundle and Sph(V ) is the
unit sphere bundle.

Note that varying the metric preserves the homeomorphism-type of the Thom space. To give a
feel for what the Thom space is, observe that for a compact base B, Th(V ) ∼= V +, the one-point
compactification of the bundle. In general, the Thom space is naturally pointed by the image of the
sphere bundle, just as V + is pointed by the point at infinity.

Exercise 0.4. Show that Th(V ⊕ V ) ∼= Th(V ) ∧ Th(W ). In particular, show that Th(V ⊕ Rn) ∼=
ΣnTh(V ). Hence, the Thom space plays nicely with our favorite operations on spaces.

We now apply this construction to the most natural bundles: let γn → BO(n) = Grn(R∞) denote
the universal n-plane bundle.

Definition 0.5. MO(n) := Th(γn).

Consider the following sequence of inclusions

· · · → BO(n− 1)
gn−1−→ BO(n)

gn−→ BO(n+ 1)→ · · · .
Observe that g∗nγ

n+1 ∼= γn ⊕ R1. Hence, by the exercise,

Th(g∗nγ
n+1) ∼= ΣTh(γn) = ΣMO(n).

Notice that a pullback of bundles g∗V → V induces a map between the Thom spaces Th(g∗V ) →
Th(V ). Putting these constructions together, we obtain the Thom spectrum.

Definition 0.6. Let MO denote the spectrum given by the sequence of spaces {MO(n)} with the
maps

Th(g∗nγ
n+1) = ΣMO(n)→MO(n+ 1) = Th(γn+1).

This is a connective spectrum and we can extract the associated infinite loop space to get the
moduli space M we want.

Definition 0.7. M := colimn→∞ΩnMO(n) = Ω∞MO.

This space will have all the properties we wanted. To see that it exists, you simply need to apply
the adjunction between looping Ω and suspension Σ to our definition of the Thom spectrum.

To justify our assertions that this infinite loop space is the moduli space we desire, we will prove
the following theorem.

Theorem 0.8 (Thom). Ωun
n ' πnMO.

Here Ωun
n denotes the set of compact closed unoriented smooth n-manifolds up to cobordism. For

a spectrum, the homotopy groups are defined as follows:

πnMO := lim−→
k→∞

πn+kMO(k).

Remark 0.9. Rather than taking the above as the definition of M, a more honest approach to
constructing this moduli space of manifolds M would be to first make the (∞,∞)-category of
cobordisms Cob∞, and then take the classifying space. A result of either Galatius-Madsen-Tillmann-
Weiss or Lurie states that BCob∞ ' Ω∞MO.

Question: Why does “smooth” show up on the left hand side? The other stuff never seemed
to involve this hypothesis. A: The right had side involves vector bundles, and the tangent bundle
of a smooth manifold has the structure of a vector bundle; this is not the case for topological or
PL manifolds, which both have a notion of a “tangent bundle,” but which is not a vector bundle.
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Since we’re interested in these cases also, it might have made sense to do this more general case first.
However, the proof of Thom’s theorem relies on transversality, which manifestly depends on smooth-
ness. There is an analogous result, proved much later by Kirby and Siebenmann, for topological
manifolds, but it requires a topological substitute for transversality. The spectrum for topological
manifolds is denoted MTop, for PL manifolds MPL, and once you have this transversality result
you can prove ΩTop

n
∼= πnMTop and ΩPL

n
∼= πnMPL. We’ll talk about this stuff eventually.
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